Hướng phát triển trong tương lai

Một phần của tài liệu Phân bố công suất tối ưu cho lưới điện phân phối có các trạm sạc xe điện (Trang 83 - 96)

Tiếp tục nghiên cứu các tiến bộ mới nhất trong lĩnh vực xe điện để bắt kịp xu hướng phát triển của tương lai.

Thực hiện các nghiên cứu chuyên sâu và chi tiết vào các thành phần của hệ thống trạm sạc để bài toán phân bố công suất tối ưu cho lưới điện phân phối đạt hiệu quả cao hơn và chính xác hơn.

Kết quả công bố HV: Lâm Bửu Quí !

DANH MỤC CÁC CÔNG TRÌNH KHOA HỌC

1.!B. Q. Lam and K. P. Nguyen, "Improved Moth-Flame Optimization for optimal reactive power dispatch in large-scale systems," GMSARN International Journal, vol. 16, no.2, pp. 152-164, 2022.

2.!B. Q. Lam and K. P. Nguyen, "Optimal power flow for distribution grids considering electric vehicle charging," The 14th Regional Conference on Electrical and Electronics Engineering, Bangkok, Thailand, 2022.

Tài liệu tham khảo HV: Lâm Bửu Quí !

TÀI LIỆU THAM KHẢO

[1]!M. Ehsani, Y. Gao, S. Longo, and K. M. Ebrahimi, Modern electric, hybrid electric, and fuel cell vehicles. CRC press, 2018.

[2]!A. Tavakoli, S. Saha, M. T. Arif, M. E. Haque, N. Mendis, and A. M. Oo, “Impacts of grid integration of solar pv and electric vehicle on grid stability, power quality and energy economics: a review,” IET Energy Systems Integration, vol. 2, no. 3, pp. 243– 260, 2020.

[3]!C. Dharmakeerthi, N. Mithulananthan, and T. Saha, “Impact of electric vehi- cle load on power system oscillatory stability,” in 2013 Australasian Universities Power Engineering Conference (AUPEC), Australia, pp. 1–6, IEEE, 2013.

[4]!A. Rautiainen, J. Markkula, S. Repo, A. Kulmala, P. J¨arventauta, and K. Vuorile- hto, “Plug-in vehicle ancillary services for a distribution network,” in 2013 Eighth International Conference and Exhibition on Ecological Vehicles and Renewable Energies (EVER), Monte Carlo, Monaco, pp. 1–8, IEEE, 2013.

[5]!K. Mahmud and G. E. Town, “A review of computer tools for modeling electric vehicle energy requirements and their impact on power distribution networks,”

Applied Energy, vol. 172, pp. 337–359, 2016.

[6]!M. B. Arias and S. Bae, “Electric vehicle charging demand forecasting model based on big data technologies,” Applied energy, vol. 183, pp. 327–339, 2016.

[7]!I. Rahman, P. M. Vasant, B. S. M. Singh, M. Abdullah-Al-Wadud, and N. Adnan, “Review of recent trends in optimization techniques for plug-in hybrid, and elec- tric vehicle charging infrastructures,” Renewable and Sustainable Energy Reviews, vol. 58, pp. 1039–1047, 2016.

[8]!T. Das and D. C. Aliprantis, “Small-signal stability analysis of power system inte- grated with phevs,” in 2008 IEEE Energy 2030 Conference, Atlanta, Georgia, pp. 1–4, IEEE, 2008.

[9]!M. El Chehaly, O. Saadeh, C. Martinez, and G. Joos, “Advantages and applications of vehicle to grid mode of operation in plug-in hybrid electric vehicles,” in 2009 IEEE Electrical Power & Energy Conference (EPEC), Canada, pp. 1–6, IEEE, 2009.

[10]!C. Dharmakeerthi, N. Mithulananthan, and T. Saha, “Impact of electric vehicle fast charging on power system voltage stability,” International Journal of Electrical Power & Energy Systems, vol. 57, pp. 241–249, 2014.

