Kết luận chương III

Một phần của tài liệu sự ngẫu nhiên trong dạy học thống kê lớp 10 (Trang 106 - 126)

Thực nghiệm đã giới thiệu cho HS một tình huống thực tế chịu tác động của nhiều yếu tố không tính hết được trong đó có sự ngẫu nhiên hiện diện một cách rất rõ ràng như việc sinh con trai hay con gái, sự gặp gỡ gia đình hai con, bảng chữ số ngẫu nhiên mặc dù đây chỉ là giả ngẫu nhiên…; hướng dẫn cách tạo ra mẫu số liệu nhờ vào các chữ số này; cho HS cơ hội làm việc với mẫu; thấy được sự dao động, chênh lệch của các giá trị tần suất và nguyên nhân của nó; cách mà người ta làm giảm sự thay đổi của kết quả thu được; làm quen với các từ ngữ liên quan đến tính không chắc chắn, tính ngẫu nhiên như “xấp xỉ”, “dao động”, “thay đổi”, “tương đối”, “chưa chính xác”, “không biết trước”, “dự đoán”,…

Việc yêu cầu mỗi cá nhân vẽ biểu đồ tần suất trên phiếu số 2 và mỗi nhóm vẽ trên tấm bìa với mục đích tạo cơ hội cho HS quan sát biểu đồ để dự đoán con số xác định tần suất GG, TT và GT. Thế nhưng, HS dường như không quan tâm đến chiến lược dự đoán SDĐ dựa vào biểu đồ, họ chỉ quan tâm đến các giá trị tần suất tính được từ mẫu số liệu.

Liên quan đến việc sinh con trai gái, HS đã đưa ra rất nhiều yếu tố có thể tác động lên mẫu nhưng quy luật sinh học thì được đề cập đến rất mờ nhạt. Điều đó chứng tỏ rằng các nhân tố xã hội đã có ảnh hưởng lớn đến sự hiểu biết của họ.

Hơn nữa, dù biết rằng việc thu thập số liệu chịu tác động của nhiều yếu tố không kể hết được, HS vẫn lấy giá trị tần suất tính được ứng với mẫu của cá nhân để kết luận về khả năng gặp gỡ mỗi kiểu gia đình hai con trong thực tế. Do đó chúng tôi có thể khẳng định rằng HS không ý thức về nguy cơ thiếu chính xác của những kết luận được rút ra từ việc nghiên cứu mẫu.

KẾT LUẬN

Một nghiên cứu nhỏ trong chương I chưa phải là đặc trưng khoa học luận của tri thức ngẫu nhiên nhưng cũng đủ để giúp chúng tôi giải đáp phần nào những câu hỏi đã đặt ra ở phần mở đầu liên quan đến tri thức này cũng như việc dạy học nó trong TK. Cụ thể, chúng tôi đã tìm hiểu sơ lược về sự ngẫu nhiên, sự tác động của nó trong các ngành khoa học để chuẩn bị cho việc xây dựng một tình huống ở chương III; đã xác định được mối liên hệ giữa ngẫu nhiên và TK, các bài toán liên quan đến ngẫu nhiên trong TK cũng như vị trí và vai trò của nó trong dạy học TK; giới thiệu một cách giả lập bài toán gia đình hai con dựa vào các chữ số ngẫu nhiên. Việc phân tích sách giáo khoa ở chương II cho phép chúng tôi khẳng định vấn đề chọn mẫu và hệ quả có thể có là gì đã không được đề cập đến. Từ đó, chúng tôi rút ra giả thuyết liên quan đến sự không ý thức của HS về nguy cơ đưa ra kết luận không chính xác từ việc nghiên cứu mẫu.

Nội dung và tiến trình thực nghiệm nghiên cứu trong chương III đã kiểm chứng được giả thuyết nêu ra, đồng thời có thể đưa vào khái niệm ngẫu nhiên, làm thay đổi và hình thành nhận thức mới cho HS, đó là việc ý thức về kết luận từ mẫu. Điều này góp phần hoàn thiện mục tiêu mà người ta thực sự mong đợi trong việc dạy học TK, dần dần hướng đến hình thành tư duy thống kê cho HS. Ngoài ra, đối với HS, thực nghiệm còn tạo cơ hội cho HS tiếp xúc, nghiên cứu mẫu, thấy được tính biến động của các kết quả, dự đoán con số xác định và rút ra kết luận, tức là bước đầu làm quen với công việc của một nhà thống kê sau này.

