Thang đo Sự hài lòng

Một phần của tài liệu (LUẬN văn THẠC sĩ) đánh giá sự hài lòng đối với dịch vụ hành chính công tại sở tài chính tỉnh kiên giang (Trang 54 - 60)

Mã hóa Sự hài lịng (SHL) Nguồn

SHL1 Anh, chị có tin cậy và hài lịng với các thủ tục hành chính tại Sở Tài chính.

Võ Nguyên Khanh (2011); Chế Việt Phương

(2014) SHL2 Anh, chị hài lịng với quy trình thủ tục đã quy định tại

Sở Tài chính.

SHL3 Anh, chị hài lòng với năng lực và thái độ phục vụ của nhân viên Sở Tài chính.

SHL4 Anh, chị hài lòng với cơ sở vật chất phục vụ tại Sở Tài chính.

3.3. PHƯƠNG PHÁP PHÂN TÍCH DỮ LIỆU 3.3.1. Đánh giá sơ bộ thang đo 3.3.1. Đánh giá sơ bộ thang đo

Việc đánh giá sơ bộ độ tin cậy và giá trị của thang đo được thực hiện bằng phương pháp hệ số tin cậy Cronbach’s Alpha và phân tích nhân tố khám phá EFA (Exploring Factor Analysis) thông qua phần mềm xử lý SPSS 16.0 để sàng lọc, loại bỏ các biến quan sát không đáp ứng tiêu chuẩn độ tin cậy. Trong đó:

- Cronbach’s Alpha là phép kiểm định thống kê về mức độ chặt chẽ (khả năng giải thích cho một khái niệm nghiên cứu) của tập hợp các biến quan sát thông qua hệ số Cronbach’s Alpha. Theo Hoàng Trọng và Chu Nguyễn Mộng Ngọc (2008, tr.257, 258) cùng nhiều nhà nghiên cứu đồng ý rằng khi hệ số Cronbach alpha có giá trị từ 0.7 trở lên là sử dụng được. Về mặt lý thyết, Cronbach’s alpha càng cao thì càng tốt (thang đo càng có độ tin cậy cao). Tuy nhiên, nếu Cronbach’s Alpha quá lớn (95%) thì xuất hiện hiện tượng trùng lắp (đa cộng tuyến) trong đo lường, nghĩa là nhiều biến trong thang đo khơng có khác biệt gì nhau (Nguyễn Đình Thọ, 2011, tr.350-351).

Tuy nhiên, bên cạnh hệ số Cronbach’s Alpha, người ta còn sử dụng hệ số tương quan biến tổng (iterm - total correlation), do hệ số Cronbach’s Alpha không cho biết biến nào nên loại bỏ và biến nào nên giữ lại; theo đó những biến nào có tương quan biến tổng < 0,3 sẽ bị loại bỏ (Nguyễn Đình Thọ, 2011).

3.3.2. Phân tích nhân tố khám phá EFA

- Phân tích nhân tố khám phá EFA được sử dụng phổ biến để đánh giá giá trị thang đo (tính đơn hướng, giá trị hội tụ và giá trị phân biệt) hay rút gọn một tập biến. Trong nghiên cứu này, phân tích nhân tố được ứng dụng để tóm tắt tập các biến quan sát vào một số nhân tố nhất định đo lường các thuộc tính của các khái niệm nghiên cứu. Tiêu chuẩn áp dụng và chọn biến đối với phân tích nhân tố khám phá EFA bao gồm:

- Tiêu chuẩn Bartlett và hệ số KMO (Kaiser – Mayer – Olkin) dùng để đánh giá sự thích hợp của EFA. Theo đó, giả thuyết H0 (các biến khơng có tương quan

KMO ≤ 1 và Sig < 0.05. Trường hợp KMO < 0.5 thì phân tích nhân tố có khả năng khơng thích hợp với dữ liệu (Hoàng Trọng và Chu Nguyễn Mộng Ngọc, 2008, tr.262).