Tài liệu tham khảo HV: Lâm Bửu Quí !

[11]!J. de Hoog, V. Muenzel, D. C. Jayasuriya, T. Alpcan, M. Brazil, D. A. Thomas, Mareels, G. Dahlenburg, and R. Jegatheesan, “The importance of spatial dis- tribution when analysing the impact of electric vehicles on voltage stability in distribution networks,” Energy Systems, vol. 6, no. 1, pp. 63–84, 2015.

[12]!C. Dharmakeerthi, N. Mithulananthan, and T. Saha, “Modeling and planning of ev fast charging station in power grid,” in 2012 IEEE Power and Energy Society General Meeting, San Diego, California, USA, pp. 1–8, IEEE, 2012.

[13]!A. Brooks, E. Lu, D. Reicher, C. Spirakis, and B. Weihl, “Demand dispatch,”

IEEE Power and Energy Magazine, vol. 8, no. 3, pp. 20–29, 2010.

[14]!E. Sortomme and M. A. El-Sharkawi, “Optimal scheduling of vehicle-to-grid energy and ancillary services,” IEEE Transactions on Smart Grid, vol. 3, no. 1, pp. 351– 359, 2011.

[15]!W. Kempton and S. E. Letendre, “Electric vehicles as a new power source for electric utilities,” Transportation Research Part D: Transport and Environment, vol. 2, no. 3, pp. 157–175, 1997.

[16]!F. Teng, Y. Mu, H. Jia, J. Wu, P. Zeng, and G. Strbac, “Challenges on primary fre- quency control and potential solution from evs in the future gb electricity system,”

Applied energy, vol. 194, pp. 353–362, 2017.

[17]!J. Pahasa and I. Ngamroo, “Phevs bidirectional charging/discharging and soc con- trol for microgrid frequency stabilization using multiple mpc,” IEEE Transactions on Smart Grid, vol. 6, no. 2, pp. 526–533, 2014.

[18]!T. N. Pham, S. Nahavandi, H. Trinh, K. P. Wong, et al., “Static output feedback frequency stabilization of time-delay power systems with coordinated electric vehi- cles state of charge control,” IEEE Transactions on Power Systems, vol. 32, no. 5, pp. 3862–3874, 2016.

[19]!C. Dharmakeerthi, N. Mithulananthan, and A. Atputharajah, “Development of dy- namic ev load model for power system oscillatory stability studies,” in 2014 Aus- tralasian Universities Power Engineering Conference (AUPEC), Australia, pp. 1–6, IEEE, 2014. (adsbygoogle = window.adsbygoogle || []).push({});

[20]!A. Tavakoli, M. Negnevitsky, D. T. Nguyen, and K. M. Muttaqi, “Energy exchange between electric vehicle load and wind generating utilities,” IEEE Transactions on Power Systems, vol. 31, no. 2, pp. 1248–1258, 2015.

Tài liệu tham khảo HV: Lâm Bửu Quí !

ing on distribution grid and smart charging,” in 2012 IEEE International Confer- ence on Power System Technology (POWERCON), New Zealand, pp. 1–5, IEEE, 2012.

[22]!J. Y. Yong, V. K. Ramachandaramurthy, K. M. Tan, and N. Mithulananthan, “Bi- directional electric vehicle fast charging station with novel reactive power compen- sation for voltage regulation,” International Journal of Electrical Power & Energy Systems, vol. 64, pp. 300–310, 2015.

[23]!C. Dharmakeerthi, N. Mithulananthan, and T. K. Saha, “Overview of the impacts of plug-in electric vehicles on the power grid,” in 2011 IEEE PES Innovative Smart Grid Technologies, Australia, pp. 1–8, IEEE, 2011.

[24]!L. P. Fernandez, T. G. San Román, R. Cossent, C. M. Domingo, and P. Frias, “Assessment of the impact of plug-in electric vehicles on distribution networks,”

IEEE transactions on power systems, vol. 26, no. 1, pp. 206–213, 2010.