Trên đây là những kết quả chính mà luận văn đã đạt được. Việc nghiên cứu sâu hơn về tri thức ngẫu nhiên và tình huống thực nghiệm được xây dựng phong phú hơn, gắn với các tham số định tâm hay độ phân tán có thể mở ra những đề tài mới trong tương lai.

TÀI LIỆU THAM KHẢO

Tiếng Việt

1. Nguyễn Quang Báu (2001), Lý thuyết xác suất và thống kê toán học, NXB ĐHQG Hà Nội.

2. Bessot A., Comiti C., Lê Thị Hoài Châu, Lê Văn Tiến (2009), Những yếu tố cơ bản của didactic toán (Éléments fondamentaux de didactique des mathématiques) – Sách song ngữ Việt Pháp, NXB Đại Học Quốc Gia Thành phố Hồ Chí Minh.

3. Đậu Thế Cấp (2009), Xác suất thống kê – Lý thuyết và các bài tập, NXB Giáo Dục Việt Nam.

4. Lê Thị Hoài Châu, Đề tài khoa học công nghệ cấp bộ, mã số 2007-19-17. 5. Tăng Minh Dũng (2009), Dạy học thống kê và vấn đề đào tạo giáo viên,

luận văn thạc sĩ, Trường Đại Học Sư Phạm Thành phố Hồ Chí Minh. 6. Nguyễn Huy Đoan (Chủ Biên) (2006), Sách bài tập Đại số 10 Nâng cao,

NXB Giáo Dục.

7. Nguyễn Bá Đô (2001), Câu chuyện toán học, tập 1, Tất nhiên trong ngẫu nhiên, NXB Giáo Dục.

8. Lê Sĩ Đồng (2010), Xác suất thống kê và ứng dụng, NXB Giáo Dục Việt Nam.

9. Quách Huỳnh Hạnh (2009), Nghiên cứu thực hành giảng dạy thống kê mô tả ở trung học phổ thông, luận văn thạc sĩ, Trường Đại Học Sư Phạm Thành phố Hồ Chí Minh.

10.Trần Văn Hạo (Tổng Chủ Biên) (2006), Sách giáo khoa Đại số 10, NXB Giáo Dục.

11.Trần Văn Hạo (Tổng Chủ Biên) (2006), Sách giáo viên Đại số 10, NXB Giáo Dục.

12.Hoàng Kiếm (2007), Giải một bài toán trên máy tính như thế nào, NXB Giáo Dục.

13.Phạm Văn Kiều (2007), Giáo trình xác suất và thống kê – Dùng cho sinh viên các ngành sinh học, nông-lâm-ngư nghiệp, kinh tế và quản lý kinh tế, tâm lý-giáo dục học, NXB Giáo Dục.

14.Nguyễn Chí Long (2008), Xác suất thống kê và quá trình ngẫu nhiên, NXB Đại Học Quốc Gia Thành phố Hồ Chí Minh.

15.Đoàn Quỳnh (Tổng Chủ Biên) (2006), Sách giáo khoa Đại số 10 Nâng cao, NXB Giáo Dục.

16.Đoàn Quỳnh (Tổng Chủ Biên) (2006), Sách giáo viên Đại số 10 Nâng cao, NXB Giáo Dục.

17.Đặng Hùng Thắng (1999), Thống kê và ứng dụng, NXB Giáo Dục. 18.Vũ Tuấn (Chủ Biên) (2006), Sách bài tập Đại số 10, NXB Giáo Dục.

Tiếng Anh

19.Albert B. Bennett, Jr. Laurie J. Burton, L. Ted Nelson, Mathematics for elementary teachers – An activity approach, seventh edition, Mc Graw Hill.

20.Allan G. Bluman, Elementary statistics – A step by step approach, third edition, Mc Graw Hill.

Tiếng Pháp

21.André Antibi, Raymond Barra, Jean Morin (2000), Trans math 2de, Nathan.

22.Bair Jacques, Gentiane Hasbroeck (2002), Sur l’enseignement de la statistique en communauté franÇaise de Belgique, Repères IREM No 48, p. 41-58.

23.Claude Chrétien, Dominique Gaud (1998), Qu’est-ce que le hasard? Comment le mathématiser?, Repères IREM, No 32, p.81-110.

24.Damien Isabelle, Castebert Christelle, (2005-2006), Entre hasard et déterminisme, Academy de Grenoble.

25.J.B. Clément (2001), Enseigner la statistique au lycée: des enjeux aux méthodes, Brochure no 112 de la Commission Inter IREM.

