Mẫu Thời gian
nghiền (h)
Kích thước hạt trung bình (nm)
BET (m2/g)
Tài liệu tham khảo
TiO2 0 100-130 1,19 Nghiên cứu này
V2O5/TiO2 4 20-40 19,5 Nghiên cứu này
V2O5/ TiO2 4 22 20,80 [68]
Phổ hấp thụ điện tử của vật liệu xúc tác quang V2O5/TiO2
Hình 3.12 là phổ hấp thụ ánh sáng của TiO2 rutil chưa nghiền (a) và V2O5/TiO2 nghiền 4h (b). Ta thấy mẫu TiO2 chưa nghiền hấp thụ ánh sáng ở bước sóng dưới 420 nm, trong khi đó mẫu pha tạp và nghiền 4 giờ hấp thụ ánh sáng ở bước sóng dài hơn trong vùng 430 - 570 nm. Kết quả này có thể được so sánh với một số anatase TiO2 và TiO2 Rutil đã được công bố trước đây của nhóm tác giả Anpo và cs (1998), Liu và cs (2004) [72],[146].
Hình 3. 12. Phổ hấp thụ UV – Vis của TiO2: (a) TiO2 rutil chưa nghiền, và (b) hạt nano V2O5 / TiO2 nghiền 4h
Như vậy, vật liệu nhận được có kích thước nano và diện tích bề mặt riêng khá cao, đồng thời được biến tính bởi vanadium hứa hẹn hoạt tính cao của xúc tác quang. Kết quả này khá gần với kết quả của các tác giả trong tài liệu [ 113].
Nhận xét
Bằng phương pháp nghiền phản ứng Nano Vanadi đã được pha tạp vào mạng Rutil TiO2. Vật liệu chế tạo được có kích thước 20 – 40 nm, diện tích bề mặt riêng BET gần 20 m2/g, hấp phụ mạnh trong vùng UV đồng thời tăng sang vùng bước sóng dài 430 – 570 nm.
3.1.1.3. Chế tạo xương gốm – chất mang
Qúa trình chế tạo và nghiên cứu xương gốm/ chất mang cấu trúc tổ ong đã được chúng tôi nghiên cứu đồng thời trong đề tài KC 08/2011-2015 [147].
Hình 3.13 mơ tả kết quả phân tích cấu trúc và thành phần gốm cordierit. Giản đồ XRD cho thấy những bộ xương gốm chế tạo được có thành phần như mong muốn Cordierit.
Hình 3. 13. Giản đồ nhiễu xạ tia X của xương gốm sau thiêu kết trong khơng khí tại 9500C trong 3h
- Kết quả đo SEM cấu trúc lỗ xốp xương gốm thể hiện trên hình 3.14.
Kết quả thử nghiệm độ bền nén, độ bền uốn của gốm cấu trúc tổ ong được ghi trong bảng 3.7.