[25]!M. A. Masoum, P. S. Moses, and K. M. Smedley, “Distribution transformer losses and performance in smart grids with residential plug-in electric vehicles,” in ISGT 2011, Australia, pp. 1–7, IEEE, 2011.

[26]!K. Kim, C. S. Song, G. Byeon, H. Jung, H. Kim, and G. Jang, “Power demand and total harmonic distortion analysis for an ev charging station concept utilizing a battery energy storage system,” Journal of Electrical Engineering and Technology, vol. 8, no. 5, pp. 1234–1242, 2013.

[27]!A. Lucas, F. Bonavitacola, E. Kotsakis, and G. Fulli, “Grid harmonic impact of multiple electric vehicle fast charging,” Electric Power Systems Research, vol. 127, pp. 13–21, 2015.

[28]!M. W. Siti, D. V. Nicolae, A. A. Jimoh, and A. Ukil, “Reconfiguration and load balancing in the lv and mv distribution networks for optimal performance,” IEEE transactions on power delivery, vol. 22, no. 4, pp. 2534–2540, 2007.

[29]!S. Devi and M. Geethanjali, “Optimal location and sizing determination of dis- tributed generation and dstatcom using particle swarm optimization algorithm,” International Journal of Electrical Power & Energy Systems, vol. 62, pp. 562–570, 2014.

[30]!A. S. Masoum, S. Deilami, P. S. Moses, M. A. Masoum, and A. Abu-Siada, “Smart load management of plug-in electric vehicles in distribution and residential net- works with charging stations for peak shaving and loss minimisation considering voltage regulation,” IET generation, transmission & distribution, vol. 5, no. 8, pp. 877–888, 2011.

Tài liệu tham khảo HV: Lâm Bửu Quí !

[31]!J. Y. Yong, S. M. Fazeli, V. K. Ramachandaramurthy, and K. M. Tan, “Design and development of a three-phase off-board electric vehicle charger prototype for power grid voltage regulation,” Energy, vol. 133, pp. 128–141, 2017.

[32]!H. F. Farahani, “Improving voltage unbalance of low-voltage distribution networks using plug-in electric vehicles,” Journal of cleaner production, vol. 148, pp. 336– 346, 2017.

[33]!M. K. Gray and W. G. Morsi, “Economic assessment of phase reconfiguration to mitigate the unbalance due to plug-in electric vehicles charging,” Electric Power Systems Research, vol. 140, pp. 329–336, 2016.

[34]!S. Khatiri-Doost and M. Amirahmadi, “Peak shaving and power losses minimiza- tion by coordination of plug-in electric vehicles charging and discharging in smart grids,” in 2017 IEEE International Conference on Environment and Electrical Engineering and 2017 IEEE Industrial and Commercial Power Systems Europe (EEEIC/I&CPS Europe), Italy, pp. 1–5, IEEE, 2017.

[35]!K. Clement-Nyns, E. Haesen, and J. Driesen, “The impact of charging plug-in hybrid electric vehicles on a residential distribution grid,” Power Systems, IEEE Transactions on, vol. 25, no. 1, pp. 371–380, 2010.

[36]!X. Luo and K. W. Chan, “Real-time scheduling of electric vehicles charging in low- voltage residential distribution systems to minimise power losses and improve voltage profile,” IET generation, transmission & distribution, vol. 8, no. 3, pp. 516– 529, 2014.

[37]!A. H. Zaidi, “Optimal electric vehicle load management for minimization of losses,” in 2015 Power generation system and renewable energy technologies (PGSRET), Pakistan, pp. 1–6, IEEE, 2015.

[38]!Q. Wang, N. Zhou, J. Wang, and N. Wei, “Harmonic amplification investigation and calculation of electric vehicle charging stations using three-phase uncontrolled rectification chargers,” Electric Power Systems Research, vol. 123, pp. 174–184, 2015.

