Sai lệch cơng suất khi kết hợp mạng nơron chế độ theo lò hơi, tuabin

Một phần của tài liệu (Luận án tiến sĩ) phương pháp nhận dạng và hiệu chỉnh các mạch vòng điều khiển nhà máy nhiệt điện đốt than phun (Trang 138 - 196)

Tương tự, với các chế độ điều khiển theo lị hơi và theo tuabin, mạng nơron có ảnh hưởng tới đáp ứng điều khiển, khiến sai lệch công suất cực đại giảm khi tổ máy tăng-giảm tải. Đặc biệt tại chế độ theo lò hơi, khi tổ máy phát tải ổn định, dao động giảm đáng kể (đường màu vàng ít dao động). Khi tổ máy chạy ở chế độ theo tuabin ổn định công suất đặt, sai lệch dao động có xu hướng tăng. Điều này được lý giải là do mạng nơron hiện đang lấy đầu vào theo áp suất thực tế nên giá trị trả ra sẽ khó phù hợp với mơ hình lý tưởng đang chạy ở chế độ theo tuabin.

4.5. KẾT LUẬN CHƯƠNG 4

Từ nội dung Chương 4 rút ra những vấn đề sau:

- Ứng dụng mạng nơron để nhận dạng đặc tính vận hành của hệ điều khiển phụ tải nhiệt trong NMNĐ có thể thực hiện với độ chính xác cao.

- Ứng dụng mạng nơron vào việc hiệu chỉnh lượng đặt mạch điều khiển cấp nhiên liệu đã giúp nâng cao chất lượng đầu ra của hệ thống.

- Chế độ điều khiển phối hợp luôn là chế độ vận hành hiệu quả nhất. Trước khi xem xét đầu tư các cơng nghệ tiên tiến khác, nên duy trì vận hành ổn định chế độ điều khiển phối hợp tại các NMNĐ.

- Đối với quá trình tăng tải với phẩm chất nhiên liệu thay đổi mạnh, việc ứng dụng mạng nơron nhằm nhận diện nhu cầu nhiên liệu thực tế theo phẩm chất than có thể giúp hệ thống điều khiển đưa ra giá trị cài đặt lưu lượng than phù hợp, tiết kiệm lượng than tiêu thụ của tổ máy.

Các kết quả nghiên cứu cho thấy việc ứng dụng mạng nơron vào hệ điều khiển NMNĐ cung cấp khả năng nhận dạng trực tuyến, góp phần nâng cao hiệu quả của công tác chỉnh định trong NMNĐ.

KẾT LUẬN VÀ KIẾN NGHỊ Nội dung luận án đã giải quyết các vấn đề sau:

- Phân tích các mạch vịng điều khiển đối tượng q trình nhiệt trong nhà máy nhiệt điện đốt than phun công nghệ cận tới hạn, ứng dụng mơ hình điều khiển nhà máy phục vụ nghiên cứu các chế độ vận hành và đánh giá đáp ứng của hệ thống trong các điều kiện vận hành khác nhau.

- Trình bày phương pháp sử dụng phần tử dự báo kết hợp bộ điều khiển, đồng thời xây dựng công cụ hỗ trợ công tác chỉnh định tham số bộ điều khiển trong NMNĐ. Đề xuất bộ tham số điều khiển mới cho mạch vịng điều khiển gió chính và cấp nhiên liệu tại tổ máy S1 NMNĐ Duyên Hải 1.

- Mạng nơron ứng dụng cho hệ điều khiển NMNĐ cung cấp khả năng nhận dạng trực tuyến, góp phần nâng cao hiệu quả cơng tác chỉnh định trong NMNĐ.

Các kết quả chính đạt được của luận án:

- Phân tích đặc điểm cơng nghệ, cấu trúc điều khiển, các yếu tố ảnh hưởng tới chất lượng làm việc, trình tự thực hiện chỉnh định các mạch vòng điều khiển cơ bản trong NMNĐ đốt than phun công nghệ cận tới hạn, phục vụ định hướng cho nhận dạng và chỉnh định hệ thống điều khiển trong NMNĐ.

- Sử dụng hiệu quả phần tử dự báo kết hợp bộ điều khiển để chỉnh định các mạch vòng điều khiển trong NMNĐ. Đề xuất thời gian dự báo được xác định không vượt quá 0,461 lần thời gian trễ vận tải của đối tượng. Đề xuất bộ tham số điều khiển mới cho mạch vịng điều khiển gió chính và cấp nhiên liệu tại NMNĐ Duyên Hải 1.

