Phân phối mũ (Exponential Distribution)

Một phần của tài liệu Báo cáo cuối kì môn học xác suất thống kê (Trang 43)

D. Phân ph i nh ố ị thứ c (Binomial distribution)

B. Phương sai

3.2 Các phân phối liên t c ụ

3.2.2 Phân phối mũ (Exponential Distribution)

Phân phối mũ (Exponential Distribution) ho c phân phặ ối mũ phủ định đại diện cho một phân ph i xác su t giúp mô t ố ấ ảthời gian gi a hai s ữ ựkiện trong một quá trình Poisson. Trong quá trình Poisson, các s ựkiện x y ra liên tả ục v độ ậc l p theo một

tần suất trung bình khơng đổi.

Biến ng u nhiên có phân phối mũ có thể được coi là một phiên b n liên t c c a các ẫ ả ụ ủ

biến ng u nhiên hình h c. ẫ ọ Nó mơ hình hóa th i gian ch ờ ờ đợi cho đến khi m t s ộ ự

kiện được tạo ng u nhiên x y ra trong th i gian liên t c. ẫ ả ờ ụ

Phân phối mũ được sử sụng với các bi n ngế ẫu nhiên liên t c chuyụ ển tr ng thái , ạ

những s ki n c c k ự ệ ự ỳhiếm x y ra ho c là có biả ặ ến động cực kì lớn:  Thời gian cho đến khi xảy ra t i n n giao thông tạ ạ ại ngã tư  Thời gian gi a hai l n xữ ầ ảy ra động đất tiếp theo t i mạ ột địa điểm i. Đại lượng ngẫu nhiên X g i là phân phọ ối mũ với tham s ( >0) nố  ếu

𝑓(𝑥) = {  𝑒−  𝑥 𝑛ế𝑢 𝑥 ≥ 0 0 𝑛ế𝑢 𝑥 < 0

Trong trường hợp này ta ký hiệu 𝑋~𝐸() ii. Tính ch t cấ ủa phân phối mũ

Nếu 𝑋~𝐸()  𝐸(𝑋) =1  𝐷(𝑋) =12

+Ví d :

Thời h n s d ng c a Tivi là bi n có phân phạ ử ụ ủ ế ối mũ với thời gian tối đa l 10 năm.

Nếu một người mua Tivi của anh ấy vo 10 năm trước, vậy xác suất Tivi còn s ử

dụng được thêm 10 năm tiếp theo là bao nhiêu?

Giải: G i X là th i h n s dọ ờ ạ ử ụng c a Tivi. Do bi n X là bi n ngủ ế ế ẫu nhiên có phân

phối mũ, vậy:

𝑃(𝑋 >20|𝑋 > ) = 𝑃 𝑋 >10 ( 10)= 1 − (1 − 𝑒(− 110)10) ≈ 0.37

3.2.3 Phân phối chuẩn (Normal Distribution) A.Phân ph i chu n ố ẩ

Bây gi chúng ta chuy n sang m t trong nh ng phân ph i quan tr ng nh t trong ờ ể ộ ữ ố ọ ấ

xác su t và th ng kê - Phân ph i chuấ ố ố ẩn.

Thật vậy, Định lý Gi i h n Trung tâm (Central Limit Theorem) nói r ng t ng cớ ạ ằ ổ ủa

phân ph i gố ần đúng chuẩn không ph thu c vào phân phụ ộ ối cơ bản cụ thể ới điều , v kiệ ằn r ng nó có h u h n giá tr trunữ ạ ị g bình v phương sai .

i. Phân ph i chu n (Normal Distribution) là s phân b dố ẩ ự ố ữ liệu mà ở đó giá

trị t p trung nhi u nhậ ề ất ở khoảng gi a và các giá tr còn l i rữ ị ạ ải đều đối

xứng về phía các điểm c c trự ị(Phân ph i chuố ẩn, 2021).Nó là họ phân phối có d ng t ng quát gi ng nhau, ch khác tham số vị trí (giá trị trung ạ ổ ố ỉ

bình ) và t l ỉ ệ (phương sai ).

Abraham de Moivre l người đầu tiên đưa ra phân phối chuẩn trong bi báo năm 1734 (được in lại trong ấn bản lần 2 The Doctrine of Chances, 1738) khi muốn xấp

xỉ m t phân ph i nhộ ố ị thức v i n l n. K t quớ ớ ế ả được m rở ộng b i Laplace trong cuở ốn

sách Analytical Theory of Probabilities (1812), và bây gi gờ ọi l định lý Moivre- Laplace.

