Phƣơng pháp chọn vùng nghiên cứu

Một phần của tài liệu đánh giá mức độ hài lõng của khách hàng khi mua sắm tại vinatex mart cần thơ (Trang 29)

Vùng nghiên cứu là khách hàng mua sắm trực tiếp tại Vinatex Mart Cần Thơ vì đây là nơi dễ dàng tiếp xúc với nhiều khách hàng khác nhau và phần nào mang tính đại diện cho tổng thể hơn nếu lấy mẫu ở một số nơi khác. Nên đây là địa điểm tốt cho việc thu thập trong phạm vi giới hạn thời gian thực hiện đề tài.

2.2.1 Phƣơng pháp thu thập số liệu

2.2.1.1 Số liệu sơ cấp

Phƣơng pháp chọn mẫu: khách hàng tại siêu thị phân bố ở nhiều nơi trên địa bàn Thành phố Cần Thơ và nhiều tỉnh khác. Do giới hạn về thời gian, chi phí,…và đề tài chỉ mang tính chất thăm dò thị trƣờng nên tác giả đã chọn phƣơng pháp chọn mẫu thuận tiện cho đề tài.

Số liệu sơ cấp thu nhập thông qua quá trình phỏng vấn từ bảng câu hỏi, cụ thể là phỏng vấn những khách hàng mua sắm trực tiếp tại Vinatex Mart Cần Thơ. Theo phƣơng pháp chọn mẫu thuận tiện thì điểm yếu của phƣơng pháp này là mẫu chọn mang tính đại diện tổng thể không cao. Nên để phần nào khắc phục nhƣợc điểm này tác giả đã phỏng vấn khách hàng tại Vinatex Mart Cần Thơ vào hầu hết tất cả các ngày trong tuần và thời gian phỏng vấn vào tất cả các buổi trong ngày. Bên cạnh đó, tác giả cố gắng tiếp xúc với nhiều đối tƣợng với độ tuổi khác nhau (thông qua quan sát cá nhân).

Cỡ mẫu đƣợc chọn: 102 mẫu. Vì thông thƣờng các nghiên cứu trong thực tế nhà nghiên cứu mặc nhiên sử dụng cỡ mẫu bằng hoặc lớn hơn 100 mà không cần tính toán cỡ mẫu vì cỡ mẫu này đã thuộc dạng lớn đảm bảo cho việc suy rộng tổng thể.[9.]

Ngoài ra, đề tài còn đƣợc tham khảo ý kiến của chuyên gia nội bộ trong siêu thị Vinatex Cần Thơ nhằm đƣa ra nhận xét chính xác hơn.

Bảng câu gồm 3 phần; Phần 1: Phần quản lý

Phần 2: Phần nội dung chính xoay quanh đến mức độ hài lòng của khách hàng mua sắm

Phần 3: Phần thông tin cá nhân

2.2.1.2 Số liệu thứ cấp

Số liệu thu thập từ hồ sơ lƣu trữ của công ty, từ một số nguồn thông tin khác nhƣ website, tạp chí,...

2.2.2 Phƣơng pháp phân tích và xử lý số liệu

Đề tài sử dụng phần mềm SPSS 13.0 để hỗ trợ trong việc phân tích số liệu. Các phƣơng pháp phân tích đƣợc sử dụng trong việc giải quyết các mục tiêu của đề tài nhƣ: phƣơng pháp so sánh, phân tích thống kê mô tả (descriptive

statistics), phƣơng pháp hệ số tin cậy Cronbach Alpha, phân tích nhân tố, mô hình hồi quy đa biến.

Mục tiêu 1: kết hợp phƣơng pháp phân tích thống kê mô tả ( descriptive statistics ), phân tích nhân tố để đánh giá thực trạng mức độ hài lòng của khách hàng khi mua sắm tại Vinatex Mart Cần Thơ.