- Ứng dụng thành công mạng nơron trong nhận dạng hệ điều khiển nhà máy cụ thể. Mạng nơron được kiểm chứng chức năng nhận dạng đặc tính vận hành của nhà máy, đánh giá các cấu trúc điều khiển và hiệu chỉnh quá trình cấp nhiên liệu tại NMNĐ Duyên Hải 1.

Kiến nghị các nghiên cứu tiếp theo:

- Hoàn thiện phần mềm và xây dựng phương án tổ chức thực hiện chỉnh định tham số bộ điều khiển tại NMNĐ Duyên Hải 1.

- Nghiên cứu kết nối mạng nơron với hệ điều khiển DCS của nhà máy để có thể triển khai nhận dạng và chỉnh định hệ điều khiển.

DANH MỤC CÁC CƠNG TRÌNH ĐÃ CƠNG BỐ CỦA LUẬN ÁN

[1] Nguyễn Tiến Sáng, Pikina Galina Alekceeva, Nguyễn Tiến Khang (2018), Thiết

kế bộ điều khiển dự báo bền vững sử dụng phần mềm nhận dạng đối tượng nhiệt,

Tạp chí Năng lượng nhiệt, số 143 – 9/2018, trang 23-27.

[2] Sang N.T., Dung L.D., Pikina G.A., Khang N.T. (2018). Design of the Control

System Using the Sustainable Controller incorporates Prediction Elements,

International Conference on Fluid Machinery & Automation Systems. October 27-28, 2018 Ha Noi.

[3] Nguyễn Tiến Sáng, Phạm Thị Lý, Nguyễn Hải Nam, Nguyễn Hải Anh, Nguyễn Văn Thái, Lê Nguyễn Hồng Ân (2019), Phân tích hệ điều khiển phụ tải nhiệt

của nhà máy nhiệt điện sử dụng nhiên liệu than, Tạp chí Năng lượng nhiệt, số

147 – 5/2019, trang 20-25.

[4] Nguyễn Tiến Sáng, Lê Đức Dũng, Bùi Quốc Khánh (2019), Mô hình điều khiển

lị hơi nhà máy nhiệt điện Duyên Hải 1 sử dụng mạng nơron, Tạp chí Năng

lượng nhiệt, số 149 – 9/2019, trang 10-15.

[5] Nguyễn Tiến Sáng, Lê Đức Dũng, Bùi Quốc Khánh, Nguyễn Hữu Linh (2020),

Mơ phỏng số buồng đốt than phun lị hơi nhà máy nhiệt điện duyên hải 1: trộn than á - bitum với antraxit và nâng cao hiệu suất cháy, Tạp chí Năng lượng nhiệt, số 151 - 1/2020, tr. 10-25.

[6] T.S. Nguyen, Q.K. Bui, T.K. Nguyen (2020), The Software Tuning The Controller Parameters of Overheating Objects in Thermal Power Plants, ISSN:

1024-1752, Journal of Mechanical Engineering Research and Developments – Vol 43, No.4-2020, pp.245-255. https://jmerd.net/04-2020-245-255/.(Scopus).

TÀI LIỆU THAM KHẢO

[1] Nguyễn Công Hân, Phạm Lê Dần (2007), Cơng nghệ lị hơi và mạng nhiệt, Nhà xuất bản Khoa học và Kỹ thuật.

[2] Phạm Hồng Sơn, Bùi Quốc Khánh, Nguyễn Duy Bình, Phạm Quang Đăng (2013), Hệ điều khiển DCS cho nhà máy sản xuất điện năng, Nhà xuất bản Khoa học và Kỹ thuật.

[3] Đỗ Văn Thắng (2010), Vận hành Thiết bị lò hơi và Tuabin của nhà máy Nhiệt

điện, Nhà xuất bản Giáo dục Việt Nam.

[4] Hoàng Minh Sơn (2016), Cơ sở Hệ thống điều khiển quá trình, Tái bản lần thứ 4, có chỉnh sửa, bổ sung.– H. Bách khoa Hà Nội 2016. – 506tr.

[5] Bộ Công Thương (2021), Văn bản số 828/BCT-ĐL ngày 09/02/2021 về việc ý

kiến góp ý về Dự thảo Đề án Quy hoạch phát triển điện lực quốc gia thời kỳ 2021-2030, tầm nhìn tới năm 2045, Thơng báo tại http://www.erea.gov.vn/.