Biểu diễn đồ thị của một phân phối chuẩn đơi khi được gọi l đường cong hình chng vì hình d ng loe r ng ra c a nó. Hình d ng chính xác có thạ ộ ủ ạ ể thay đổi tùy theo t p toàn th c a phân phậ ể ủ ối nhưng đỉnh luôn luôn ở giữa v đường cong luôn

đối x ng. Trong một phân ph i chu n, giá trị trung bình, yếu vị và trung vị là ứ ố ẩ

giống nhau.Tên gọi "đường cong chuông" do Jouffret, người đầu tiên dùng thuật ngữ "bề mặt hình chng" năm 1872 cho phân phối chu n hai chi u v i các thành ẩ ề ớ

phần độc lập. Tên gọi "phân phối chuẩn" được tạo ra bởi Charles S. Peirce, Francis Galton và Wilhelm Lexis khoảng năm 1875.

ii. Đại lượng ngẫu nhiên X g i là phân ph i chu n n u hàm mọ ố ẩ ế ật độ của X có

dạng:

𝑓(𝑥) = 1 𝜎√2𝜋𝑒

−(𝑥−𝑎2𝜎2)2, 𝑣ớ𝑖 𝜎 > 0

Trong cơng th c trên, x là giá tr c a bi n ngứ ị ủ ế ẫu nhiên; a v σ2 là các tham số; π v

e là các h ng s c a tằ ố ủ ự nhiên, π ≈ 3,14; e 2,718. Công th c khá ph c t p, tuy ≈ ứ ứ ạ

nhiên vi c tính tốn sệ ẽ đơn giản vì các giá tr c n tìm sị ầ ẽ được cho s n trong bẵ ảng

số.

iii. Tính ch t cấ ủa phân ph i chu n ố ẩ

Nếu 𝑋~𝑁 𝑎, 𝜎( 2)  E(X)=a  𝐷(𝑋) = 𝜎2

B.Phân ph i chuố ẩn chuẩn t c ắ

Tuy v y m t trong nh ng ng dậ ộ ữ ứ ụng đầu tiên được Gauss áp d ng phân ph i chuụ ố ẩn vo năm 1809, khi ơng dùng nó để nghiên cứu thiên văn học. Nhưng trong cuốn An Introduction to Mathematical Statistics and Its Application c a Larsen và ủ

Marx, Lambert Quetelet lần đầu đưa dữ liệu th ng kê trong nhiố ều trường h p trong ợ

xã h (Ghahramani, 1999) ội.

Các bi n ng u nhiên phân ph i Chuế ẫ ố ẩn có đồ thị quả chng t i vạ ị trí khác nhau, độ

cao thấp khác nhau, do đó khơng thuận l i trong tính tốn các xác suợ ất. Để việc tính tốn được thuận lợi, ta xét một biến ngẫu nhiên phân phối Chuẩn đặc biệt là biến ng u nhiên phân ph i Chu n hóa. ẫ ố ẩ

Là phân ph i chu n v i giá tr trung bình bố ẩ ớ ị ằng 0 v độ lệch chuẩn bằng 1.

i. Đại lượng ngẫu nhiên 𝑋~𝑁 0,1( ) gọi là phân ph i chu n chu n t c ố ẩ ẩ ắ

Nếu X có phân ph i chu n chu n t c thì hàm mố ẩ ẩ ắ ật độ ủ c a X là 𝑓(𝑥) =√2𝜋1 𝑒−𝑥22 là hàm mật độ Gauss.

Hình 6. Biểu đồ hàm mật độ phân ph i chuố ẩn chu n tẩ ắc ii. Tính ch t c a phân ph i chu n chu n t c ấ ủ ố ẩ ẩ ắ

Nếu 𝑋~𝑁 𝑎, 𝜎( 2) thì 𝑌 =𝑋−𝑎𝜎 ~𝑁 0,1( )

C.Tích phân Laplace

i. Cho f(x) là hàm mật độ Gauss. Khi đó ta có hm phân phối Gauss

𝐹(𝑢) = ∫ 𝑓(𝑥)𝑑𝑥−∞𝑢

Và tích phân Laplace 𝛷(𝑢) = ∫ 𝑓(𝑥)𝑑𝑥0𝑢 =√2𝜋1 ∫ 𝑒0𝑢 −𝑥22𝑑𝑥 Giữa hàm phân ph i Gauss và tích phân Laplace có mối liên h ố ệ F(u)=1/2+Φ(u) D.Cơng th c tính xác su t ứ ấ Nếu 𝑋~𝑁 𝑎, 𝜎( 2)  𝑃(𝛼 < 𝑋 < 𝛽 = 𝛷) (𝛽−𝑎𝜎 ) − 𝛷 (𝛼−𝑎𝜎 )  𝑃(|𝑋 − 𝑎| < 𝛼) = 2𝛷 (𝛼𝜎) với α>0 Nếu 𝑋~𝑁 0,1( )  𝑃(𝛼 < 𝑋 < 𝛽 = 𝛷) (𝛽)− 𝛷(𝛼)  𝑃(|𝑋| < 𝛼 = 2𝛷) (𝛼) với α>0

