Phương pháp phân tích nhân tố khám phá (Principal Component Analysis)

Một phần của tài liệu PHÂN TÍCH các NHÂN tố ẢNH HƯỞNG đến kết QUẢ XUẤT KHẨU của các DOANH NGHIỆP THỦY sản tại TỈNH KIÊN GIANG (Trang 40 - 42)

CHƯƠNG 2: PHƯƠNG PHÁP NGHIÊN CỨU

2.5.2. Phương pháp phân tích nhân tố khám phá (Principal Component Analysis)

Phân tích nhân tố là tên chung của một nhóm các thủ tục được sử dụng chủ yếu để thu nhỏ và tóm tắt các dữ liệu. Trong nghiên cứu, chúng ta có thể thu thập được một số lượng biến khá lớn và hầu hết các biến này có liên hệ với nhau và số lượng của chúng phải được giảm bớt xuống đến một số lượng mà chúng ta có thể sử dụng được. Liên hệ giữa các nhóm biến có liên hệ qua lại lẫn nhau được xem xét và trình bày dưới dạng một số ít các nhân tố cơ bản. Về mặt tính toán, phân tích nhân tố hơi giống với phân tích hồi quy bội ở chỗ mỗi biến được biểu diễn như là một kết hợp tuyến tính của

các nhân tố cơ bản. Lượng biến thiên của một biến được giải thích bởi những nhân tố chung trong phân tích được gọi là communality. Biến thiên chung của các biến được mô tả bằng một số ít các nhân tố chung (common factor) cộng với một nhân tố đặc trưng (unique factor) cho mỗi biến. Những nhân tố này không bộc lộ rõ ràng. Nếu các biến được chuẩn hóa thì mô hình nhân tố được thể hiện bằng phương trình:

XiA Fí1 1  A Fí2 2  A Fí3 3 ... A Fím mV Ui i

Trong đó:

Xi : biến thứ i chuẩn hóa

Aij : hệ số hồi quy bội chuẩn hóa của nhân tố j đối với biến i F : các nhân tố chung

Vi : hệ số hồi quy chuẩn hóa của nhân tố đặc trưng i đối với biến i Ui : nhân tố đặc trưng của biến i

m : số nhân tố chung

Các nhân tố đặc trưng có tương quan với nhau và với các nhân tố chung. Bản thân các nhân tố chung cũng có thể được diễn tả như những kết hợp tuyến tính của các biến quan sát:

FiW Xí1 1 W Xí2 2 W Xí3 3 ... W Xík k

trong đó:

Fi : ước lượng trị số của nhân tố thứ i

Wi: quyền số hay trọng số nhân tố (weight or factor score coefficient) k : số biến

Chúng ta có thể chọn các quyền số hay trọng số nhân tố sao cho nhân tố thứ nhất giải thích được phần biến thiên nhiều nhất trong toàn bộ biến thiên. Sau đó ta chọn một tập hợp các quyền số thứ hai sao cho nhân tố thứ hai giải thích được phần lớn biến thiên còn lại, và không có tương quan với nhân tố thứ nhất. Nguyên tắc này được áp dụng như vậy để tiếp tục chọn các quyền số cho các nhân tố tiếp theo. Do vậy các nhân tố được ước lượng sao cho các quyền số của chúng, không giống như các giá trị của các biến gốc, là không có tương quan với nhau. Hơn nữa, nhân tố thứ nhất giải thích được nhiều nhất biến thiên của dữ liệu, nhân tố thứ hai giải thích được nhiều thứ nhì,…

Một phần của tài liệu PHÂN TÍCH các NHÂN tố ẢNH HƯỞNG đến kết QUẢ XUẤT KHẨU của các DOANH NGHIỆP THỦY sản tại TỈNH KIÊN GIANG (Trang 40 - 42)

Tải bản đầy đủ (PDF)

(114 trang)