[6] Bùi Quốc Khánh, Phạm Quang Đăng, Nguyễn Huy Phương (2014), Điều khiển

quá trình, NXB Khoa học và Kỹ thuật.

[7] Hoàng Văn Chước (2013), Hệ thống cung cấp nhiệt, Nhà xuất bản Bách khoa, Hà Nội.

[8] Vũ Thu Diệp (2018), Nghiên cứu phát triển lý thuyết hệ điều khiển nhiều tầng

trong điều khiển quá trình nhiệt trên cơ sở chỉ số dao động mềm, Luận án Tiến

sĩ Kỹ thuật Nhiệt, Trường Đại học Bách khoa Hà Nội.

[9] Đỗ Cao Trung (2019), Nghiên cứu phương pháp chỉnh định hệ thống điều khiển

quá trình nhiệt điện trong điều kiện phụ tải biến đổi, Luận án Tiến sĩ Kỹ thuật

Nhiệt, Trường Đại học Bách khoa Hà Nội.

[10] Phạm Thị Lý (2021), Xây dựng hệ điều khiển phụ tải nhiệt phục vụ vận hành tối

ưu nhà máy nhiệt điện đốt than áp suất cận tới hạn, Luận án Tiến sĩ Kỹ thuật

điều khiển và tự động hóa, Trường Đại học Bách khoa Hà Nội.

[11] Nguyễn Chiến Thắng (2017), Nghiên cứu một số giải pháp nâng cao hiệu suất

cháy antraxit Việt Nam trong buồng đốt than phun, Luận án Tiến sỹ Kỹ thuật

Nhiệt, Trường Đại học Bách khoa Hà Nội.

[12] Phân xưởng vận hành 1 (2018). Các tài liệu, bản vẽ, thuyết minh, quy trình vận

hành, sửa chữa, Logic điều khiển và sơ đồ P&ID tổ máy S1 NMNĐ Duyên Hải 1, Công ty Nhiệt điện Duyên Hải.

[13] Phân xưởng vận hành 1 (2018), Các dữ liệu vận hành của tổ máy S1 nhà máy

nhiệt điện Duyên Hải 1, 30/7/2018, định dạng dưới dạng file exel, Công ty Nhiệt

điện Duyên Hải.

[14] Phân xưởng vận hành (2020). Các tài liệu, bản vẽ, thuyết minh, quy trình vận

hành, sửa chữa, Logic điều khiển và sơ đồ P&ID tổ máy S7, S8, Cơng ty Nhiệt

điện ng Bí.

[15] Phân xưởng vận hành (2020). Các tài liệu, bản vẽ, thuyết minh, quy trình vận

hành, sửa chữa, Logic điều khiển và sơ đồ P&ID tổ máy U1, Công ty Nhiệt điện

[16] Phân xưởng vận hành (2020). Các tài liệu, bản vẽ, thuyết minh, quy trình vận

hành, sửa chữa, Logic điều khiển và sơ đồ P&ID tổ máy S1, S2, S3, S4, Công

ty Cổ phần Nhiệt điện Quảng Ninh.

[17] Nguyễn Khắc Sơn, Nguyễn Tiến Sáng, Vũ Đình Hải, Đào Hồng Hải, Nguyễn Văn Dũng, Phùng Văn Sinh, Huỳnh Hữu Thiện (2019), Ảnh hưởng của tỉ lệ trộn

than á bitum với than antraxit đến nhiệt độ bắt cháy và lượng xỉ đáy lò tại nhà máy điện Duyên Hải 1, Tạp chí Năng lượng nhiệt, số 145 – 1/2019, trang 22-

26.

[18] Phạm Thị Lý, Nguyễn Tiến Sáng, Lê Đức Dũng, Bùi Quốc Khánh (2018), Xây

dựng mơ hình động học cơ bản của hệ phụ tải nhiệt phục vụ đánh giá và chỉnh định điều khiển, Tạp chí Năng lượng nhiệt, số 143 – 9/2018, trang 14-19.