2.2.2.1 Phương pháp hệ số tin cậy Cronbach’s Alpha

Phƣơng pháp kiểm định Cronbach’s Alpha dùng để loại bỏ các biến không phù hợp và hạn chế các biến rác trong quá trình nghiên cứu và đánh giá độ tin cậy của thang đo bằng hệ số thông qua hệ số Cronbach’s Alpha. Những biến có hệ số tƣơng quan biến tổng (Item- total correclation) nhỏ hơn 0,3 sẽ bị loại. Theo Nunnally, 1978; Peterson, 1994; Slater, 1995 đƣợc trích ở [12.], thang đo có hệ số Cronbach’s Alpha từ 0,6 trở lên là có thể sử dụng đƣợc trong trƣờng hợp khái niệm đang nghiên cứu mới. Thông thƣờng, thang đo có Cronbach’s Alpha từ 0,7 đến 0,8 là sử dụng đƣợc. Nhiều nhà nghiên cứu cho rằng thang đo có độ tin cậy từ 0,8 trở lên đến gần 1 là thang đo lƣờng tốt. Vì vậy, đối với đề tài nghiên cứu này, tác giả sử dụng hệ số Cronbach’s Alpha là 0,7.

2.2.2.2 Phương pháp phân tích nhân tố (Exploratory factor analysis)[12.]

a. Bản chất và tác dụng của phương pháp

Phân tích nhân tố là tên chung của một nhóm các thủ tục đƣợc sử dụng chủ yếu để thu thập và tóm tắt dữ liệu. Trong nghiên cứu, chúng ta có thể thu thập đƣợc một số lƣợng biến khá lớn và hầu hết các biến này có liên hệ với nhau và số lƣợng chúng phải đƣợc giảm bớt xuống đến một số lƣợng mà chùng ta có thể sử dụng đƣợc. Liên hệ giữa các nhóm biến có liên hệ qua lại với nhau đƣợc xem xét và trình bày dƣới dạng một số ít các nhân tố cơ bản. Phân tích nhân tố là một kỹ thuật phụ thuộc lẫn nhau sẽ đƣợc nghiên cứu.

Phân tích nhân tố thƣờng đƣợc sử dụng trong các trƣờng hợp sau: Nhận dạng các nhân tố giải thích mối quan hệ giữa các biến

Nhận dạng các biến mới thay thế cho các biến gốc ban đầu trong phân tích đa biến (hồi quy) tiếp theo.

Nhận dạng một bộ có số biến ít hơn cho việc sử dụng phân tích đa biến. phân tích nhân tố có vô số ứng dụng trong lĩnh vực nghiên cứu kinh tế và xã hội.

Cách thức tiến hành phân tích nhân tố đƣợc trình bày nhƣ sau:

Xác định vấn đề

Xác định vấn đề nghiên cứu gồm nhiều bƣớc. Đầu tiên ta phải nhận diện các mục tiêu của phân tích nhân tố cụ thể là gì. Các biến tham gia vào phân tích nhân tố phải đƣợc xác định dựa trên các nghiên cứu trong quá khứ, phân tích lý thuyết và đánh giá của các nhà nghiên cứu. các biến này phải đƣợc đo lƣờng

một cách thích hợp bằng thang đo định lƣợng và cỡ mẫu phải đủ lớn (ít nhất phải bằng 4 hoặc 5 lần số biến trong phân tích nhân tố).

Xây dựng ma trận tƣơng quan

Để có thể áp dụng đƣợc phân tích nhân tố thì các biến phải có liên hệ với nhau. Nếu hệ số tƣơng quan giữa các biến nhỏ, phân tích nhân tố có thể không thích hợp. Các biến cần có sự tƣơng quan chặt chẽ với nhau nhƣ vậy sẽ tƣơng quan chặt với cùng một hay nhiều nhân tố.

Ta sử dụng Bartlett’s Test of Sphericity để kiểm định giả thuyết (H0) là các biến không tƣơng quan với nhau trong tổng thể. Dựa vào giá trị Sig. nhỏ hơn mức ý nghĩa α (α = 0,05) để ta có thể bác bỏ H0 ( Các biến không tƣơng quan với nhau). Từ đó đƣa ra phân tích nhân tố là phƣơng pháp phù hợp để phân tích ma trận tƣơng quan.

Số lƣợng nhân tố: có hai phƣơng pháp xác định số lƣợng nhân tố. Phƣơng pháp xác định từ trƣớc (Priori determination): dựa vào kinh nghiệm, phân tích lý thuyết hay kết quả của các nghiên cứu từ trƣớc mà xác định số lƣợng nhân tố.