[39]!Y.-S. Roh, Y.-J. Moon, J.-C. Gong, and C. Yoo, “Active power factor correc- tion (pfc) circuit with resistor-free zero-current detection,” IEEE Transactions on power Electronics, vol. 26, no. 2, pp. 630–637, 2010.

[40]!S. Huang, J. R. Pillai, M. Liserre, and B. Bak-Jensen, “Improving photovoltaic and electric vehicle penetration in distribution grids with smart transformer,” in IEEE PES ISGT Europe 2013, pp. 1–5, IEEE, 2013.

Tài liệu tham khảo HV: Lâm Bửu Quí !

[41]!G. S. Lakshmi, O. Rubanenko, and I. Hunko, “Renewable energy generation and impacts on e-mobility,” in Journal of Physics: Conference Series, vol. 1457, p.012009, IOP Publishing, 2020.

[42]!N. Shaukat, B. Khan, S. Ali, C. Mehmood, J. Khan, U. Farid, M. Majid, S. Anwar, M. Jawad, and Z. Ullah, “A survey on electric vehicle transportation within smart grid system,” Renewable and Sustainable Energy Reviews, vol. 81, pp. 1329–1349, 2018

[43]!M. M. Rezaei, M. H. Moradi, and M. H. Amini, "A simultaneous approach for optimal allocation of renewable energy sources and charging stations based on improved GA- PSO Algorithm."

Internet: http://www.ieso.ca/Pages/Power-Data/default.aspx, Dec. 01, 2021.

[44]!M. M. Rezaei, M. H. Moradi, and M. H. Amini, "A simultaneous approach for optimal allocation of renewable energy sources and charging stations based on improved GA- PSO Algorithm, " Sustainable Cities and Society, vol. 32, pp. 627-637, 2017. (adsbygoogle = window.adsbygoogle || []).push({});

[45]!Q. B. Lam and K. P. Nguyen, "Minimizing Power Loss In The Grid Using Improved Moth-Flame Optimization Method, " GMSARN International Conference on Smart Energy, Environment, and Development for Sustainable GMS, Luang Prabang, Laos, 2019.

Phụ lục HV: Lâm Bửu Quí !

PHỤ LỤC

A.!Code Matlab cho phương pháp IMFO (Improved Moth-Flame Optimization)

function

[Best_flame_score,Best_flame_pos,Convergence_curve]=MFOEV_RES(N,Max_iterati on,INPUT)

display('MFO is optimizing your problem'); Vgmax = 1.1; Vgmin = 0.95; %Calculate Dimension mpc = INPUT; %case33bw %Pcap = [6,31]; %case118 %Pcap = [5 34 37 44 45 46 48 74 79 82 83 105 107 110]; %Qcmax = 36*ones(size(Pcap)); %Qcmin = -12*ones(size(Pcap)); %%%EV position EV_posmin = 4*ones(size(1:2)); EV_posmax = 33*ones(size(1:2)); %%Charging and discharging control char1_min = -1.5*ones(size(1:24)); char1_max = 1.5*ones(size(1:24)); Ngen = length(mpc.gen(:,1)); Dim = 27;

%Create scalar vector

ub = [Vgmax*ones(1,Ngen),EV_posmax,char1_max]; lb = [Vgmin*ones(1,Ngen),EV_posmin,char1_min]; pUpper = ones(N,1)*(ub); pLower = ones(N,1)*(lb); BaseVgen = mpc.gen(:,6); BaseEV_pos = 4.*ones(size(EV_posmax)); Basechar1 = 0*ones(size(char1_max)); %Initialize the positions of moths

Basecase = [BaseVgen',BaseEV_pos,Basechar1];

Moth_pos = pLower(1:N-1,:) + rand(N-1,Dim).*(pUpper(1:N-1,:) - pLower(1:N- 1,:)); Moth_pos = [Basecase;Moth_pos]; Convergence_curve=zeros(1,Max_iteration); Iteration=1; % Main loop while Iteration<Max_iteration+1 %Flame_no=round(N-Iteration*((N-1)/Max_iteration)); Flame_no = round(N.^(-Iteration/Max_iteration+1)); for i=1:size(Moth_pos,1)

