Kiểm định phương sai sai số thay đổi

Một phần của tài liệu Ảnh hưởng của các yếu tố nội tại, yếu tố ngành, và yếu tố vĩ mô đến hiệu quả hoạt động ngân hàng thương mại Việt Nam (Trang 54 - 70)

Khi xảy ra hiện tượng phương sai sai số thay đổi sẽ ảnh hưởng đến các ước lượng thu được như sau:

 Các ước lượng bình phương nhỏ nhất vẫn là ước lượng không chệch nhưng không phải là ước lượng hiệu quả (ước lượng có phương sai nhỏ nhất)

 Ước lượng của các phương sai sẽ bị chệnh, do đó các kiểm định mức ý nghĩa và

khoảng tin cậy dựa theo phân phối T và F không còn đáng tin cậy nữa.

Do đó, nghiên cứu này sẽ lần lượt đi kiểm định phương sai sai số thay đổi của từng mô hình hồi quy đối với ROE, ROA và NIM. Phương sai thay đổi cũng có thể nảy sinh do sự hiện diện của yếu tố tách biệt (outlier, còn gọi là yếu tố nằm ngoài). Một quan sát nằm ngoài là một quan sát rất khác (có thể rất nhỏ hay rất lớn) với các quan sát khác trong mẫu. Việc bao gồm hay loại trừ một quan sát như thế, đặc biệt là nếu như cỡ mẫu nhỏ, có thể làm thay đổi đáng kể các kết quả phân tích hồi quy. Do đó để

47 tránh khả năng đánh giá sai lệch kết quả, luận văn sử dụng kiểm định White để phát hiện hiện tượng phương sai sai số thay đổi trong mô hình.

Các bước tiến hành kiểm định White như sau: Xét mô hình hồi quy :

(ROE, ROA, NIM) = β1+β2*CAP +β3*RSK + β4*PRO + β5*EXPS + β6*SZ + β7*LN +β8*INF + ei (*)

Bước 1: Ước lượng mô hình hồi quy (*), từ đó thu được các phần dư ei .

Bước 2: Ước lượng mô hình hồi quy phụ:

ei²= α1+ α2*CAP + α3*CAP2 + α4*CAP*RSK + α5*CAP*EXPS + α6*CAP*PRO

+ α7*CAP*SZ + α8*CAP*LN + α9*CAP*INF + α10*RSK + α11*RSK2 +

α12*RSK*EXPS + α13*RSK*PRO + α14*RSK*SZ + α15*RSK*LN +

α16*RSK*INF + α17*EXPS + α18*EXPS2 + α19*EXPS*PRO + α20*EXPS*SZ +

α21*EXPS*LN + α22*EXPS*INF + α23*PRO + α24*PRO2 + α25*PRO*SZ +

α26*PRO*LN + α27*PRO*INF + α28*SZ + α29*SZ2 + α30*SZ*LN +

α31*SZ*INF +α32* LN + α33*LN2 + α34*LN*INF + α35*INF + α36*INF2 + vi

(**)

Ta thu được R² theo mô hình hồi quy phụ. Bước 3:

Kiểm định giả thuyết :

Ho: Phương sai sai số không đổi H1: Phương sai sai số thay đổi Tiêu chuẩn kiểm định : χ² =χ(df)

Sau đó tính toán trị thống kê n*R2, trong đó: n là cỡ mẫu; R2 là hệ số xác định của mô hình hồi quy phụ (**) ở bước 2.

Bước 4:

Tra bảng phân phối Chi-bình phương (χ²), mức ý nghĩa α và bậc tự do là k (k là số tham số trong mô hình hồi quy phụ).

 Nếu thì bác bỏ Ho, nghĩa là có hiện tượng phương sai sai số thay đổi. ) 1 ( 2 2 k nR 

48  Nếu thì chấp nhận Ho, nghĩa là không có hiện tượng phương

sai sai số thay đổi.

Bây giờ ta bắt đầu kiểm định lần lượt từng mô hình theo từng biến phụ thuộc ROE, ROA, NIM.