Phƣơng pháp dựa vào eigenvalue (determination based on eigenvalue): chỉ có những nhân tố nào có eigenvalue lớn hơn 1 mới đƣợc giữ lại đƣợc trong mô hình phân tích. Nhƣợc điểm của phƣơng pháp này là khi quy mô mẫu lớn (trên 200), có nhiều khả năng sẽ có nhiều nhân tố thoả mãn mức ý nghiã thống kê, mặc dù trong thực tế có nhiều nhân tố chỉ giải thích đƣợc chỉ có một phần nhỏ toàn bộ biến thiên.

Xoay các nhân tố

Ma trận nhân tố chứa các hệ số biểu diễn các biến chuẩn hoá bằng các nhân tố. những hệ số (factor loading) biểu diễn tƣơng quan giữa các nhân tố và các biến. Hệ số này lớn cho biết nhân tố và biến có liên hệ chặt chẽ với nhau. Các hệ số này đƣợc dùng để giải thích các nhân tố. Có nhiều phƣơng pháp xoay khác nhau để nhận diện những nhân tố khác nhau:

Orthogonal rotation: xoay các nhân tố trong đó vẫn giữ nguyên góc ban đầu giữa các nhân tố.

Varimax procedure: xoay nguyên góc các nhân tố để tối thiểu hoá số lƣợng biến có hệ số lớn tại cùng một nhân tố, vì vậy sẽ tăng cƣờng khả năng giải thích các nhân tố. Đây là phƣơng pháp thƣờng đƣợc sử dụng nhất.

Quartimax: xoay các nhân tố để tối thiểu hoá số nhân tố có hệ số lớn tại cùng một biến.

Equamax: xoay các nhân tố để đơn giản hoá việc giải thích cả biến lẫn nhân tố.

Oblique (direct oblimin): xoay nhân tố mà không giữ nguyên góc ban đầu giữa các nhân tố (là có tƣơng quan giữa các nhân tố với nhau). Phƣơng pháp này nên đƣợc sử dụng, chỉ khi nào các nhân tố trong tổng thể có khả năng tƣơng quan mạnh với nhau.

Đặt tên và giải thích các nhân tố

Việc giải thích các nhân tố đƣợc thực hiện trên cơ sơ nhận ra các biến có hệ số (factor loading) lớn ở cùng một nhân tố. Nhƣ vậy nhân tố này có thể đƣợc giải thích bằng các biến có hệ số lớn đối với bản thân nó.

b. Mô hình phân tích nhân tố

Về mặt tính toán, phân tích nhân tố hơi giống với phân tích hồi quy bội ở chỗ mỗi biến đƣợc biểu diễn nhƣ một kết hợp Tuyến tính của các nhân tố cơ bản. Lƣợng biến thiên của một biến đƣợc giải thích bởi những nhân tố chung trong phân tích đƣợc gọi là communality. Biến thiên chung của các biến đƣợc mô tả bằng một số ít các nhân tố chung (common factor) cộng với một nhân tố đặc trƣng (unique factor) cho mỗi biến. Những nhân tố này không bộc lộ rõ ràng. Nếu các biến đƣợc chuẩn hoá thì mô hình nhân tố đƣợc thể hiện bằng phƣơng trình:

Xi= Ai1F1 + Ai2F2 + Ai3F3 + ... + AimFm + ViUi Trong đó:

Xi : biến thứ i chuẩn hoá

Aij : hệ số hồi quy bội chuẩn hoá của nhân tố j đối với biến i F : các nhân tố chung

Vi : hệ số hồi quy chuẩn hoá của nhân tố đặc trƣng i đối với biến i Ui : nhân tố đặc trƣng của biến i

m : số nhân tố chung

Các nhân tố đặc trƣng có tƣơng quan với nhau và với các nhân tố chung. Bản thân các nhân tố chung cũng có thể đƣợc diễn tả nhƣ những kết hợp Tuyến tính của các biến quan sát:

Fi = Wi1X1 + Wi2X2 + Wi3X3 + ... + WikXk Trong đó:

Fi : ƣớc lƣợng trị số của nhân tố thứ i

Wi : quyền số hay trọng số nhân tố ( weight or factor score coefficient ) k : số biến

Chúng ta có thể chọn các quyền số hay trọng số nhân tố sao cho nhân tố thứ nhất giải thích đƣợc phần biến thiên nhiều nhất trong toàn bộ biến thiên. Sau đó ta chọn một tập hợp các quyền số thứ hai sao cho nhân tố thứ hai giải thích đƣợc phần lớn biến thiên còn lại, và không có tƣơng quan với nhân tố thứ nhất.