% Check if moths go out of the search spaceand bring it back Moth_pos(i,Moth_pos(i,:) > ub) = ub(Moth_pos(i,:) > ub); Moth_pos(i,Moth_pos(i,:) < lb) = lb(Moth_pos(i,:) < lb); % Calculate the fitness of moths

Moth_fitness(1,i) = EV_RES(Moth_pos(i,:),INPUT);

Phụ lục HV: Lâm Bửu Quí !

if Iteration==1

% Sort the first population of moths [fitness_sorted I]=sort(Moth_fitness); sorted_population=Moth_pos(I,:);

% Update the flames

best_flames=sorted_population; best_flame_fitness=fitness_sorted; else

% Sort the moths

double_population=[previous_population;best_flames]; double_fitness=[previous_fitness best_flame_fitness]; [double_fitness_sorted I]=sort(double_fitness); double_sorted_population=double_population(I,:); fitness_sorted=double_fitness_sorted(1:N); sorted_population=double_sorted_population(1:N,:);

% Update the flames

best_flames=sorted_population; best_flame_fitness=fitness_sorted; end

% Update the position best flame obtained so far Best_flame_score=fitness_sorted(1); Best_flame_pos=sorted_population(1,:); m = [m Best_flame_score]; previous_population=Moth_pos; previous_fitness=Moth_fitness;

% a linearly dicreases from -1 to -2 to calculate t a=-1+Iteration*((-1)/Max_iteration);

for i=1:size(Moth_pos,1) (adsbygoogle = window.adsbygoogle || []).push({});

for j= 1:size(Moth_pos,2)

if i<=Flame_no % Update the position of the moth with respect to its corresponsing flame

distance_to_flame=abs(sorted_population(i,j)- Moth_pos(i,j)); b=1.5; t=(a-1)*rand+1; Moth_pos(i,j)=distance_to_flame*exp(b.*t).*cos(t.*2*pi)+sorted_population(i ,j); end

if i>Flame_no % Update the position of the moth with respct to one flame

Phụ lục HV: Lâm Bửu Quí ! distance_to_flame=abs(sorted_population(i,j)- Moth_pos(i,j)); b=1.5; t=(a-1)*rand+1; Moth_pos(i,j)=distance_to_flame*exp(b.*t).*cos(t.*2*pi)+sorted_population(F lame_no,j); end end end Convergence_curve(Iteration)=Best_flame_score;

% Display the iteration and best optimum obtained so far if mod(Iteration,500)==0

display(['At iteration ', num2str(Iteration), ' the best fitness is ', num2str(Best_flame_score)]); display(Best_flame_pos); plot(Convergence_curve,'r'); end Iteration=Iteration+1; end

B.!Code Matlab cho bài toán phân bố công suất tối ưu cho lưới điện phân phối có trạm sạc xe điện

function [Fitness] = EV_Place(scaX,INPUT,Pcap,EV)

%% Input

define_constants; mpc = INPUT;

Vlmax = 1.1; % Max magnitude of voltage at load buses Vlmin = 0.95; % Min magnitude of voltage at load buses %% Data process

Slmax = mpc.branch(:,6); % Limitation of transmission lines Ptap = mpc.branch(:,9) > 0; %Position of lap change tap Nload = mpc.bus(:,2)==1; % Position of load buses

NQc = length(Pcap); % Number of shunt capacitor Ngen = length(mpc.gen(:,1));

Qgmax = mpc.gen(:,4); Qgmin = mpc.gen(:,5);

Ntap = sum(Ptap); % Number of load change tap of Transformers K = 1e6;

%% Process

% Update Vgen; element from 1 to Ngen mpc.gen(:,6) = scaX(1:Ngen); % Update Q capacitor %case33 mpc.bus(Pcap,6) = [0.9043,0.6452]; %case69 %mpc.bus(Pcap,6) = [0.4837,1.1409];

Phụ lục HV: Lâm Bửu Quí !

