Phương pháp phổ phản xạ khuếch tán tử ngoại khả kiến (UV-

Một phần của tài liệu (LUẬN văn THẠC sĩ) nghiên cứu tổng hợp và khảo sát hoạt tính quang xúc tác của vật liệu sno2 biến tính (Trang 48 - 51)

6. Cấu trúc luận văn

2.2.7. Phương pháp phổ phản xạ khuếch tán tử ngoại khả kiến (UV-

Diffuse Reflectance Spectroscopy, UV-Vis DRS)

Phổ phản xạ khuếch tán nằm ở vùng tử ngoại hay vùng khả kiến còn gọi là phổ phản xạ khuếch tán tử ngoại khả kiến (UV-Vis-DRS) cho biết thông tin về đỉnh hấp thụ từ đó cho phép tính năng lượng vùng cấm (band gap energy, Eg) – một trong những tính chất quan trọng của vật liệu bán dẫn rắn.

*Nguyên tắc:

Khi dòng ánh sáng va đập vào mẫu rắn có hai loại phản xạ xảy ra: phản xạ gương và phản xạ khuếch tán. Phản xạ gương (specular reflectance) liên quan đến quá trình phản xạ của dòng tia tới và tia phản xạ có cùng góc (như gương phẳng). Phản xạ khuếch tán (diffuse reflection) liên quan đến dòng tia tới phản xạ theo tất cả mọi hướng. Phổ phản xạ khuếch tán nằm ở vùng khả kiến hay vùng tử ngoại còn gọi là phổ phản xạ khuếch tán tử ngoại khả kiến (từ đây gọi là phổ UV-Vis-DRS). Đối với vật liệu hấp thụ ánh sáng khi dòng tia tới có cường độ (Io) chiếu vào, vật liệu hấp thụ đi qua một lớp mỏng có độ dày là x, với hệ số hấp phụ

KT. Cường độ (I) của tia ló được tính theo định luật định luật hấp phụ Lambert đã biết:

T -K x 0 I = I e (2.2) Khi kích thước của hạt nhỏ hơn tiết diện ngang của dòng tia tới nhưng lớn hơn tương đối độ dài bước sóng, hiện tượng nhiễu xạ cũng xảy ra bởi vì có sự giao thoa với các bước sóng khác. Trong vật liệu bột, các hạt có kích thước như vậy định hướng ngẫu nhiên theo các hướng khác nhau, một phần của ánh sáng tia tới sẽ đi trở lại bán cầu chứa nguồn tia sáng. Hiện tượng phát sinh từ sự phản xạ, khúc xạ, nhiễu xạ và hấp thụ bởi các hạt định hướng một cách ngẫu nhiên được gọi phản xạ khuếch tán, ngược với phản xạ gương trên bề mặt biên hạt. Đối với trường hợp phản xạ khuếch tán lý tưởng, sự phân bố góc (angular distribution) của tia phản xạ phụ thuộc vào góc tia tới và tuân theo định luật Lambert Cosine (Lambert Cosine Law). Định luật này phát biểu rằng sự giảm tia bức xạ trên một đơn vị bề mặt là tỉ lệ với cosine của tia tới i và cosine của tia ló e. Nếu kích thước của hạt tương tự hay nhỏ hơn bước sóng thì sự đóng góp của sự phản xạ, khúc xạ, nhiễu xạ vào cường độ và phân bố góc của tia ló là tương đương và không thể tách ra được. Hiện tượng này được gọi là hiện tượng tán xạ (scatttering). Năm 1931, Kubelka và Munk đã đưa ra một phương trình gọi là hàm Kubelka-Munk như sau [48]:

2 (1-R ) K = = F(R ) S 2R    (2.3)

Trong đó K S là các hệ số đặc trưng cho sự hấp thụ và tán xạ trên một đơn vị độ dày của mẫu. R sẽ thay đổi khi độ dày của mẫu thay đổi, giá trị R∞ là giá trị R đạt được khi độ dày mẫu thay đổi mà R không thay đổi.

Phổ UV-Vis–DRS có thể áp dụng để phân tích định lượng qua phương trình Duncan, một dẫn xuất của hàm Kubleka-Munk theo phương trình:

2 i i M M M i i C K (1-R ) F(R ) = = 2R C S   (2.4)

Trong đó, chỉ số M chỉ hỗn hợp; RM là R∞ của hỗn hợp, Ci là phần khối lượng

của cấu tử i với hệ số hấp thụ Ki và khuếch tán Si.

Một số dạng liên kết của kim loại chuyển tiếp trong một số oxit có thể được đặc trưng bằng các giải hấp thụ trong phổ hấp thụ hay phổ hàm K-M. Phổ hấp thụ trong vùng UV hay khả kiến là do sự chuyển dịch điện tử ở orbitan d của các ion kim loại chuyển tiếp đến các phối tử xung quanh. Ngoài ra, sự hấp thụ ánh sáng liên quan đến năng lượng vùng cấm, do đó phổ UV-vis-DRS có thể dùng để tính toán năng lượng vùng cấm. Trong phổ này điểm uốn giữa phần truyền qua (transmistance) và hấp thụ cao được xác định. Bước sóng tương ứng với điểm uốn này gọi là gờ hấp thụ (absorption edge). Năng lượng vùng cấm Eg, tính theo phương trình Planck:

g h.c E = λ (2.5)

Để xác định chính xác, năng lượng vùng cấm cần phải xác định bước sóng ở điểm uốn này. Điểm uốn này có thể được xác định bằng chuyển số liệu hấp thụ qua hàm K-M. Prabakar và cộng sự [49] đã đề nghị phương pháp tính năng lượng vùng cấm thông qua hệ số hấp thụ α.

Hệ số hấp thụ α được tính như sau:

1 α = lnT

L (2.6)

Trong đó, L là chiều dày của mẫu đo, T là độ truyền qua được tính từ phổ

UV-Vis-DRS.

(αhv) = C(hv - E )g 2

2 i i M M M i i C K (1-R ) F(R ) = = 2R C S   (2.8)

h là hằng số Planck, C là hằng số, Eg là năng lượng vùng cấm và ν là tần số kích thích. Vẽ đồ thị (αhν)2 theo . Đường thẳng tuyến tính đi qua điểm uốn của đường cong này cắt trục hoành. Giá trị hoành độ ở điểm cắt chính bằng năng lượng vùng cấm.

* Thực nghiệm:

Phổ UV-Vis được tiến hành đo trên máy GBCInstrument– 2885 bước sóng từ 200 đến 800nm, Khoa Vật lý, Đại Học Khoa Học Tự Nhiên, Hà Nội.

Một phần của tài liệu (LUẬN văn THẠC sĩ) nghiên cứu tổng hợp và khảo sát hoạt tính quang xúc tác của vật liệu sno2 biến tính (Trang 48 - 51)

Tải bản đầy đủ (PDF)

(96 trang)