Hướng nghiên cứu trong tương lai

Một phần của tài liệu (LUẬN văn THẠC sĩ) quản trị vốn luân chuyển và hiệu quả hoạt động với điều kiện hạn chế tài chính của các doanh nghiệp việt nam (Trang 56 - 71)

CHƯƠNG 5 KẾT LUẬN VÀ HẠN CHẾ CỦA BÀI NGHIÊN CỨU

5.4 Hướng nghiên cứu trong tương lai

Từ kết quả thực tế cũng như những hạn chế rút ra được từ bài nghiên cứu này thì trong tương lai cần mở rộng nhiều hướng nghiên cứu mới. Thứ nhất, nghiên cứu trong tương lai cần mở rộng mẫu nghiên cứu cả về thời gian và không gian để đưa ra kết quả thuyết phục hơn. Thứ hai, cần nghiên cứu thêm biến kiểm soát mới để xem xét một cách trọn vẹn hơn về quyết định đầu tư vào vốn luân chuyển của các công ty tại Việt Nam. Biến kiểm sốt mới có thể là tỷ lệ sở hữu nhà nước và không sở hữu

nhà nước để xem xét tác động của đầu tư vào vốn luân chuyển lên giá trị của công ty hoặc đưa thêm biết giải thích như hàng tồn kho, các khoản phải thu và các khoản phải trả làm biến giải thích chính xem xét tác động lên biến hiệu quả hoạt động. Ngồi ra, có thể mở rộng nghiên cứu đầu tư vốn luân chuyển - hiệu quả hoạt động theo từng ngành trong điều kiện hạn chế tài chính, hy vọng sẽ mang lại những giá trị nghiên cứu mới.

DANH MỤC TÀI LIỆU THAM KHẢO

Danh mục tài liệu Tiếng Việt

Lê Hà Diễm Chi, 2015. Quan hệ giữa đầu tư với dòng tiền và yếu tố hạn chế tài chính: Nhìn từ các nghiên cứu trải nghiệm. Phát triển & Hội Nhập. Số 24 (34) - Tháng 09 - 10/2015.

Từ Thị Kim Thoa và Nguyễn Thị Uyên Uyên, 2014. Mối quan hệ giữa quản trị vốn luân chuyển và khả năng sinh lợi: Bằng chứng thực nghiệm ở VN. Phát triển & Hội Nhập. Số 14 (24) - Tháng 01-02/2014.

Danh mục tài liệu nước ngoài

Agrawal, A., & Knoeber, C. R. (1996). Firm performance and mechanisms to control agency problems between managers and shareholders. Journal of Financial and Quantitative Analysis, 31, 377–397.

Almeida, H., Campello, M., & Weisbach, M. S. (2004). The cash flow sensitivity of cash.Journal of Finance, 59, 1777–1804.

Altman, E. (1968). Financial ratios, discriminant analysis and the prediction of the corporate bankruptcy. Journal of Finance, 23, 589–609.

Arellano, M., & Bond, S. (1991). Some test of specification for panel data: Monte Carlo evidence and an application to employment equations. Review of Economic Studies, 58, 277–297.

Banos-Caballero, S., García-Teruel, P. J., Martínez-Solano, P. (2014). Working capital management, corporate performance and financial constraints. Journal of Business Research, 67, 332–338.

Bao, B. H., & Bao, D. H. (2004). Change in inventory and firm valuation. Review of

Quantitative Finance and Accounting, 22, 53–71.

Begley, J., Mings, J., & Watts, S. (1996). Bankruptcy classification errors in the 1980s: An empirical analysis of Altman's and Ohlson's models. Review of Accounting Studies, 1, 267–284.

Blinder, A. S., & Maccini, L. J. (1991). The resurgence of inventory research: What have we learned? Journal of Economic Surveys, 5, 291–328.

Brennan, M., Maksimovic, V., & Zechner, J. (1988). Vendor financing. Journal of Finance, 43, 1127–1141.

Burton, M. B., Lonie, A. A., & Power, D.M. (1999). The stock market reaction to investment announcements: The case of individual capital expenditure projects.

Carpenter, R. E., Fazzari, S. M., & Petersen, B. C. (1994). Inventory investment, internal finance fluctuations, and the business cycle. Brookings Papers on Economic Activity, 2, 75–138.