4.5.3.1. Kiểm định phương sai sai số thay đổi đối với mô hình biến phụ thuộc ROE Dựa vào kết quả của mô hình hồi quy phụ theo phần dư bình phương được thể hiện trong phần Phụ lục B, ta thấy R2=0.541593 và số lượng mẫu n=26, do đó n*R2= 26*0.541593= 14.081418.

Số tham số trong phương trình hồi quy phụ theo phần dư là 36, do đó bậc tự do là k=36-1=35. Theo phân phối Chi-bình phương, với độ tin cậy 95% và bậc tự do là 35, ta tính được χ2=22.46. Như vậy kết quả là n*R-squared < χ2, do đó ta chấp nhận giả thuyết Ho, nghĩa là không có hiện tượng phương sai sai số thay đổi trong mô hình. 4.5.3.2. Kiểm định phương sai sai số thay đổi đối với mô hình biến phụ thuộc ROA Các bước thực hiện tương tự như đã làm đối với ROE, kiểm định phương sai thay đổi trong phương trình ROA được thực hiện ở phần phụ lục. Dựa vào bảng kết quả theo hồi quy phụ, ta thấy:

R2=0.501528; n=26

Ta được n*R2= 26*0.501528= 13.039728.

Số tham số trong phương trình hồi quy phụ theo phần dư là 36, do đó bậc tự do k=36-1=35. Tra bảng phân phối Chi-bình phương, với độ tin cậy 95% và bậc tự do là 35, ta tính được χ2=22.46.

Như vậy kết quả là n*R2 < χ2, do đó ta chấp nhận giả thuyết Ho, nghĩa là không có hiện tượng phương sai sai số thay đổi trong mô hình này.

4.5.3.3. Kiểm định phương sai sai số thay đổi đối với mô hình biến phụ thuộc NIM Quy trình kiểm định phương sai sai số thay đổi đối với NIM cũng được thực hiện tương tự như đã làm đối với ROE và ROA. Dựa vào kết quả của mô hình hồi quy ở

phần phụ lục, ta thấy rằng R2=0.366034 và số lượng mẫu n=26, do đó n*R-squared=

26*0.366034= 9.516884.

Số tham số trong phương trình hồi quy phụ theo phần dư là 36, do đó bậc tự do là k=36-1=35. Theo phân phối Chi-bình phương, với độ tin cậy 95% và 35 bậc tự do, ta

) 1 ( 

 k

49 tính được χ2=22.46. Như vậy kết quả là n*R-squared < χ2, do đó ta chấp nhận giả thuyết Ho, nghĩa là không có hiện tượng phương sai sai số thay đổi trong mô hình. Tóm lại, kết quả kiểm định White cho thấy cả 3 mô hình hồi quy mà ta xây dựng với 3 biến phụ thuộc ROE, ROA, NIM đều không xảy ra hiện tượng phương sai sai số thay đổi.

Như vậy, sau khi chạy hồi quy Pool và tiến hành các kiểm định cần thiết luận văn sẽ đi giải thích ý nghĩa hệ số hồi quy của các biến giải thích trong các phương trình trên. 4.6. Giải thích kết quả nghiên cứu

Đề tài đã tìm được các mô hình nghiên cứu phù hợp để giải thích mối quan hệ giữa các biến, đồng thời cũng đã kiểm định được sự phù hợp của mô hình. Để thuận lợi cho quá trình phân tích, so sánh, tác giả sẽ tiến hành phân tích tác động đồng thời của từng biến độc lập đến 3 biến phụ thuộc ROE, ROA và NIM.

4.6.1. Biến tỷ lệ vốn chủ sở hữu trên tổng tài sản (CAP)

Dựa vào kết quả hồi quy của 3 mô hình tương ứng với ba biến phụ thuộc ROE, ROA và NIM, ta thấy trong cả ba mô hình, biến CAP đều có ảnh hưởng đến hiệu quả hoạt động ngân hàng với mức ý nghĩa cao (1%). Tuy nhiên mối tương quan này có sự khác nhau về dấu đối với các chỉ tiêu đo lường hiệu quả hoạt động khác nhau.