+Ví d : Bài tốn c a Lambert Quetelet ụ ủ

Giả s ử trung bình độ ộ r ng c a ng c củ ự ủa một người đn ơng trưởng thành trung bình l 39,8 inch v độ lệch chuẩn là 2.05 inch. V y xác su t khi ch n ng u nhiên ậ ấ ọ ẫ 20 người nam, 5 người đầu có độ rộng của ng c mình ít nh t 40inch? ự ấ

Giải: G i p là xác suọ ất khi chọn được người đn ơng có độ rộng ngực của mình t ừ

40 inch tr lên. Nở ếu X là bi n có phân ph i chu n v i tr ế ố ẩ ớ ị trung bình l 39.8 v độ

lệch chuẩn l 2.05 thì ta có đồ thị:

Hình 7. Hình th ểhiện ví d phân ph i chu n ụ ố ẩ

Gọi i l độ rộng của ngực i=33,…..Ta phân tích thấy được độ rộng i từ 33 đến 48 inch có t n s ầ ố tương đối với phần đồ có hàm mthị ật độ P(i- 1/2<X<1/2) khi X là bi n có phân phế ối đều với

X có phân ph i chuố ẩn 𝑋~𝑁 𝑎, 𝜎( 2)

Vậy sử dụng bảng tra tích phân Laplace ta có thể tìm được:

𝑝 = 𝑃 𝑋 ≥( 40)= 𝑃(𝑋 − .839

2.05 ≥40 39− .82.05 ) = 𝑃 (𝑋 − .82.05 ≥ 0.1)39 = 𝑃 𝑍 ≥ 0.1 = 1 − 𝛷 0.1 ≈ 1 − 0.5398 ≈ 0.( ) ( ) 46 Vậy xác suất để 5 người chọn đầu thỏa yêu c u bài tốn là ầ

 :𝐶205(0.46)5(0.54)15≈ 0.03

3.2.4 Phân phối Chi-Bình phương( Chi-Squared)

Phân ph i Chi-ố bình phương (Chi squared) đượ- c sử d ng r ng rãi trong thụ ộ ống kê để

tính tốn nh ng giá tr sau: ữ ị

 Ước lượng khoảng tin cậy cho độ ệ l ch chu n c a t p t ng th i v i mẩ ủ ậ ổ ể đố ớ ột

phân ph i chu n, s dố ẩ ử ụng độ ệ l ch chu n c a mẩ ủ ẫu.

 Để kiểm tra độ độc lập của hai phân lo i tiêu chuạ ẩn đối với các biến đa tính.  Để nghiên cứu độbi n thiên mẫu trong trường hợp phân ph i là phân phế ố ối

chuẩn.

 Để kiểm th l ch gi a các tử độ ệ ữ ần s kố ỳ v ng và t n s ọ ầ ốthự ếc t .

Nếu có n biến ngẫu nhiên Chuẩn hóa , khi bình phương các biến đó rồi lấy t ng, thì ổ

tổng đó sẽ phân ph i theo mố ột quy luật g i là quy luọ ật “Chi – bình phương”, ký

hiệu l χ2(n), đọc là quy luật “Chi – bình phương bậc tự do n”.

i. Đại lượng ngẫu nhiên 𝜒2 g i là có phân phọ ối Chi-bình phương n bậc tự

do nếu 𝛘2=𝑋12+ 𝑋22+ ⋯ + 𝑋𝑛2 trong đó 𝑋12, 𝑋22, … , 𝑋𝑛2 l các đại

lượng ngẫu nhiên có phân ph i chu n chu n t c. V y hàm mố ẩ ẩ ắ ậ ật đọ có dạngL

𝑓(𝑥) = { 1 𝛤 (𝑛2)2𝑛2𝑥𝑛2

−1𝑒−𝑥/2, 𝑥 > 0 0, 𝑥 ≤ 0

Ký hiệu 𝜞(x) là hàm gamma (x) =𝜞 ∫ 𝑡0+∞ 𝑥−𝑡𝑒−𝑡𝑑𝑡. Trong trường hợp này ta ký hiệu X~χ2(n)

ii. Tính ch t phân ph i Chi-ấ ố bình phương

Nếu X~χ2(n)