Chung, K. E.,Wright, P., & Charoenwong, C. (1998). Investment opportunities and market reaction to capital expenditure decisions. Journal of Banking & Finance, 22, 41–60.

Cuñat, V. (2007). Trade credit: Suppliers as debt collectors and insurance providers.

Review of Financial Studies, 20, 491–527.

Deloof, M. (2003). Does working capital management affect profitability of Belgian firms? Journal of Business Finance & Accounting, 30, 573–587.

Deloof, M., & Jegers, M. (1996). Trade credit, product quality, and intragroup trade: Some European evidence. Financial Management, 25, 33–43.

Emery, G. (1984). A pure financial explanation for trade credit. Journal of Financial and Quantitative Analysis, 19, 271–285.

Emery, G. W. (1987). An optimal financial response to variable demand. Journal of

Financial and Quantitative Analysis, 22, 209–225.

Faulkender, M., & Wang, R. (2006). Corporate financial policy and the value of cash.

Journal of Finance, 61, 1957–1990.

Fazzari, S. M., Hubbard, R. G., & Petersen, B. C. (1988). Financing constraints and corporate investment. Brookings Papers on Economic Activity, 1, 141–195.

Fazzari, S. M., & Petersen, B. (1993). Working capital and fixed investment: New evidence on financing constraints. The Rand Journal of Economics, 24, 328–342. Florackis, C., Kostakis, A., & Ozkan, A. (2009). Managerial ownership and

performance. Journal of Business Research, 62, 1350–1357.

Greenwald, B., Stiglitz, J. E., &Weiss, A. (1984). Informational imperfections in the capital market and macroeconomic fluctuations. American Economic Review, 74,

194–199.

Hill, M. D., Kelly, G., & Highfield, M. J. (2010). Net operating working capital behaviour: A first look. Financial Management, 39, 783–805.

Himmelberg, C., Hubbard, R., & Palia, D. (1999). Understanding the determinants of managerial ownership and the link between ownership and performance. Journal of

Financial Economics, 53, 353–384.

Hsiao, C. (1985). Benefits and limitations of panel data. Economic Review, 4, 121–174. Hubbard, R. (1998). Capital-market imperfections and investment. Journal of Economic

Literature, 36, 193–225.

Jensen, M. C., & Meckling,W. H. (1976). Theory of the firm: Managerial behavior, agency cost and ownership structure. Journal of Financial Economics, 3, 305–360.

Kieschnick, R., LaPlante, M., & Moussawi, R. (2011). Working capital management and shareholder wealth. Working paper (SSRN: http://ssrn.com/abstract=1431165) Kim, Y. H., & Chung, K. H. (1990). An integrated evaluation of investment in inventory

and credit: A cash flow approach. Journal of Business Finance & Accounting, 17,

381–390.

Lee, Y. W., & Stowe, J. D. (1993). Product risk, asymmetric information, and trade credit. Journal of Financial and Quantitative Analysis, 28, 285–300.

Lewellen, W., McConnel, J., & Scott, J. (1980). Capital market influences on trade credit policies. Journal of Financial Research, 3, 105–113.

McConnell, J. J., & Muscarella, C. J. (1985). Corporate capital expenditure decisions and the market value of the firm. Journal of Financial Economics, 14, 399–422. Modigliani, F., & Miller, M. H. (1958). The cost of capital, corporation finance and the

theory of investment. American Economic Review, 48, 261–297.

Moyen, N. (2004). Investment–cash flow sensitivities: Constrained versus unconstrained firms. Journal of Finance, 59, 2061–2092.

Mun, G. S. & Jang, S. (2015). Working capital, cash holding, and profitability of restaurant firms. International Journal of Hospitality Management, 48, 1-11.

Myers, S., & Majluf, N. (1984). Corporate financing and investment decisions when firms have information that investors do not have. Journal of Financial Economics, 13, 187–221.

Ng, C. K., Smith, J. K., & Smith, R. L. (1999). Evidence on the determinants of credit terms used in interfirm trade. Journal of Finance, 54, 1109–1129.

Perfect, S., & Wiles, K. (1994). Alternative construction of Tobin's q: An empirical comparison. Journal of Empirical Finance, 1, 313–341.

