III. NGUYÊN TẮC TỐI ĐA HÓA TRONG DOANH THU IV TỐI ĐA HÓA LỢI NHUẬN VỚI CÁC YẾU TỐ ĐẦU VÀO
II.4 ĐỒ THỊ ĐƯỜNG TỔNG SẢN LƯỢNG, ĐƯỜNG NĂNG SUẤT BIÊN VÀ ĐƯỜNG NĂNG SUẤT
TRUNG BÌNH TOP
Từ bảng 4.1, chúng ta có thể xây dựng hình dạng của các đường tổng sản lượng, đường năng suất biên và năng suất trung bình của lao động như hình 4.1.
Đường tổng sản lượng, đường năng suất biên và đường năng suất trung bình có mối quan hệ chặt chẽ với nhau. Vì năng suất biên là đạo hàm của tổng sản lượng nên về mặt hình học, nó là độ dốc của đường tổng sản lượng. Ở những mức lao động đầu tiên, tổng sản lượng tăng rất nhanh nên độ dốc của đường này tăng và như vậy năng suất biên tăng, đường năng suất biên dốc lên. Khi số lao động lớn hơn 3, tổng sản lượng tăng chậm dần, độ dốc của đường sản lượng giảm nên năng suất biên giảm. Đường năng suất biên dốc xuống. Sau đó, đường sản lượng đạt cực đại, điều này cũng có nghĩa là việc tăng thêm số lao động không làm tăng thêm sản lượng. Vì vậy, lúc này, năng suất biên sẽ bằng không. Đường năng suất biên cắt trục hoành. Sau đó, sản lượng giảm xuống, đường tổng sản lượng có độ dốc âm nên năng suất biên âm.
Đối với đường năng suất lao động trung bình: Trên đồ thị 4.1, ta thấy đường năng suất lao động trung bình cắt đường năng
suất lao động biên tại điểm có hoành độ là L2. Tại điểm này, năng suất lao động trung bình đạt cực đại.
Trên đường tổng sản lượng q, ta có thể chọn một điểm bất kỳ và kẻ một đường thẳng bất kỳ từ gốc tọa độ đến điểm này. Ta có thể chứng minh được một cách dễ dàng là năng suất lao động trung bình của số lao động ứng với điểm này sẽ chính là độ dốc của
đường thẳng này. Tại điểm ứng với số lượng lao động là L2, đường kẻ từ gốc tọa độ sẽ tiếp xúc với đường tổng sản lượng. Như thế, tại
đây năng suất lao động trung bình sẽ bằng với năng suất lao động biên. Với số lao động thấp hơn mức L2, độ dốc của đường thẳng kẻ từ gốc tọa độ sẽ nhỏ hơn độ dốc của đường q nên AP < MP. Khi đó, năng suất trung bình sẽ tăng lên nếu ta gia tăng số lượng lao động. Thí dụ, giả sử một lao động duy nhất của một nông trang có thể cắt được 1 công lúa một ngày, năng suất trung bình của người này cũng là 1 công/ngày/người. Khi thuê thêm một lao động nữa, cả hai người cắt được 3 công lúa một ngày nên năng suất biên của người thứ hai là hai, cao hơn năng suất trung bình của người thứ nhất nên sẽ làm năng suất trung bình của cả hai người tăng lên, đó là, 1,5 công/ngày/người.
Cũng giống như thế, đối với các điểm phía phải của điểm L2, thì AP > MP, và do vậy năng suất trung bình giảm dần khi ta sử dụng thêm lao động. Thí dụ, giả sử người chủ nông trại thuê thêm người thứ 3, người này có năng suất biên là 1 công, thấp hơn năng suất trung bình của hai người ban đầu. Do đó, năng suất trung bình của ba người giảm xuống còn 1,33.
Như vậy, tại điểm năng suất lao động trung bình bằng với năng suất lao động biên thì năng suất lao động trung bình là cực
đại. Chúng ta có thể chứng minh nhận xét này qua hàm sản xuất sau.
Thí dụ: Giả sử ta có hàm sản xuất có dạng như sau:
.
Để xây dựng hàm số năng suất lao động trung bình, hàm số năng suất lao động biên, ta cố định giá trị K bằng cách cho K =
Khi đó, hàm số sản xuất trở thành: (1) Năng suất lao động biên:
.
Kết quả này cho chúng ta thấy đường năng suất lao động biên có dạng hình chữ U lật úp như đã vẽ ở trước. (2) Năng suất lao động trung bình:
.
Đường năng suất lao động trung bình cũng có dạng hình chữ U lật úp như đã vẽ ở trước.
(3) Năng suất lao động trung bình đạt cực đại tại điểm năng suất lao động trung bình bằng với năng suất lao động biên:
Năng suất lao động trung bình đạt tối đa khi:
đơn vị lao động.
Tại điểm này, năng suất lao động trung bình là: APL = 900.000 đơn vị sản phẩm. Tại đó, năng suất lao động biên: MPL = 900.000 đơn vị sản phẩm. Vậy, tại điểm năng suất trung bình bằng với năng suất biên của lao động, năng suất trung bình đạt cực đại.