26.Jean-Claude Duperret (2002), Des statistiques à la pensée statistique, IREM de Reims.

27.Philippe Dutarte (2002), La simulation en statistique, Repères IREM, No 47, p.93-110.

28.Vũ Như Thư Hương (2009), Une étude didactique sur l’introduction dans l’enseignement mathématique vietnamien de notions statistiques dans leurs liens avec les probabilités, thèse de doctorat, l’Université Joseph Fourier et l’Université de pédagogie de Ho Chi Minh ville.

Trang web

29.http://fr.wikipedia.org/wiki/Hasard

30.http://www.statistix.fr/ 31.http://www.statcan.gc.ca/

PHỤ LỤC

Buổi thứ 1

- Phiếu làm bài số 1, 2 và 3.

- Trích đoạn phần trả lời câu hỏi trên phiếu số 1và 3 của HS. - Biên bản lớp học của buổi thứ 1.

Buổi thứ 2

- Phiếu làm bài số 4 và 5 - Tấm bìa vẽ biểu đồ tần suất.

- Trích đoạn phần trả lời câu hỏi trên phiếu số 5. - Biên bản lớp học của buổi thứ 2.

Họ và tên: ………. Lớp:…………

PHIẾU LÀM BÀI SỐ 1

Các em có thể trả lời câu hỏi có trong bài toán mà Cô đang giới thiệu hay không? Theo em, làm thế nào để trả lời câu hỏi đó?

Trả lời:

... .

Họ và tên:………

Lớp:……….

PHIẾU LÀM BÀI SỐ 2

Ghi lại 200 chữ số ngẫu nhiên đầu tiên theo cách nhóm thành từng đôi một vào bảng 100 ô sau, mỗi cặp số trong một ô sẽ tương ứng với hai con của một gia đình.

Dùng quy tắc sau để xác định tần số gặp gia đình kiểu GG, TT và GT và ghi vào bảng 1.

Mỗi số 0, 1, 2, 3, 4 ứng với một con gái; Mỗi số 5, 6, 7, 8, 9 ứng với một con trai.

Tổng cộng GG

TT GT Bảng 1

1) Tính tần suất gặp gia đình kiểu GG, TT, GT và điền vào bảng 2. Thực hiện phép tính tần suất: ... . Gia đình Tần suất (%) GG TT GT Bảng 2 2) Vẽ biểu đồ tần suất đoạn thẳng.

... .

Họ và tên:………

Lớp:……….

PHIẾU LÀM BÀI SỐ 3

3) Theo các em, nếu người ta gặp tùy ý một gia đình hai con thì khả năng gặp gia đình kiểu GG, kiểu TT, kiểu GT lần lượt là bao nhiêu? Các em dựa vào đâu để trả lời câu hỏi này?

Trả lời:

Nhóm:………. Lớp:…………..

PHIẾU LÀM BÀI SỐ 4

Tổng hợp kết quả về tần số của các thành viên trong nhóm để có mẫu số liệu có kích thước lớn, tính tần suất gặp gia đình kiểu GG, TT, GT, điền kết quả vào bảng 3. Thực hiện phép tính tần suất: ... Gia đình Tần số Tần suất (%) GG TT GT Bảng 3 Họ và tên:……….. Lớp:……… PHIẾU LÀM BÀI SỐ 5

Hãy trả lời lại câu hỏi sau:

Theo các em, nếu người ta gặp tùy ý một gia đình hai con thì khả năng gặp gia đình kiểu GG, kiểu TT, kiểu GT lần lượt là bao nhiêu? Các em dựa vào đâu để trả lời câu hỏi này?

TRÍCH ĐOẠN PHẦN TRẢ LỜI CÂU HỎI TRÊN PHIẾU LÀM BÀI SỐ 1 CỦA CÁC HỌC SINH

Học sinh Một số câu trả lời đặc trưng của HS và các yếu tố tác động lên việc sinh con trai và con gái