Petersen, M., & Rajan, R. (1997). Trade credit: Theories and evidence. Review of Financial Studies, 10, 661–691.

Sartoris, W., & Hill, N. (1983). Cash and working capital management. Journal of Finance, 38, 349–360.

Schiff, M., & Lieber, Z. (1974). A model for the integration of credit and inventory management. Journal of Finance, 29, 133–140.

Schmidt, R., & Tyrell, M. (1997). Financial systems, corporate finance and corporate governance. European Financial Management, 3, 333–361.

Shin, H. H., & Soenen, L. (1998). Efficiency of working capital and corporate profitability. Financial Practice & Education, 8, 37–45.

Shipley, D., & Davis, L. (1991). The role and burden-allocation of credit in distribution channels. Journal of Marketing Channels, 1, 3–22.

Simon, S., Sawandi, N., & Abdul-Hamid, M. (2017). The quadratic relationship between working capital management and firm performance: Evidence from the Nigerian economy. Journal of Business and Retail Management Research (JBRMR),

Vol. 12 Issue 1.

Smirlock, M., Gilligan, T., &Marshall,W. (1984). Tobin's q and the structure– performance relationship. American Economic Review, 74, 1051–1060.

Smith, K. (1980). Profitability versus liquidity tradeoffs in working capital management. In K. V. Smith (Ed.), Readings on the management of working capital (pp. 549–562). West Publishing Company.

Smith, J. K. (1987). Trade credit and informational asymmetry. Journal of Finance, 42, 863–872.

Stiglitz, J., & Weiss, A. (1981). Credit rationing in markets with imperfect information.

American Economic Review, 71, 393–410.

Studenmund, A. H. (1997). Using econometrics: A practical guide. New York Addison- Wesley.

Summers, B., & Wilson, N. (2000). Trade credit management and the decision to use factoring: An empirical study. Journal of Business Finance & Accounting, 27, 37– 68.

Thomsen, S., Pedersen, T., & Kvist, H. (2006). Blockholder ownership: Effects on firm value in market and control based governance systems. Journal of Corporate Finance, 12, 246–269.

Wang, Y. J. (2002). Liquidity management, operating performance, and corporate value: Evidence from Japan and Taiwan. Journal of Multinational Financial Management, 12, 159–169.

Whited, T. M. (1992). Debt, liquidity constraints, and corporate investment: Evidence from panel data. Journal of Finance, 47, 1425–1460.

Whited, T. M., & Wu, G. (2006). Financial constraints risk. Review of Financial Studies, 19, 531–559.

Wilner, B. S. (2000). The exploitation of relationship in financial distress: The case of trade credit. Journal of Finance, 55, 153–178.

Wu, H. L. (2011). Can minority state ownership influence firm value? Universal and contingency views of its governance effects. Journal of Business Research, 64, 839– 845.

PHỤ LỤC

Phụ lục: Kết quả chạy dữ liệu thống kê (chạy từ phần mềm stata) Kết quả thống kê mô tả cho bảng 3.2

Câu lệnh: summarize TobinQ NTC100 Size Lev Growth ROA

Ma trận tương quan cho bảng 3.3

Câu lệnh: corr TobinQ NTC NTC2 Size Lev Growth ROA

Chỉ số khuyếch đại phương sai các biến cho bảng 3.4

Câu lệnh: vif ROA 3,120 .0859724 .0915132 -1.41654 .7513307 Growth 3,120 .0227288 .04994 0 .7757014 Lev 3,120 .4875971 .220388 .0019807 .9768643 Size 3,120 12.98938 1.656222 0 18.1111 NTC100 3,120 44.71003 1098.399 -37519.48 40032.94 TobinQ 3,120 1.034316 .473901 .0083556 6.442611 Variable Obs Mean Std. Dev. Min Max . summarize TobinQ NTC100 Size Lev Growth ROA

ROA 0.4369 -0.0293 -0.0362 0.1543 -0.2525 -0.0142 1.0000 Growth 0.0287 -0.0042 -0.0134 -0.0666 -0.1195 1.0000 Lev -0.1403 -0.0720 0.0022 0.3730 1.0000 Size 0.1839 -0.0975 -0.1239 1.0000 NTC2 -0.0231 0.1089 1.0000 NTC -0.0267 1.0000 TobinQ 1.0000 TobinQ NTC NTC2 Size Lev Growth ROA (obs=3,120)