[19] Александров А.А. (2004), Термодинамические основы циклов теплоэнергетических установок, Издавтельство МЭИ. [20] Цветов Ф.Ф., Григорьев Б.А. (2005), Тепломассообмен: Учебное пособие для вузов, Издавтельство МЭИ [21] Липов Ю.М., Третьяков Ю.М. (2003), Котельные установки и парогенераторы. – Москва-Ижевск: НИЦ «Регулярная и хаотическая динамика», 2003, 592 с. [22] А.Г. Костюк, В.В.Фролов, А.Е. Булкин, А.Д. Трухний (2008), Паровые и газовые турбины для электростанций: учебник для вузов. – М.: Издательский дом МЭИ, 2008. – 556 с. [23] Плетнев Г.П. (2007), Автоматизация технологических процессов и производств в теплоэнергетике: учебник для студентов вузов. Г.П. Плетневю – 4-е изд., стрерот. — М.: Издательский дом МЭИ, 2007.352с. [24] Ротач В.Я. (2008), Теория автоматического управления: учебник для вузов. – М.: Издательский дом МЭИ, 2008. – 396 с., ил. [25] Пикина Г.А. (2007), Математические модели технологических объектов: учебное пособие. – М.: Издательский дом МЭИ, 2007. – 300с.

[26] Prabha Kundu (1994), Power System Stability and Control, A Volume in the

EPRI Power System Engineering Series.

[27] Sam G. Dukelow (1991), The Control of Boilers 2nd ed, Includes

bibliographical references and index. ISBN 1-55617-330-X.

[28] Flynn Damian (2003), Thermal Power Plant Simulation and Control, The

Institution of Engineering and Technology (IET) Editor: Damian Flynn ISBN: 9780852964194. London, UK, 2003. [29] Иванова Г.М (2005), Теплотеххнические измерения и приборы: учебник для вузов, Издвтельсво МЭИ, 2005 – 460с, [30] Стерман Л.С. (2008), Тепловые и атомные электрические станции: учебник для вузов по направлению "Теплоэнергетика" и теплоэнергетическим специальностям энергетических вузов и факультетов, Издательский дом МЭИ. [31]

[32] Top Control “Detailed loop Analysis With Expertune” www.topcontrol.com. [33] Shinskey F.G (1996), Process Control Systems Application-Design-Adjustment,

McGraw-Hill New York 1996.

[34] Sigurd Skogestad (2003), Simple analytic rules for model reduction and PID controller tuning, Journal of Process Control 13 (2003) 291-309.

[35] Нгуен Ван Мань (1999), Посковые методы оптимизации систем управления недетерминированными объектами (на примере теплоэнергетики), Диссертация на соискание ученой степени доктора технических наук. [36] Мань Н.В (2000), Оптимальный синтез робастной каскадной автоматической системы управления, Теплоэнергетика, 2000. №9. С. 22- 28. [37] Мань Н.В (2000), Робастная настройка многосвязных систем управления по «мягкой» степени колебательности, Теплоэнергетика, 2000. №2. С. 48- 52.

[38] G.A. Pikina, T.S. Nguyen, I.S. Durgaryan, and F.F. Pashchenko (2016), The Predictive Control Principle and Perspectives of its Application in Automatic Control Systems, Proceedings of International Conference “Design and Produc-

tion Engineering”, Berling, Germany, July 25-26, 2016. Journal of applied me- chanical engineering. vol.5. Iss. 3. 2016.

[39] G.A. Pikina, T.S. Nguyen, F.F. Pashchenko (2020), A Combined Discrete-and-

Continuous Multipoint Model of a Countercurrent Heat Exchanger, Thermal

Engineering-ISSN 0040-6015, 2020, Vol. 67, № 1, с. 52-59. DOI: 10.1134/S0040601520010061. [40] Пикина Г.А., Нгуен Т.С. (2015), Теплогидравлические коды теплообменных устройств ТЭС и АЭС, Труды XXIV междунар. науч.- техн. конф. «Современные технологии в задачах управления, автоматики и обработки информации». Алушта, 14-20 сентября 2015. [41] Т.С. Нгуен, Г.А. Пикина, Ф.Ф. Пащенко (2019), Дискретно-непрерывная многоточечная модель конвективного прямоточного теплообменника, Проблемы машиностроения и автоматизации, 2019, № 1, с. 51-57. [42] Пикина Г.А., Нгуен Т.С (2015), Программа расчета статических и динамических характеристик теплообмена оборудования тепловых и атомных электростанций, Вестник МЭИ, 2015. №1. С. 46-50. [43] Бурцева Ю.С. (2014), Беспоисковый метод расчета настроек регуляторов на минимум квадратичного критерия, Диссертация на соискание ученой степени кандидата технических наук, МЭИ.