- Tiêu chuẩn rút trích nhân tố gồm chỉ số Eigenvalue (đại diện cho lượng biến thiên được giải thích bởi các nhân tố) và chỉ số Cummulative (tổng phương sai trích cho biết phân tích nhân tố giải thích được bao nhiêu % và bao nhiêu % bị thất thốt). Theo Nguyễn Đình Thọ (2011), các nhân tố có Eigenvalue < 1 sẽ khơng có tác dụng tóm tắt thơng tin tốt hơn biến gốc (biến tiềm ẩn trong các thang đo trước khi EFA). Vì thế, các nhân tố chỉ được rút trích tại Eigenvalue > 1 và được chấp nhận khi tổng phương sai trích ≥ 50%. Tuy nhiên, trị số Eigenvalue và phương sai trích là bao nhiêu cịn phụ thuộc vào phương pháp trích và phép xoay nhân tố. Theo Nguyễn Trọng Hồi (2009, tr.14), nếu sau phân tích EFA là phân tích hồi qui thì có thể sử dụng phương pháp trích Principal components với phép xoay Varimax.

- Tiêu chuẩn hệ số tải nhân tố (Factor loadings) biểu thị tương quan đơn giữa các biến với các nhân tố, dùng để đánh giá mức ý nghĩa của EFA. Theo Hair và ctg, Factor loading > 0.3 được xem là đạt mức tối thiểu; Factor loading > 0.4 được xem là quan trọng; Factor loading > 0.5 được xem là có ý nghĩa thực tiễn. Trường hợp chọn tiêu chuẩn Factor loading > 0.3 thì cỡ mẫu ít nhất phải là 350; nếu cỡ mẫu khoảng 100 thì nên chọn tiêu chuẩn Factor loading > 0.55; nếu cỡ mẫu khoảng 50 thì Factor loading > 0.75 (Nguyễn Trọng Hoài, 2009, tr.14). Ngoài ra, trường hợp các biến có Factor loading được trích vào các nhân tố khác nhau mà chênh lệch trọng số rất nhỏ (các nhà nghiên cứu thường không chấp nhận < 0.3), tức không tạo nên sự khác biệt để đại diện cho một nhân tố, thì biến đó cũng bị loại và các biến cịn lại sẽ được nhóm vào nhân tố tương ứng đã được rút trích trên ma trận mẫu (Pattern Matrix).

3.3.3. Phân tích hồi qui tuyến tính bội

Q trình phân tích hồi qui tuyến tính được thực hiện qua các bước:

Bước 1: Kiểm tra tương quan giữa biến các biến độc lập với nhau và với biến

qui là phải có tương quan giữa các biến độc lập với nhau và độc lập với biến phụ thuộc. Tuy nhiên, nếu hệ số tương quan > 0.85 thì cần xem xét vai trị của các biến độc lập, vì có thể xảy ra hiện tượng đa cộng tuyến (một biến độc lập này có được giải thích bằng một biến khác).

Bước 2: Xây dựng và kiểm định mơ hình hồi qui

Y = β1X1+β2X2+ β3X3+ β4X4+...+ βkXk Được thực hiện thông qua các thủ tục:

- Lựa chọn các biến đưa vào mơ hình hồi qui, sử dụng phương pháp Enter - SPSS 20.0 xử lý tất cả các biến đưa vào cùng một lượt).

- Đánh giá độ phù hợp của mơ hình bằng hệ số xác định R2 (R Square). Tuy nhiên, R2 có đặc điểm càng tăng khi đưa thêm các biến độc lập vào mơ hình, mặc dù khơng phải mơ hình càng có nhiều biến độc lập thì càng phù hợp với tập dữ liệu. Vì thế, R2 điều chỉnh (Adjusted R Square) có đặc điểm khơng phụ thuộc vào số lượng biến đưa thêm vào mơ hình được sử dụng thay thế R2 để đánh giá mức độ phù hợp của mơ hình hồi qui bội.