. corr TobinQ NTC NTC2 Size Lev Growth ROA

Mean VIF 1.14 Growth 1.02 0.982997 NTC 1.02 0.978028 NTC2 1.03 0.971825 ROA 1.16 0.862264 Size 1.28 0.779307 Lev 1.33 0.749352 Variable VIF 1/VIF . vif

Kết quả chạy hồi quy dữ liệu bảng OLS cho bảng 4.1 Câu lệnh: regress TobinQ NTC NTC2 Size Lev Growth ROA

Kết quả chạy hồi quy GMM cho bảng 4.2

Câu lệnh: xtabond2 TobinQ l.TobinQ l2.TobinQ l3.TobinQ NTC NTC2 Size Lev

Growth ROA, gmm(NTC NTC2,lag(1 2)) iv(Size Lev Growth ROA) twostep _cons .3478434 .0610692 5.70 0.000 .2281034 .4675835 ROA 2.002795 .0885965 22.61 0.000 1.829082 2.176509 Growth .315982 .1520535 2.08 0.038 .0178467 .6141173 Lev -.2167694 .039463 -5.49 0.000 -.2941455 -.1393932 Size .0471739 .0051493 9.16 0.000 .0370776 .0572703 NTC2 1.59e-06 1.99e-06 0.80 0.424 -2.31e-06 5.49e-06 NTC -.0003379 .0006931 -0.49 0.626 -.0016969 .001021 TobinQ Coef. Std. Err. t P>|t| [95% Conf. Interval] Total 700.471846 3,119 .224582188 Root MSE = .42046 Adj R-squared = 0.2128 Residual 550.346062 3,113 .176789612 R-squared = 0.2143 Model 150.125783 6 25.0209638 Prob > F = 0.0000 F(6, 3113) = 141.53 Source SS df MS Number of obs = 3,120

Difference (null H = exogenous): chi2(4) = 3.12 Prob > chi2 = 0.538 Hansen test excluding group: chi2(17) = 22.20 Prob > chi2 = 0.177 iv(Size Lev Growth ROA)

Difference (null H = exogenous): chi2(10) = 15.65 Prob > chi2 = 0.110 Hansen test excluding group: chi2(11) = 9.68 Prob > chi2 = 0.560 GMM instruments for levels

Difference-in-Hansen tests of exogeneity of instrument subsets: (Robust, but weakened by many instruments.)

Hansen test of overid. restrictions: chi2(21) = 25.33 Prob > chi2 = 0.233 (Not robust, but not weakened by many instruments.)

Sargan test of overid. restrictions: chi2(21) = 6.74 Prob > chi2 = 0.999 Arellano-Bond test for AR(2) in first differences: z = 0.51 Pr > z = 0.609 Arellano-Bond test for AR(1) in first differences: z = -4.34 Pr > z = 0.000 D.(NTC NTC2)

GMM-type (missing=0, separate instruments for each period unless collapsed) _cons

Size Lev Growth ROA Standard

Instruments for levels equation L(1/2).(NTC NTC2)

GMM-type (missing=0, separate instruments for each period unless collapsed) D.(Size Lev Growth ROA)

Standard

Instruments for first differences equation

Warning: Uncorrected two-step standard errors are unreliable.

_cons .0622896 .023147 2.69 0.007 .0169224 .1076568 ROA .3586676 .0129495 27.70 0.000 .333287 .3840482 Growth .1989825 .11251 1.77 0.077 -.0215332 .4194981 Lev -.0139311 .0175114 -0.80 0.426 -.0482529 .0203907 Size -.0087874 .0020003 -4.39 0.000 -.0127079 -.0048668 NTC2 -4.84e-07 1.07e-07 -4.54 0.000 -6.92e-07 -2.75e-07 NTC -.0000407 .0000124 -3.28 0.001 -.000065 -.0000164 L3. .0650593 .0230869 2.82 0.005 .0198098 .1103087 L2. -.1097963 .0236411 -4.64 0.000 -.1561321 -.0634605 L1. 1.135817 .0283568 40.05 0.000 1.080239 1.191395 TobinQ TobinQ Coef. Std. Err. z P>|z| [95% Conf. Interval] Prob > chi2 = 0.000 max = 5 Wald chi2(9) = 49073.20 avg = 5.00 Number of instruments = 31 Obs per group: min = 5 Time variable : Năm Number of groups = 390 Group variable: id Number of obs = 1950 Dynamic panel-data estimation, two-step system GMM