[44] By Štefan Bucz and Alena Kozáková (2018), Advanced Methods of PID

Controller Tuning for Specified Performance, June 8th 2017Reviewed:

February 28th 2018Published: September 12th 2018,

[45] Phùng Tiến Duy, Nguyễn Đức Nhật, Nguyễn Đức Anh, Trần Trung Dũng, Nguyễn Duy Hiển, Mai Văn Chung (2020), Thiết kế bộ điều khiển tự chỉnh định

tham số pid cho đối tượng lị nhiệt, Tạp chí Khoa học và Cơng nghệ Trường Đai

học Hùng Vương, Tập 19 số 2, 88-100

[46] Shu Zhang, Cyrus W. Taft, Joseph Bentsman, Aaron Hussey, Bryan Petrus (2012) Simultaneous gains tuning in boiler/turbine PID-based controller clusters sing iterative feedback tuning methodology. ISA Transactions 51, pp.

609–621.

[47] A. Yasmine Begum, G.V. Marutheeswar (2016), Design of MPC for Superheated Steam Temperature Control in a Coal-fired Thermal Power Plant,

October 2016 Indonesian Journal of Electrical Engineering and Computer Science 4.

[48] Xiao Wu, Jiong Shen, Yiguo Li, Kwang Y. Lee (2015), Steam power plant configuration, design, and control, WIREs Energy Environ 2015, doi:

10.1002/wene.161. //HAY//.

[49] R. Garduno-Ramirez, K. Y. Lee Fuzzy (2007), Gain-Scheduling PID Decoupling Control for Power Plant Wide-Range Operation, The 14th

International Conference on Intelligent System Applications to Power Systems, ISAP 2007.

[50] O-Shin Kwon, Won-Hee Jung, Hoon Heo (2013), Steam temperature controller

with LS-SVR based predictor and PID gain scheduler in thermal power plant,

Journal of Mechanical Science and Technology, vol. 27, no. 2, pp. 557-565, Feb. 2013.

[51] Xiufan Liang, Yiguo Li, Xiao Wu and Jiong Shen (2018), Nonlinear Modeling

and Inferential Multi-Model Predictive Control of a Pulverizing System in a Coal-Fired Power Plant Based on Moving Horizon Estimation, Energies 2018,

11(3), 589.

[52] Aeenmehr A., & Sina, A. (2011). Self Tuning PID Controller for Main Steam Temperature in the Power Plant. Communication Systems and Information

Technology, 309-315. doi:10.1007/978-3-642-21762-3_40.

[53] Tüfekci, P. (2014). Prediction of full load electrical power output of a base load

operated combined cycle power plant using machine learning methods.

International Journal of Electrical Power & Energy Systems, 60, 126–140. [54] Tang Z., Zhang, H., Che, P., Cao, S., & Zhao, Z. (2017). Data Analytics Based

Dual-Optimized Adaptive Model Predictive Control for the Power Plant Boiler.

Mathematical Problems in Engineering, 2017, 1–9. doi:10.1155/2017/8048962. [55] Nguyễn Tiến Sáng, Lê Nguyễn Hồng Ân (2020), Phương pháp hiệu chỉnh hệ

thống điều khiển cấp nhiên liệu tại nhà máy nhiệt điện Duyên Hải 1, Hội nghị

Khoa học và Công nghệ Điện lực toàn quốc năm 2020.

[56] Đào Hữu Hùng, Tạ Cao Minh (2007), Ứng dụng mạng Nơron trong nhận dạng

đối tượng điều khiển, Tạp chí Tự động hóa ngày nay, số 4-2007, Tr. 22-25.

[57] Kwang Y. Lee, Fellow, Jin S. Heo, Jason A. Hoffman, Sung-Ho Kim, Won-Hee Jung (2007), Neural Network-Based Modeling for A Large-Scale Power Plant, IEEE Power Engineering Society General Meeting. 24-28/2007.

[58] S.P. Karna MIETE, Nesar Ahmad (2004), Neural Network based Modeling of

Power Plant with Reduced Number of Input Variables, IETE Journal of

Research Vol 50, No. I, January-February, pp 79-86.

[59] Ivan R. Nikoliü, Vesna N. Petkovski, Goran S. Kvasỵev (2014). Neural Network-Based Modeling of a Thermal Power Plant Feedwater Pump, 12th

Symposium on Neural Network Applications in Electrical Engineering, Serbia, November, 25-27.

[60] Narendra, K. S., & Parthasarathy, K. (1990). Identification and control of dynamical systems using neural networks. IEEE Transactions on Neural

Networks, 1(1), 4–27. doi:10.1109/72.80202.