- Kiểm định độ phù hợp của mơ hình để lựa chọn mơ hình tối ưu bằng cách sử dụng phương pháp phân tích ANOVA để kiểm định giả thuyết H0: (khơng có mối quan hệ tuyến tính giữa biến phụ thuộc với tập hợp các biến độc lập β1=β2=β3=βK= 0).

Nếu trị thống kê F có Sig rất nhỏ (< 0.05), thì giả thuyết H0 bị bác bỏ, khi đó chúng ta kết luận tập hợp của các biến độc lập trong mơ hình có thể giải thích cho sự biến thiên của biến phụ thuộc. Nghĩa là mơ hình được xây dựng phù hợp với tập dữ liệu, vì thế có thể sử dụng được.

- Xác định các hệ số của phương trình hồi qui, đó là các hệ số hồi qui riêng phần βk đo lường sự thay đổi trung bình của biến phụ thuộc khi biến độc lập Xk thay đổi một đơn vị, trong khi các biến độc lập khác được giữ nguyên. Tuy nhiên, độ lớn của βk phụ thuộc vào đơn vị đo lường của các biến độc lập, vì thế việc so sánh trực tiếp chúng với nhau là khơng có ý nghĩa. Do đó, để có thể so sánh các hệ số hồi qui

biến phụ thuộc, người ta biểu diễn số đo của tất cả các biến độc lập bằng đơn vị đo lường độ lệnh chuẩn beta.

Bước 3: Kiểm tra vi phạm các giả định hồi qui

Mơ hình hồi qui được xem là phù hợp với tổng thể nghiên cứu khi không vi phạm các giả định. Vì thế, sau khi xây dựng được phương trình hồi qui, cần phải kiểm tra các vi phạm giả định cần thiết sau đây:

- Có liên hệ tuyến tính giữa các biến độc lập với biến phụ thuộc - Phần dư của biến phụ thuộc có phân phối chuẩn

- Phương sai của sai số khơng đổi

- Khơng có tương quan giữa các phần dư (tính độc lập của các sai số)

- Khơng có tương quan giữa các biến độc lập (khơng có hiện tượng đa cộng tuyến).

Trong đó:

- Cơng cụ để kiểm tra giả định liên hệ tuyến tính là đồ thị phân tán phần dư chuẩn hóa (Scatter) biểu thị tương quan giữa giá trị phần dư chuẩn hóa (Standardized Residual) và giá trị dự đốn chuẩn hóa (Standardized Pridicted Value).

- Công cụ để kiểm tra giả định phần dư có phân phối chuẩn là đồ thị tần số Histogram, hoặc đồ thị tần số P-P plot.

- Công cụ để kiểm tra giả định sai số của biến phụ thuộc có phương sai không đổi là đồ thị phân tán của phần dư và giá trị dự đoán hoặc kiểm định Spearman’s rho.

- Công cụ được sử dụng để kiểm tra giả định khơng có tương quan giữa các phần dư là đại lượng thống kê D (Durbin - Watson), hoặc đồ thị phân tán phần dư chuẩn hóa (Scatter).

- Công cụ được sử dụng để phát hiện tồn tại hiện tượng đa cộng tuyến là độ chấp nhận của biến (Tolerance) hoặc hệ số phóng đại phương sai (Variance inflation factor - VIF). Theo Hoàng Trọng và Chu Nguyễn Mộng Ngọc (2008, tr.217, 218), qui tắc chung là VIF > 10 là dấu hiệu đa cộng tuyến; trong khi đó, theo

Nguyễn Đình Thọ (2011, tr.497), khi VIF > 2 cần phải cẩn trọng hiện tượng đa cộng tuyến.