Kết quả chạy hồi quy GMM cho bảng 4.3 1. Nhóm DIV

Câu lệnh: xtabond2 TobinQ l.TobinQ l2.TobinQ l3.TobinQ DFCNTC DFCNTC2

NTC NTC2 Size Lev Growth ROA, gmm(DFCNTC DFCNTC2 NTC NTC2,lag(1 2)) iv(Size Lev Growth ROA) twostep

Câu lệnh kiểm định F1: DFCNTC + NTC = 0, kiểm định F2: DFCNTC2 + NTC2

= 0

Difference (null H = exogenous): chi2(4) = 0.92 Prob > chi2 = 0.922 Hansen test excluding group: chi2(41) = 35.48 Prob > chi2 = 0.714 iv(Size Lev Growth ROA)

Difference (null H = exogenous): chi2(20) = 13.28 Prob > chi2 = 0.865 Hansen test excluding group: chi2(25) = 23.12 Prob > chi2 = 0.571 GMM instruments for levels

Difference-in-Hansen tests of exogeneity of instrument subsets: (Robust, but weakened by many instruments.)

Hansen test of overid. restrictions: chi2(45) = 36.40 Prob > chi2 = 0.816 (Not robust, but not weakened by many instruments.)

Sargan test of overid. restrictions: chi2(45) = 22.93 Prob > chi2 = 0.997 Arellano-Bond test for AR(2) in first differences: z = 0.39 Pr > z = 0.696 Arellano-Bond test for AR(1) in first differences: z = -4.41 Pr > z = 0.000 D.(DFCNTC DFCNTC2 NTC NTC2)

GMM-type (missing=0, separate instruments for each period unless collapsed) _cons

Size Lev Growth ROA Standard

Instruments for levels equation L(1/2).(DFCNTC DFCNTC2 NTC NTC2)

GMM-type (missing=0, separate instruments for each period unless collapsed) D.(Size Lev Growth ROA)

Standard

Instruments for first differences equation

Warning: Uncorrected two-step standard errors are unreliable.

_cons .0471775 .0086368 5.46 0.000 .0302496 .0641054 ROA .3566641 .0060718 58.74 0.000 .3447635 .3685647 Growth .1892138 .0906597 2.09 0.037 .0115241 .3669035 Lev -.0270034 .0103109 -2.62 0.009 -.0472123 -.0067944 Size -.0050612 .0006305 -8.03 0.000 -.006297 -.0038255 NTC2 .0001196 .0000371 3.23 0.001 .000047 .0001923 NTC -.0047907 .0015312 -3.13 0.002 -.0077917 -.0017897 DFCNTC2 -.00012 .0000371 -3.24 0.001 -.0001927 -.0000473 DFCNTC .0047167 .0015308 3.08 0.002 .0017165 .007717 L3. .0572606 .0082485 6.94 0.000 .0410937 .0734274 L2. -.0944469 .0114272 -8.27 0.000 -.1168439 -.07205 L1. 1.099173 .0116598 94.27 0.000 1.07632 1.122025 TobinQ TobinQ Coef. Std. Err. z P>|z| [95% Conf. Interval] Prob > chi2 = 0.000 max = 5 Wald chi2(11) = 57215.70 avg = 5.00 Number of instruments = 57 Obs per group: min = 5 Time variable : Năm Number of groups = 390 Group variable: id Number of obs = 1950 Dynamic panel-data estimation, two-step system GMM

Prob > chi2 = 0.0000 chi2( 1) = 151.88 ( 1) DFCNTC2 + NTC2 = 0 . test DFCNTC2 + NTC2 = 0 Prob > chi2 = 0.0000 chi2( 1) = 133.68 ( 1) DFCNTC + NTC = 0 . test DFCNTC + NTC = 0