Tỷ lệ vốn chủ sở hữu trên tổng tài sản (CAP) có mối tương quan thuận với hiệu quả hoạt động của ngân hàng (ROA, NIM) với mức ý nghĩa thống kê 1%. Hệ số hồi quy cho thấy mặc dù đều có tác động cùng chiều, nhưng biến CAP tác động tới NIM mạnh hơn ROA (0.1282 > 0.0340). Biến này phản ánh cơ cấu vốn của mỗi ngân hàng. Vốn chủ sở hữu của ngân hàng là tấm đệm để chống lại rủi ro phá sản, bảo vệ quyền lợi của khách hàng tiền gửi và góp phần tạo nên thương hiệu và niềm tin cho khách hàng. Tỷ lệ vốn chủ sở hữu/tổng tài sản cao đồng nghĩa với tỷ lệ nợ/tổng tài sản thấp, ngân hàng sẽ giảm được đáng kể chi phí sử dụng vốn như chi phí lãi vay, chi phí liên quan đến huy động vốn. Chi phí giảm sẽ trực tiếp làm tăng lợi nhuận. Điều này nhất quán với giả thuyết H1 đưa ra và cũng phù hợp với nghiên cứu thực nghiệm trên thế giới. Nghiên cứu của Naceur (2003) cũng cho thấy những ngân hàng nào có tỷ lệ vốn chủ sở hữu cao thì có NIM và ROA cao. Trong một nghiên cứu khác, để tìm ra các yếu tố xác định Net Interest Margin (NIM) của ngân hàng, Anthony và Schumancher (2000) chọn lọc số

50 liệu từ 614 ngân hàng ở 7 nước quốc Châu Âu và Mỹ trong giai đoạn 1988 đến 1995 và cũng đã chứng tỏ được sự tồn tại mối liên hệ cùng chiều giữa tỷ lệ vốn chủ sở hữu trên tổng tài sản và NIM.

Tuy nhiên, trong giai đoạn 2006-2012 vừa qua, nền kinh tế Việt Nam và thế giới rơi vào khủng hoảng nghiêm trọng. Do đó kết quả hồi quy cũng phần nào phản ánh được tình hình này thông qua mối quan hệ ngược chiều giữa CAP với ROE. Chỉ số CAP phản ánh khả năng tài trợ tổng tài sản từ vốn tự có của doanh nghiệp. Tỷ số này cao chứng tỏ khả năng tự chủ tài chính của doanh nghiệp, nhưng cũng cho thấy doanh nghiệp chưa tận dụng đòn bẩy tài chính nhiều. Khi khủng hoảng kinh tế xảy ra, người dân có xu hướng tiết kiệm chi tiêu và gửi tiền vào ngân hàng để đảm bảo an toàn vốn thay vì tung tiền đầu tư vào các kênh khác như chứng khoán, vàng, ngoại tệ hay đầu tư sản xuất kinh doanh, những kênh đầu tư đầy rủi ro và mạo hiểm. Chứng minh cho điều đó bằng dữ liệu của hãng AP (thông tấn xã Hoa Kỳ) khi phân tích thái độ của người tiêu dùng bắt đầu từ tháng 12 năm 2007 đến cuối năm 2012. Phân tích tập trung vào 10 nền kinh tế lớn nhất thế giới – Mỹ, Trung Quốc, Nhật, Đức, Pháp, Anh, Brazil, Nga, Ý và Ấn Độ – chiếm một nửa dân số thế giới và 65% GDP toàn cầu cũng cho thấy dù giàu hay nghèo, già hay trẻ, không phân biệt màu da, đẳng cấp, khi khủng hoảng xảy ra, hầu như tất cả mọi người đều có cùng hành vi là giữ chặt đồng tiền của mình và gửi tiết kiệm vào ngân hàng.