% Update EV power from Ngen+1 to Ngen + NEV %EV=1:69

NEV = length(EV);

mpc.bus(EV,3) = scaX(Ngen + 1 : Ngen + NEV); % Update transformer change tap

mpc.branch(Ptap,9) = scaX(Ngen + NEV + 1 : Ngen + NEV + Ntap); opt = mpoption('VERBOSE',0, 'OUT_ALL',0);

results = runpf(mpc, opt); %% Calculate Fitness function % Power loss

Pload_sum = sum(results.bus(:,3)); Pgen_sum = sum(results.gen(:,2)); Ploss = Pgen_sum - Pload_sum;

% Limitation of voltage at load buses Vload = results.bus(Nload,8);

LimVload = (Vload>Vlmax).*(Vload-Vlmax).^2 + (Vload<Vlmin).*(Vlmin- Vload).^2;

% Limitation of reactive power of generators Qgen = results.gen(:,3);

LimQgen = (Qgen>Qgmax).*(Qgen-Qgmax).^2 + (Qgen<Qgmin).*(Qgmin-Qgen).^2; % Limitation of transmission line

Sl = max(sqrt(results.branch(:,14).^2 + results.branch(:,15).^2),sqrt(results.branch(:,16).^2 + results.branch(:,17).^2)); LimSl = (Sl>Slmax).*(Sl-Slmax).^2; % Fitness Pload_sum = sum(results.bus(:,3)); Pgen_sum = sum(results.gen(:,2)); Ploss = Pgen_sum - Pload_sum; (adsbygoogle = window.adsbygoogle || []).push({});

if Ploss<0 Kloss = 1e20; else Kloss = 0; end EV_max = 10*ones(size(EV));

DeltaEV = sum(EV_max - scaX(Ngen + 1 : Ngen + NEV)); K1 = 10;

Fitness = Ploss + K.*sum(LimVload) + K.*sum(LimQgen) + K.*sum(LimSl) + K1.*DeltaEV +Kloss;

C.!Code Matlab cho bài toán phân bố công suất tối ưu cho lưới điện phân phối có trạm sạc xe điện và nguồn năng lượng tái tạo

function [Fitness] = EV_RES(scaX,INPUT)

%% Input

define_constants; mpc = INPUT;

Vlmax = 1.1; % Max magnitude of voltage at load buses Vlmin = 0.95; % Min magnitude of voltage at load buses %% Data process

Slmax = mpc.branch(:,6); % Limitation of transmission lines Nload = mpc.bus(:,2)==1; % Position of load buses

Ngen = length(mpc.gen(:,1)); Qgmax = mpc.gen(:,4);

Phụ lục HV: Lâm Bửu Quí !

K = 1e6;

Pcap = [6,31]; %%%%Data from Web%%%

Load = 0.2*[15.144 14.314 14.068 14.097 14.067 14.165 14.604 15.817 17.125 17.407 17.369 17.216 16.809 16.409 16.547 16.937 17.716 18.447 18.832 18.305 17.829 17.526 16.887 15.779]; PV = 1.2.*[0 0 0 0 0 0 0.02 0.19 0.3 0.56 0.92 1 0.98 0.92 0.81 0.66 0.45 0.1 0 0 0 0 0 0]; WIND = 0.8.*[0.55 0.56 0.57 0.6 0.62 0.69 0.75 0.77 0.81 0.87 0.88 0.92 0.94 0.95 0.98 1 0.99 0.97 0.96 0.95 0.91 0.89 0.87 0.82]; RES_rate =PV+WIND; E_price = [14.05 24.86 41.08 41.45 41.60 40.55 42.60 45.78 48.53 48.80 49.43 49.26 47.63 46.72 46.61 48.01 49.49 58.91 49.09 46.79 45.17 44.53 43.13 41.90]; %% Process