2. Nhóm DIV Ratio

Câu lệnh: xtabond2 TobinQ l.TobinQ l2.TobinQ l3.TobinQ DFCNTC DFCNTC2

NTC NTC2 Size Lev Growth ROA, gmm(DFCNTC DFCNTC2 NTC NTC2,lag(1 2)) iv(Size Lev Growth ROA) twostep

Câu lệnh kiểm định F1: DFCNTC + NTC = 0, kiểm định F2: DFCNTC2 + NTC2

= 0

Difference (null H = exogenous): chi2(4) = 1.93 Prob > chi2 = 0.748 Hansen test excluding group: chi2(41) = 40.29 Prob > chi2 = 0.502 iv(Size Lev Growth ROA)

Difference (null H = exogenous): chi2(20) = 17.79 Prob > chi2 = 0.601 Hansen test excluding group: chi2(25) = 24.44 Prob > chi2 = 0.494 GMM instruments for levels

Difference-in-Hansen tests of exogeneity of instrument subsets: (Robust, but weakened by many instruments.)

Hansen test of overid. restrictions: chi2(45) = 42.23 Prob > chi2 = 0.590 (Not robust, but not weakened by many instruments.)

Sargan test of overid. restrictions: chi2(45) = 21.37 Prob > chi2 = 0.999 Arellano-Bond test for AR(2) in first differences: z = 0.52 Pr > z = 0.605 Arellano-Bond test for AR(1) in first differences: z = -4.38 Pr > z = 0.000 D.(DFCNTC DFCNTC2 NTC NTC2)

GMM-type (missing=0, separate instruments for each period unless collapsed) _cons

Size Lev Growth ROA Standard

Instruments for levels equation L(1/2).(DFCNTC DFCNTC2 NTC NTC2)

GMM-type (missing=0, separate instruments for each period unless collapsed) D.(Size Lev Growth ROA)

Standard

Instruments for first differences equation

Warning: Uncorrected two-step standard errors are unreliable.

_cons .0242363 .0075624 3.20 0.001 .0094143 .0390583 ROA .2964588 .0035517 83.47 0.000 .2894975 .30342 Growth .2413723 .0893572 2.70 0.007 .0662353 .4165092 Lev -.0047973 .0092877 -0.52 0.605 -.0230008 .0134062 Size -.0094399 .0006361 -14.84 0.000 -.0106867 -.0081931 NTC2 .0001752 .0000304 5.76 0.000 .0001156 .0002347 NTC -.0075409 .0012772 -5.90 0.000 -.0100441 -.0050377 DFCNTC2 -.0001756 .0000304 -5.78 0.000 -.0002352 -.000116 DFCNTC .0074792 .0012782 5.85 0.000 .004974 .0099845 L3. .0847092 .0096614 8.77 0.000 .0657732 .1036452 L2. -.0918964 .0159112 -5.78 0.000 -.1230818 -.0607111 L1. 1.144086 .013257 86.30 0.000 1.118102 1.170069 TobinQ TobinQ Coef. Std. Err. z P>|z| [95% Conf. Interval] Prob > chi2 = 0.000 max = 5 Wald chi2(11) = 66247.82 avg = 5.00 Number of instruments = 57 Obs per group: min = 5 Time variable : Năm Number of groups = 390 Group variable: id Number of obs = 1950 Dynamic panel-data estimation, two-step system GMM

Prob > chi2 = 0.0000 chi2( 1) = 278.49 ( 1) DFCNTC2 + NTC2 = 0 . test DFCNTC2 + NTC2 = 0 Prob > chi2 = 0.0000 chi2( 1) = 252.67 ( 1) DFCNTC + NTC = 0 . test DFCNTC + NTC = 0

3. Nhóm CF

Câu lệnh: xtabond2 TobinQ l.TobinQ l2.TobinQ l3.TobinQ DFCNTC DFCNTC2

NTC NTC2 Size Lev Growth ROA, gmm(DFCNTC DFCNTC2 NTC NTC2,lag(2

Một phần của tài liệu (LUẬN văn THẠC sĩ) quản trị vốn luân chuyển và hiệu quả hoạt động với điều kiện hạn chế tài chính của các doanh nghiệp việt nam (Trang 56 - 71)

Tải bản đầy đủ (PDF)

(71 trang)