Lượng tiền gửi vào các ngân hàng tăng đột biến dẫn đến tổng tài sản tăng cao. Điển hình là lãi suất tiền gửi trong giai đoạn 2008-2010 ở mức rất cao (trên 20%) thu hút nhiều lượng tiền gửi nhàn rỗi từ dân cư và kể cả các doanh nghiệp. Vốn chủ sở hữu không đổi trong khi tổng tài sản tăng làm tỷ lệ vốn chủ sở hữu trên tổng tài sản (CAP) giảm xuống. Mặt khác, khi tổng tài sản tăng, các ngân hàng tận dụng nguồn vốn huy động này để cho vay hoặc kinh doanh sinh lời, từ đó làm cho lợi nhuận tăng lên. Như vậy, trong giai đoạn khủng hoảng, tỷ lệ vốn chủ sở hữu trên tổng tài sản càng thấp dẫn đến lợi nhuận càng cao. Tương tự như vậy, có bằng chứng cho rằng tỷ lệ vốn trên tổng tài sản (CAP) có tác động ngược chiều đến lợi nhuận ngân hàng trong giai đoạn khủng hoảng 2007-2009 khi Andreas và Gabrielle (2011) sử dụng kỹ thuật ước lượng GMM để nghiên cứu phân tích số liệu trên 372 ngân hàng thương mại ở Thụy Sĩ từ 1999- 2009. Một trong những lí do chính để giải thích cho điều này là do một số ngân hàng ở

51 Thụy Sỹ đảm bảo được sự an toàn đã thu hút được thêm lượng tiền gửi tiết kiệm (chủ yếu từ ngân hàng UBS- ngân hàng tư nhân lớn nhất thế giới) trong cuộc khủng hoảng. 4.6.2. Biến rủi ro tín dụng (RSK)

Theo kết quả của các nghiên cứu trước, rủi ro tín dụng là yếu tố quan trọng và có ảnh hưởng ngược chiều đến hiệu quả hoạt động ngân hàng. Mặc dù không có ý nghĩa thống kê trong cả ba mô hình, nhưng tác giả vẫn quyết định giữ lại biến này để phân tích trong trường hợp thực tế của ngành ngân hàng ở Việt Nam, bởi vì có thể thời gian và dữ liệu nghiên cứu hạn chế nên chưa đủ cơ sở để khẳng định về sự tương quan này. Mặt khác, thực tế ở Việt Nam, tình trạng cố tình che giấu nợ xấu để né tránh việc tăng chi phí trích lập dự phòng hoặc tăng trích lập dự phòng để dành thu nhập cho các năm sau xảy ra khá phổ biến. Bản thân các ngân hàng lớn hay nhỏ, hoạt động tốt hay không đều có xu hướng giấu nợ xấu. Ngân hàng nhỏ giấu nợ xấu vì sợ nếu lộ ra sẽ bị phân biệt đối xử, khách hàng rút chạy. Còn những ngân hàng lớn, giấu nợ xấu và trích dự phòng rủi ro thấp để tăng lợi nhuận, kích giá cổ phiếu cũng như thu hút khách hàng. Nợ được phân thành 5 nhóm và từ nhóm 3 đến nhóm 5 mới bị coi là nợ xấu. Nhưng nhờ được tái cơ cấu, khách hàng được khoanh nợ, giãn nợ nên nợ nhóm 3 được đẩy lên nhóm 2 và nợ nhóm 4 lên nợ nhóm 2. Nợ xấu được giảm đi rõ, song bản chất của những khoản nợ đó vẫn không vì vậy mà bớt xấu đi.

Theo số liệu báo cáo của ngân hàng nhà nước tổng hợp từ các ngân hàng thương mại, nợ xấu của ngân hàng không cao hơn 2,5%. Tuy nhiên, khi cơ quan thanh tra ngân hàng nhà nước tìm hiểu kỹ, thì tỷ lệ nợ xấu lên tới 30%, thậm chí có nhà băng lên tới 60%. Điều này làm cho số liệu trích lập dự phòng rủi ro tín dụng trong các báo cáo tài chính của ngân hàng bị sai lệch và phản ánh không chính xác, đầy đủ mối quan hệ giữa rủi ro tín dụng với hiệu quả hoạt động.