 E(χ2) = n, D χ2( ) = 2n

 Với quy lu t Khi ậ – bình phương bậc tự do , ta cn ần quan tâm giá tr t i hị ớ ạn

mức α, là m t con s sao cho bi n ng u nhiên lộ ố ế ẫ ớn hơn con số đó bằng đúng

α. Con s ố đó ký hiệu là 𝜒𝑎2(𝑛), đọc là giá tr t i h n mị ớ ạ ức α bậc tự do n. Sử dụng bảng giá tr t i h n ị ớ ạ

+Ví dụ:Muốn tra giá tr tị ới h n Khi ạ – bình phương mức 0,05 bậc tự do 10, tìm

cột 0,05 v dịng 10, đối chiếu được giá tr 18,31. Ta viị ết:𝜒0.052 (10) = 18 31.

3.2.5 Phân phối Student

Phân phối Student còn được g i là phân ph i T hay phân ph i T Student, trong ọ ố ố

tiếng anh là T Distribution hay Student’s t-distribution.

Phân ph i Student có hình dố ạng đố ứi x ng tr c gi a g n gi ng v i phân ph i chu n. ụ ữ ầ ố ớ ố ẩ

Khác biệt ở chỗ phần đuôi nếu trường h p có nhi u giá tr trung bình phân ph i xa ợ ề ị ố hơn sẽ khiến đồ thị dài và nặng. Phân phối student thường ứng dụng để mô t các ả

mẫu khác nhau trong khi phân ph i chu n l i dùng trong mô t t ng thố ẩ ạ ả ổ ể. Do đó, khi dùng để mơ tả mẫu càng l n thì hình d ng c a 2 phân ph i càng gi ng nhau. ớ ạ ủ ố ố

Phân ph i T ố – Student thường được dùng rộng rãi trong việc suy luận phương sai

tổng th khi có gi thiể ả ết tổng th phân phối chuể ẩn, đặc bi t khi c mệ ỡ ẫu càng nhỏ thì độ chính xác cng cao. Ngoi ra, còn được ng dụng trong kiứ ểm định giả tiết v ề trung bình khi chưa biết phương sai tổng thể là bao nhiêu.

i. Cho U, V là các bi n ngế ẫu nhiên độ ậc l p, U có phân ph i Chu n hóa,V ố ẩ

có phân phối khi bình phương bậc tự do n, đại lượng ngẫu nhiên T g i là ọ

phân ph i Student n b c t do khi ố ậ ự 𝑇 =√𝑉/𝑛𝑈 và hàm mật độ xác suất có dạng: 𝑓𝑛(𝑥) =𝛤 (𝑛 + 12 ) √𝑛𝜋𝛤 (𝑛2)(1 + 𝑥2 𝑛 ) −𝑛+12

Trong trường hợp này ta ký hiệu 𝑇~𝑇(𝑛) ii. Cho 𝑇~𝑇(𝑛)

 Đối với biến ngẫu nhiên phân ph i Student , ta c n quan tâm giá tr t i hố ầ ị ớ ạn

mức α, Con s ố đó ký hiệu là 𝑡𝛼(𝑛), đọc là giá tr t i h n mị ớ ạ ức α bậ ực t do n. là m t con sộ ố sao cho xác suất để T lớn hơn con số đó bằng đúng α.

Sử dụng bảng giá tr t i hị ớ ạn:

+Ví dụ:Tra giá tr t i h n mị ớ ạ ức 0,05 bậc t do 10, ta tìm cột 0,05 v dịng 10, đối ự

chiếu ơ tương ứng được con số 1,812. Ta viết 𝑡0.05(10)= 1.812

3.3 H s Z c a Altman ệ ố ủ

3.3.1 Giới thi u

Công thức điểm Z để ự đo d án phá sản được Edward I. Altman, lúc đó l Trợ lý

Giáo sư Ti chính tại Đại học New York, xuất bản năm 1968. Công thức này có thể được s dử ụng để ự đốn xác suấ d t m t công ty s phá sộ ẽ ản trong vòng hai năm. Điểm Z được sử dụng để dự đoán các vụ vỡ nợ của cơng ty và là một biện pháp

kiểm sốt dễ tính tốn đối v i tình tr ng ki t qu tài chính c a các cơng ty trong ớ ạ ệ ệ ủ

các nghiên c u h c thuứ ọ ật. Điểm s Z s d ng nhi u giá tr thu nh p doanh nghiố ử ụ ề ị ậ ệp

Một phần của tài liệu Báo cáo cuối kì môn học xác suất thống kê (Trang 43)

Tải bản đầy đủ (PDF)

(98 trang)