Tính chất quang xúc tác của vật liệu TiO2

Một phần của tài liệu (LUẬN văn THẠC sĩ) nghiên cứu hiệu ứng quang xúc tác của vật liệu tio2 chế tạo bằng phương pháp điện hoá ứng dụng xử lý xanh methylene trong môi trường nước​ (Trang 28 - 31)

Khi được kích thích bởi bức xạ có năng lượng photon bằng hoặc lớn hơn độ rộng vùng cấm của TiO2 (anatase, độ rộng năng lượng vùng cấm là 3,2 eV tương đương với một lượng tử ánh sáng có bước sóng 388 nm, rutile có năng lượng vùng cấm là 3,0 eV tương đương với một lượng tử ánh sáng có bước sóng λ = 413 nm) sẽ tạo ra các electron tự do (e-) ở vùng dẫn và các lỗ trống tự do (h+) ở vùng hóa. Những cặp (e, h+) này sẽ di chuyển ra bề mặt ngoài của vật liệu

để thực hiện phản ứng oxi hóa - khử . Các lỗ trống có thể tham gia trực tiếp vào phản ứng oxi hóa các chất ô nhiễm, hoặc có thể tham gia vào giai đoạn trung gian tạo thành các gốc tự do hoạt động. Trong khi đó, các electron sẽ tham gia vào các quá trình khử tạo thành các gốc tự do. Các gốc tự do sẽ tiếp tục oxi hóa các chất ô nhiễm bị hấp phụ trên bề mặt chất xúc tác tạo thành sản phẩm cuối cùng là CO2 và H2O [20]. Cơ chế quang xúc tác của chất bán dẫn TiO2 được chỉ ra trên hình 1.6.

Hình 1.6: Cơ chế quang xúc tác của chất bán dẫn TiO2

Để các phản ứng oxy hóa xảy ra trên bề mặt bán dẫn thì mức thế oxi hóa khử của chất nhận về mặt nhiệt động học cần phải thấp hơn đáy vùng dẫn của chất bán dẫn. Mặt khác, mức thế oxi hóa khử của chất cho phải cao hơn vị trí đỉnh vùng hóa trị của chất bán dẫn. Đối với chất bán dẫn, mức năng lượng của đáy vùng dẫn (gọi là Ecs) là số đo khả năng khử của điện tử, trong khi đó mức năng lượng của đỉnh vùng hóa trị là số đo tính oxi hóa của lỗ trống. Giản đồ năng lượng của anatase và rutile được chỉ ra như hình 1.7.

Hình 1.7: Giản đồ năng lượng của pha anatase và pha rutile

Có thể thấy rằng, vùng hóa trị của anatase và rutile trên giản đồ là xấp xỉ bằng nhau và cũng rất dương, điều này có nghĩa là chúng có khả năng oxi hóa mạnh. Các lỗ trống này mang tính oxi hóa mạnh và có khả năng oxi hóa H2O thành gốc OH* tự do

h+ + H2O OH* + H+ (1.13)

Vùng dẫn của rutile có giá trị gần với thế khử nước thành khí, trong khi với anatase thì cao hơn mức này một chút, đồng nghĩa với một thế khử mạnh hơn do đó ở anatase các electron chuyển lên vùng dẫn có khả năng khử O2 thành *−

2

O còn rutile thì không

Cơ chế của quá trình quang xúc tác phân hủy chất hữu cơ của TiO2 ở dạng tinh thể anatase xảy ra như sau:

Sự hấp thụ photon

(TiO2) + h ν →eCB−

+ hνVB+ (1.14) • Số oxi hóa của oxy giảm từ 0 tới 1/2

) 15 . 1 ( * 2 2 − − → + e O O CB

) 16 . 1 ( ) (H2O ⇔ H + + OH − + hVB+ → H + +OH *

• Sự trung hòa của *−

2 O bởi proton ) 17 . 1 ( HO*2 * 2 + → + − H O • Sự hình thành các phân tử H2O2: HO*2 → H2O2 + O2 (1.18)

• Quá trình phấn hủy phân tử H2O2 và sự giảm lần hai oxy ) 19 . 1 ( * 2 2 − − → + + e OH OH O H

• Sự oxy hóa của các chất phản ứng hữu cơ bởi các gốc OH* R+ + OH * → R, + H2O (1.20)

• Sự oxi hóa trực tiếp của lỗ trống:

R + h+ →R+* (1.21)→ deadationp roducts

Một ví dụ cụ thể các lỗ trống có thể phản ứng trực tiếp với axit cacboxylic tạo ra CO2:

RCOO- + h + → R* + CO2 (1.22) Như vậy chính các gốc OH* và *−

2

O với vai trò quan trọng ngang nhau có khả năng phân hủy các chất ô nhiễm thành H2O và CO2 và do đó khả năng quang xúc tác của anatase cao hơn rutile. Tinh thể anatase dưới tác dụng của ánh sáng tử ngoại đóng vai trò như một cầu nối trung chuyển điện tử từ H2O sang O2, chuyển hai chất này thành dạng OH* và *−

2

O là hai dạng có hoạt tính oxi hóa cao có khả năng phân hủy chất ô nhiễm thành H2O và CO2. Chính vì vậy, trong nghiên cứu này, TiO2 cấu trúc anatase được chúng tôi hướng đến.

Một phần của tài liệu (LUẬN văn THẠC sĩ) nghiên cứu hiệu ứng quang xúc tác của vật liệu tio2 chế tạo bằng phương pháp điện hoá ứng dụng xử lý xanh methylene trong môi trường nước​ (Trang 28 - 31)

Tải bản đầy đủ (PDF)

(81 trang)