Hệ số hồi quy của biến RSK trong mô hình cho thấy rủi ro tín dụng có mối quan hệ ngược chiều với ROA và ROE. Điều này có thể được lý giải là khi rủi ro tăng lên, ngân hàng phải tăng tỷ lệ trích lập dự phòng, do đó làm giảm lợi nhuận (Miller và Noulas (1997)). Kết quả nghiên cứu của Panayiotis và các cộng sự (2006) cho thấy các nhà quản trị ngân hàng ở Hy Lạp đã tăng cường việc kiểm tra giám sát rủi ro tín dụng nhằm tối đa hóa lợi nhuận. Andreas và Gabrielle (2011) cũng tìm được bằng chứng cho thấy

52 tỷ lệ trích lập dự phòng rủi ro tín dụng tăng đáng kể trong suốt giai đoạn khủng hoảng và phản ánh mối quan hệ ngược chiều giữa rủi ro tín dụng và lợi nhuận ngân hàng trong suốt những năm khủng hoảng.

Mối quan hệ cùng chiều của rủi ro tín dụng với NIM giống với giả thuyết cho rằng các ngân hàng có nhiều rủi ro tín dụng và rủi ro lãi suất cao hơn sẽ chọn lãi suất cho vay và huy động phù hợp để đạt được NIM cao hơn. Angbazo (1997) đã đi kiểm chứng giả thuyết này bằng nghiên cứu sử dụng dữ liệu của cục dự trữ liên bang Mỹ từ năm 1989- 1993 của 286 ngân hàng thương mại của Mỹ có tổng tài sản từ 1 tỷ đô la trở lên. Nhìn chung, bằng chứng tìm được là nhất quán với giả thuyết cho rằng NIM của các ngân hàng có mối tương quan cùng chiều có ý nghĩa thống kê với rủi ro phá sản (bao gồm rủi ro tín dụng).

4.6.3. Biến năng suất lao động (PRO)

Năng suất lao động có mối tương quan cùng chiều và có ý nghĩa thống kê cao (1%) trong cả ba mô hình hồi quy POOL với ba biến phụ thuộc ROE, ROA và NIM. Điều này hoàn toàn khớp đúng với giả thuyết nghiên cứu (H3) của đề tài. Hầu hết lý thuyết về năng suất lao động và các nghiên cứu thực nghiệm trên thế giới đều có cùng kết luận về mối quan hệ cùng chiều giữa năng suất lao động với hiệu quả hoạt động ngân hàng. Eichengreen và Gibson (2001) cho thấy năng suất lao động có mối liên hệ dương đối với lợi nhuận. Naceur và Goaied (2001) cho thấy những ngân hàng hoạt động hiệu quả nhất luôn có biện pháp cải thiện năng suất lao động và hiệu quả sử dụng vốn khi xem xét các yếu tố tác động đến hiệu quả của các ngân hàng Tunisia trong khoảng thời gian từ 1980 đến 1995.

Thật vậy, đối với ngân hàng hay doanh nghiệp nói chung, tăng năng suất lao động có ý nghĩa quan trọng, nó là một trong những chỉ tiêu phản ánh hiệu quả sản xuất kinh doanh của doanh nghiệp và là một yếu tố quyết định đến sự tồn tại và phát triển của doanh nghiệp, điều đó thể hiện như sau:

- Tăng năng suất lao động góp phần nâng cao khả năng cạnh tranh của doanh nghiệp trên thị trường. Có thể nói, nâng cao năng lực cạnh tranh là một vấn đề quan trọng hàng đầu đặt ra đối với các doanh nghiệp, đặc biệt là trong nền kinh tế thị trường như hiện

53 nay. Bởi nâng cao năng lực cạnh tranh sẽ giúp doanh nghiệp bán được nhiều sản phẩm hơn trên thị trường, tăng thị phần, tăng lợi nhuận,…Mà năng suất lao động tăng thì làm giảm giá thành sản phẩm nhưng đồng thời chất lượng sản phẩm cũng được cải tiến vì tiết kiệm được chi phí về tiền lương trên một đơn vị sản phẩm. Giá cả và chất lượng chính là hai yếu tố quyết định đến khả năng cạnh tranh của doanh nghiệp trên thị

Một phần của tài liệu Ảnh hưởng của các yếu tố nội tại, yếu tố ngành, và yếu tố vĩ mô đến hiệu quả hoạt động ngân hàng thương mại Việt Nam (Trang 54 - 70)

Tải bản đầy đủ (PDF)

(105 trang)