[61] R. B. Chokshi, Neeraj K. Chavda, Dr. A. D. Patel (2018), Prediction of Performance of Coal-Based KWU Designed Thermal Power Plants using an Artificial Neural Network, International Journal of Applied Engineering,

Research ISSN 0973-4562 Volume 13, Number 5 (2018) pp. 3093-3110. [62] T. K Sai, K. A. Reddy (2015), Neural Network Applications in a Power Station,

International Journal of Soft Computing and Engineering (IJSCE) ISSN: 2231- 2307, Volume-4 Issue-6, January 2015.

[63] Rajarshi Dixit, Jitendra Kumar, Tarun Soota (2015), Modeling of a Thermal Power Plant using Neural Network and Regression Technique, Journal of

Scientific Research and Advances, Vol. 2, No. 4, 166-174.

[64] Hosham S. Anead, Khalid F. Sultan, Raheel J. Abd-Kadhum (2018), Evaluation

and Improvement Performance of a Boiler in a Thermal Power Plant Using Artificial Neural Network, Engineering and Technology Journal, Volume 36,

Issue 6 Part (A) Engineering, Pages 656-663.

[65] Yondha Dwika Arferiandi, Wahyu Caesarendra, Andherry Nugraha (2021),

Heat Rate Prediction of Combined Cycle Power Plant Using an Artificial Neural Network (ANN) Method, Sensors 2021, 21, 1022. https:///doi.org10.3390/s21041022

[66] Howard Demuth, Mark Beale (2002), Neural Network Toolbox For Use with MATLAB.

[67] Mark Hudson Beale, Martin T. Hagan, Howard B. Demuth (2016), Neural Network Toolbox Reference R2016b, MathWorks Inc.

[68] Mark Hudson Beale, Martin T. Hagan, Howard B. Demuth (2018), Neural Networks Toolbox, MathWorks Inc.

PHỤ LỤC LUẬN ÁN TIẾN SĨ

PL1. SỐ LIỆU PHỤC VỤ NHẬN DẠNG HÀM TRUYỀN ĐỐI TƯỢNG TẠI NHÀ MÁY NHIỆT ĐIỆN DUYÊN HẢI 1

Được xử lý từ dữ liệu vận hành của tổ máy S1 NMNĐ Duyên Hải 1 trong các khoảng thời gian sau:

- Từ 05h00-17h00 ngày 30/7/2020 lấy 107 điểm đo với 600 điểm trend; - Từ 08h00-10h00 ngày 30/7/2020 lấy 20 điểm đo với 600 điểm trend; - Từ 11h20-12h20 ngày 30/7/2020 lấy 11 điểm đo với 1200 điểm trend.

Hình 1. File dữ liệu phục vụ làm đề tài luận án

1.1. Trình tự nhận dạng theo cơng cụ Matlab/Identification

Trong thực tế, do đối tượng điều khiển trong nhà máy nhiệt điện luôn vận hành, và ở trạng thái online nên việc thu đáp ứng đầu ra của hệ đối với xung vuông/bậc thang là không thể nhận được. Cách duy nhất phù hợp để thu được mơ hình là sử dụng đặc tính thời gian của xung đầu vào và đầu ra của hệ để xác định đặc tính vật lý của đối tượng.

Hiện nay, để thu được hàm truyền đối tượng cần điều khiển trong nhà máy nhiệt điện với những cơng cụ hỗ trợ, có thể tiến hành theo trình tự và các thức như sau:

Giai đoạn 1: Chuẩn bị

- Xác định đại lượng cần điều khiển;

- Xác định chiến lược điều khiển, vẽ sơ đồ khối tương ứng;

- Xác định từng khâu trong sơ đồ điều khiển, từ đó làm rõ đối tượng điều khiển tương ứng quá trình cụ thể trong thực tế;

- Thu thập tín hiệu theo thời gian tại đầu vào - đầu ra của khâu đối tượng trong giai đoạn có sự biến động về trạng thái (tăng - giảm tải, tác động chủ động…);

- Xử lý tín hiệu vào - ra, quy về mốc thời gian tiêu chuẩn, vẽ đặc tính thời gian;

Một phần của tài liệu (Luận án tiến sĩ) phương pháp nhận dạng và hiệu chỉnh các mạch vòng điều khiển nhà máy nhiệt điện đốt than phun (Trang 138 - 196)

Tải bản đầy đủ (PDF)

(196 trang)