% Update Vgen; element from 1 to Ngen mpc.gen(:,6) = scaX(1:Ngen); % Update Q capacitor %case33 mpc.bus(Pcap,6) = [0.9043,0.6452]; SOC1=0.3; SOC_flag=0; SOC1_plot = []; Ploss=0; LimVload = 0; Cost = 0; for i=1:24 mpc.bus(:,3)=mpc.bus(:,3)+Load(1,i)/33; % Update the position of EV

EV1 = round(scaX(1,2)); EV2 = round(scaX(1,3)); Pchr1 = scaX(1,i+3);

%Update the capacity of EV to grid

mpc.bus(EV1,3) = mpc.bus(EV1,3) + Pchr1/2; mpc.bus(EV2,3) = mpc.bus(EV2,3) + Pchr1/2; % Update the position of RES

RES1 = EV1; RES2 = EV2;

%Update the capacity of RES

mpc.bus(RES1,3) = mpc.bus(RES1,3) - RES_rate(1,i); mpc.bus(RES2,3) = mpc.bus(RES2,3) - RES_rate(1,i); SOC1_plot = [SOC1_plot, SOC1];

SOC1=SOC1+1/24.*Pchr1-0.01; if (SOC1 <0.2 )||(SOC1 > 1) SOC_flag = SOC_flag + 1e6; end

opt = mpoption('VERBOSE',0, 'OUT_ALL',0); results = runpf(mpc, opt);

Pload_sum = sum(results.bus(:,3)); Pgen_sum = sum(results.gen(:,2)); Ploss = Ploss + Pgen_sum - Pload_sum; Vload = results.bus(Nload,8);

Phụ lục HV: Lâm Bửu Quí !

LimVload = LimVload + (Vload>Vlmax).*(Vload-Vlmax).^2 + (Vload<Vlmin).*(Vlmin-Vload).^2;

Cost = Cost + Pgen_sum.*E_price(1,i); mpc.bus(:,3)=mpc.bus(:,3)-Load(1,i)/33; mpc.bus(EV1,3) = mpc.bus(EV1,3) - Pchr1/2; mpc.bus(EV2,3) = mpc.bus(EV2,3) - Pchr1/2;

mpc.bus(RES1,3) = mpc.bus(RES1,3) + RES_rate(1,i); mpc.bus(RES2,3) = mpc.bus(RES2,3) + RES_rate(1,i);

end

%% Calculate Fitness function % Power loss (adsbygoogle = window.adsbygoogle || []).push({});

Ploss_tb = Ploss/24;

% Limitation of voltage at load buses Fvdef = sum(abs(Vload-1.0));

% Limitation of reactive power of generators Qgen = results.gen(:,3);

LimQgen = (Qgen>Qgmax).*(Qgen-Qgmax).^2 + (Qgen<Qgmin).*(Qgmin-Qgen).^2; % Limitation of transmission line

Sl = max(sqrt(results.branch(:,14).^2 + results.branch(:,15).^2),sqrt(results.branch(:,16).^2 + results.branch(:,17).^2)); LimSl = (Sl>Slmax).*(Sl-Slmax).^2; % Fitness if Ploss_tb<0 Kloss = 1e20; else Kloss = 0; end

Fitness = 0.3.*Ploss_tb+ 0.3.*Fvdef + 0.2*Cost +K.*sum(LimVload) + K.*sum(LimQgen) + K.*sum(LimSl) +Kloss + SOC_flag;

Lý lịch trích ngang HV: Lâm Bửu Quí !

LÝ LỊCH TRÍCH NGANG Họ và tên: Lâm Bửu Quí

Ngày, tháng, năm sinh: 10/07/1997

Nơi sinh: Tây Ninh

Địa chỉ liên lạc: Số 7, Nguyễn Văn Linh, Trường Tây, Hoà Thành, Tây Ninh

Email: lambuuqui37@gmail.com

Một phần của tài liệu Phân bố công suất tối ưu cho lưới điện phân phối có các trạm sạc xe điện (Trang 83 - 96)