Nguyên tắc này đƣợc áp dụng nhƣ vậy để tiếp tục chọn các quyền số cho các nhân tố tiếp theo. Do vậy các nhân tố đƣợc ƣớc lƣợng sao cho các quyền số của chúng không giống nhƣ các giá trị của các biến gốc, là không có tƣơng quan với nhau. Hơn nữa, nhân tố thứ nhất giải thích đƣợc nhiều nhất biến thiên của dữ liệu, nhân tố thứ hai giải thích đƣợc nhiều thứ nhì,...

2.2.2.3 Thống kê mô tả ( Descriptive statistics )[11.]

Thống kê là một hệ thống bao gồm các phƣơng pháp bao gồm thu thập, tổng hợp, trình bày số liệu, tính toán các đặc trƣng của đối tƣợng nghiên cứu nhằm phục vụ cho quá trình phân tích, dự đoán và ra quyết định.

Thống kê mô tả ( descriptive statistics ): là các phƣơng pháp có liên quan đến việc thu thập số liệu, tóm tắt, trình bày, tính toán và mô tả các đặc trƣng khác nhau để phản ánh một cách tổng quát đối tƣợng nghiên cứu.

Các đại lƣợng thống kê mô tả thƣờng đƣợc dùng là: trung bình cộng ( mean) , tổng cộng ( cộng tất cả các giá trị trong tập dữ liệu quan sát ) ( sum ), độ lệch chuẩn ( Std. Deviation ), giá trị nhỏ nhất ( minimum ), giá trị lớn nhất ( maximum ), sai số chuẩn khi ƣớc lƣợng trị trung bình ( SE mean ). Các đại lƣợng thống kê mô tả này chỉ đƣợc tính đối với các biến định lƣợng. nếu tính các đại lƣợng này đối với các biến định tính thì kết quả sẽ không có ý nghĩa.

Mục tiêu 2: sử dụng phƣơng pháp phân tích nhân tố, phân tích hồi quy tuyến tính bội để xác định các yếu tố ảnh hƣởng đến mức độ hài lòng của khách hàng.

2.2.2.4 Phương pháp hồi quy Tuyến tính bội [12.]

a. Bản chất và tác dụng của phương pháp

Phƣơng pháp hồi quy là phƣơng pháp thống kê nghiên cứu mối liên hệ của một biến (biến phụ thuộc hay biến đƣợc giải thích) với một hay nhiều biến khác (biến độc lập hay biến giải thích).

Mục đích của phân tích hồi quy là ƣớc lƣợng giá trị của biến phụ thuộc trên cơ sở giá trị của các biến độc lập đã cho. Còn phân tích tƣơng quan là đo cƣờng độ kết hợp giữa các biến, nó cho phép đánh giá mức độ chặt chẽ của sự phù hợp giữa các biến.

b. Các bước vận dụng phương pháp hồi quy bội

Vận dụng phƣơng pháp hồi quy bội vào nghiên cứu sự hài lòng của khách hàng cần đi qua năm bƣớc:

Bƣớc 1: Lựa chọn các tiêu thức (các biến) đƣa vào phân tích;

Bƣớc 2: Lựa chọn mô hình phù hợp nhất để mô hình hoá mối quan hệ giữa các biến độc lập và biến phụ thuộc. Để chọn mô hình phù hợp nhất sử dụng các phép kiểm định để kiểm tra: i) sự tồn tại thực tế của mối quan hệ giữa các biến độc lập và biến phụ thuộc thông qua kiểm định F và ii) sự phù hợp của mô hình thông qua chỉ tiêu SSE (sai số mẫu). Mô hình tốt nhất là mô hình có hệ số quyết