3.3.4. Kiểm định sự khác biệt

Công cụ sử dụng là phép kiểm định Independent - Sample T-Test, hoặc phân tích phương sai (ANOVA), hoặc kiểm định KRUSKAL - WALLIS. Trong đó:

- Independent - Sample T-Test được sử dụng trong trường hợp các yếu tố nhân khẩu học có hai thuộc tính (chẳng hạn, giới tính bao gồm: giới tính nam và giới tính nữ), vì thế chia tổng thể mẫu nghiên cứu làm hai nhóm tổng thể riêng biệt.

- Phân tích phương sai (ANOVA) được sử dụng trong trường hợp các yếu tố nhân khẩu học có ba thuộc tính trở lên, vì thế chia tổng thể mẫu nghiên cứu làm ba nhóm tổng thể riêng biệt trở lên (chẳng hạn, thời gian sử dụng dịch vụ của khách hàng, bao gồm: dưới 1 năm, từ 1-3 năm, trên 3 năm). Điều kiện để thực hiện ANOVA là các nhóm so sánh phải độc lập và được chọn một cách ngẫu nhiên; các nhóm so sánh phải có phân phối chuẩn hoặc cỡ mẫu đủ lớn để tiệm cận với phân phối chuẩn; phương sai của các nhóm so sánh phải đồng nhất.

Tóm tắt chương 3

Trong chương 3 này, tác giả trình bày về tổng quan Sở Tài chính tỉnh Kiên Giang. Trình bày về phương pháp nghiên cứu luận văn bao gồm phương pháp nghiên cứu sơ bộ và sau đó nghiên cứu chính thức. Nghiên cứu sơ bộ là sau khi đọc và tìm ra các nhân tố ảnh hưởng đến sự hài lịng của cán bộ cơng chức đối với dịch vụ hành chính cơng của Sở Tài chính tỉnh Kiên Giang. Từ các mơ hình nghiên cứu tác giả xây dựng sơ bộ từ bảng câu hỏi. Bảng câu hỏi xây dựng xong, tác giả tiến hành phỏng vấn thử 20 khách hàng và khách hàng cho ý kiến chỉnh sửa bảng câu hỏi cho phù hợp.

Sau khi bảng câu hỏi chỉnh sửa phù hợp và mơ hình chính thức nghiên cứu được xây dựng. Tác giả tiến hành thiết kế thang đo, mẫu, đặt giả thiết nghiên cứu và tiến hành phỏng vấn, thu nhập dữ liệu, mã hóa dữ liệu và nhập vào SPSS 20.0 để xử lý dữ liệu. Sau khi xử lý xong số liệu tác giả sẽ trình bày kết quả và phân tích kết

CHƯƠNG 4: KẾT QUẢ NGHIÊN CỨU VÀ THẢO LUẬN

4.1. ĐẶC ĐIỂM MẪU KHẢO SÁT

Tác giả tiến hành khảo sát mẫu, có 280 phiếu khảo sát đã được gửi trực tiếp đến cán bộ công chức của các đơn vị sở, ban, ngành cấp tỉnh như: Sở Kế hoạch và Đầu tư , Sở thông tin truyền thông, Sở Tài nguyên và môi trường, Sở Công thương, Đài phát thanh truyền hình, trường Cao đẳng cộng đồng, trường Cao đẳng Sư phạm, trường chính trị tỉnh... và chuyển bằng bưu điện cho cán bộ công chức các đơn vị cấp huyện, xã, phường: Phịng tài chính - kế hoạch, Ban quản lý cấp huyện, các đơn vị cấp xã, phường để đánh giá dịch vụ hành chính cơng tại Sở Tài chính tỉnh Kiên Giang, tổng số phiếu thu về là 265 phiếu. Sau khi kiểm tra phiếu phát ra, loại bỏ những phiếu sai xót khơng đạt. Tác giả nhận thấy có 250 phiếu đạt yêu cầu.

Một phần của tài liệu (LUẬN văn THẠC sĩ) đánh giá sự hài lòng đối với dịch vụ hành chính công tại sở tài chính tỉnh kiên giang (Trang 54 - 60)

Tải bản đầy đủ (PDF)

(101 trang)