định điều chỉnh lớn nhất và sai số mẫu nhỏ nhất. đồng thời kiểm tra mức độ ảnh hƣởng thực tế của từng biến độc lập đến biến phụ thuộc thông qua các hệ số hồi quy B và so sánh mức độ ảnh hƣởng của từng biến nguyên nhân đến kết quả thông qua việc so sánh hệ số B chuẩn hoá. Lý do phải thực hiện rất nhiều phép kiểm định vì kết quả tính toán đƣợc tính ra dựa trên một mẫu. Kết quả kiểm định sẽ cho phép suy rộng từ mẫu cho kết luận về tổng thể chung.

Bƣớc 3: Loại bỏ khỏi mô hình tốt nhất là các biến có hệ số B không có sig. nhỏ hơn 0,2, với mức Sig. nhỏ hơn 0,2 thì biến có thể chấp nhận đƣợc.

Bƣớc 4: Phân tích phần dƣ và phân tích đa cộng tuyến nhằm đƣa ra các điều chỉnh cần thiết cho mô hình.

Bƣớc 5: Kết luận độ ảnh hƣởng và dự đoán các mức độ của biến phụ thuộc trong tƣơng lai.

Mô hình hồi quy bội có dạng nhƣ sau: Yi =0+ 1X1i +2X2i + ... + pXpi + ei

Xpi biểu hiện giá trị của biến độc lập thứ p tại quan trong sát thứ i.

Hệ số k đƣợc gọi là hệ số hồi quy riêng phần (partial regression coeffients)

Thành phần ei là một biến độc lập ngẫu nhiên có phân phối chuẩn với trung bình là 0 và phƣơng sai không đổi 2.

Mục tiêu 4: sử dụng kết quả phân tích để đề xuất giải pháp.

mã hoá, nhập liệu thống kê

mô tả

phân tích tần số phân tích nhân tố

hồi quy tuyến tính bội

Hình 2.2 Sơ đồ nghiên cứu của đề tài Đề cƣơng

sơ bộ Cơ sở lý thuyết

Xác định các tiêu chí cấu thành nên mức độ hài lòng khách hàng Lập bảng câu hỏi Chỉnh sửa bảng câu hỏi

Thu số liệu sơ cấp Bộ tiêu chí cấu thành nên mức độ hài lòng khách hàng Số liệu thứ cấp Bộ số liệu sơ cấp Thông tin đáp viên và hành vi mua sắm của khách hàng Đề xuất giải pháp Xác định các nhân tố cấu thành nên mức độ hài lòng khách hàng khi mua sắm tại Vinatex Mart Cần Thơ Xác định mức độ ảnh hƣởng của các yếu tố đến sự hài lòng của khách hàng khi mua sắm sắm tại Vinatex Mart Cần Thơ

Đánh giá thực trạng mức độ hài lòng của khách hàng khi mua sắm tại Vinatex Mart Cần Thơ Giới thiệu tổng quan hệ thống Vinatex Mart và Vinatex Mart Cần Thơ

2.4 TÓM TẮT CHƢƠNG 2

Chƣơng hai đã hệ thống lại các lý thuyết có liên quan đến đề tài nghiên cứu bao gồm các vấn đề liên quan đến sự hài lòng khách hàng, bên cạnh đó phƣơng pháp chọn vùng nghiên cứu, thu thập số liệu và phƣơng pháp phân tích số liệu cũng đƣợc đề cập trong chƣơng này. Đề tài sử dụng phần mềm SPSS 13.0 để phân tích số liệu. các phƣơng pháp phân tích cho các mục tiêu khác nhau bao gồm phƣơng pháp tính trị trung bình để đánh giá thực trạng mức độ hài lòng khách hàng khi mua sắm tại Vinatex Mart Cần Thơ; phƣơng pháp Cronbach’s Alpha, phân tích nhân tố đƣợc sử dụng nhằm xác định các nhân tố cấu thành nên mức độ hài lòng của

Một phần của tài liệu đánh giá mức độ hài lõng của khách hàng khi mua sắm tại vinatex mart cần thơ (Trang 29)

Tải bản đầy đủ (PDF)

(93 trang)