Thịnh A11 Sinh A11 Nhung A11 Huyền A11 Thành A17 Hòa A17 Phương A17

Minh A17 Hoàng A17 Hòa A8 Huyền A8 Minh A8 Đạt A8 Đông A8

TRÍCH ĐOẠN PHẦN TRẢ LỜI CÂU HỎI TRÊN PHIẾU LÀM BÀI SỐ 3 CỦA CÁC HỌC SINH

Học sinh Câu hỏi 3 (kiểm chứng giả thuyết) Thư A11

Thịnh A11

Đông A8

Lâm A8

Tiên A17 An A17 Hương A17 Phương A17 Nhật A17 Thành A17

TRÍCH ĐOẠN PHẦN TRẢ LỜI CÂU HỎI TRÊN PHIẾU LÀM BÀI SỐ 5 CỦA CÁC HỌC SINH

Học sinh/Nhóm

Câu hỏi 3 (tìm hiểu sự thay đổi trong nhận thức) Nhóm 2 (A8) Nhóm 3 (A8) Nhóm 5 (A8) Nhóm 1 (A11) Nhóm 4 (A11) Nhóm 3 (A17) Thành/nhóm5 (A17) Nhóm 1 (A17)

BIÊN BẢN LỚP HỌC

Phần biên bản lớp học này được phân tích chủ yếu dựa trên diễn tiến thực nghiệm của lớp A17. Hai lớp A8 và A11 sẽ được nghiên cứu bổ sung khi cần thiết.

Buổi thứ 1 Pha 1: Làm việc tập thể

1. GV: Chúng ta bắt đầu làm việc nha các em. Theo các em, việc sinh con trai hay con gái có biết trước được hay không?

2. Cả lớp: Dạ không!

3. GV: Giới tính có thể xảy ra của hai đứa con trong một gia đình là gì? 4. Duyên: Dạ, có thể có 1 gái, 1 trai; 2 trai; 2 gái.

5. GV: Cô ký hiệu kiểu gia đình có 1 gái và 1 trai là GT; 2 con trai là TT và 2 con gái là GG.

6. GV: Cô có bài toán như sau: Giả sử rằng ở mỗi lần sinh, khả năng sinh con trai và con gái là ngang nhau. Vậy thì, trong một gia đình hai con, khả năng có hai con gái GG, hai con trai TT, một con là gái và một con là trai GT có phải là ngang bằng nhau không?

7. Cả lớp: Lặng thinh một chút rồi xầm xì với bạn bên cạnh, mỗi học sinh có vẻ như đang suy nghĩ về câu hỏi.

Để tìm hiểu suy nghĩ của từng cá nhân, chúng tôi không cho HS trao đổi mà đề nghị mỗi thành viên ghi ngay câu trả lời của mình vào phiếu làm bài số 1 trước khi trình bày với tập thể lớp.

8. GV: Mỗi em hãy trả lời câu hỏi trong phiếu làm bài số 1: Em có thể trả lời câu hỏi của bài toán hay không? Làm thế nào để trả lời?

9. Quân: Có thể cùng ý tưởng, Cô ơi.

10.GV: Các em cố gắng trả lời. Đừng nhìn bài của bạn nha.

Cả lớp im lặng làm bài.

11.HS: Trả lời theo suy nghĩ của mình hả Cô? 12.GV: Đúng rồi!

13.GV: Các em làm xong chưa? Cô thu lại phiếu được chưa các em? 14.Cả lớp: Dạ được!

GV thu phiếu làm bài số 1.

16.Nhật: Con ghi mà không biết Cô hiểu gì không? Cô đọc câu trả lời của Nhật xem có hiểu gì không Cô?

17.GV: Chỉ mỉm cười.

18.Uyên: Ê, ngang nhau không mày? Tao thấy trong bài toán có ghi “giả sử tỉ lệ sinh con trai và con gái là ngang nhau”. Vậy thì ngang nhau đúng không mày?

19.Băng: Nếu mà trong lý thuyết giả sử thì nó có thể ngang nhau nhưng trong thực tế thì không ngang nhau.

20.GV: Các em hãy nêu cho Cô một vài câu trả lời mà các em đã ghi trong phiếu làm bài số 1.

21.An: Không bằng. Tùy theo sức khỏe và kiểu gen của ba mẹ. Theo em, gen mạnh thì sinh con trai hết.

22.Hương: Em có thể trả lời. Không bằng nhau Cô ạ. Em suy nghĩ và dự đoán vậy. Phải điều tra một số gia đình hai con để biết tỉ lệ GG, TT và GT.

23.GV: Các em khác có cùng suy nghĩ với bạn Hương không? 24.Cả lớp: Dạ có!

Một số câu trả lời của A8 và A11 trong pha này.

25.HS: Bằng nhau và cơ hội của GG, TT, GT là 33,33%.

26.HS: Không bằng nhau vì em nhìn thấy thực tế các gia đình hai con ở khu phố em đang sống là như vậy ạ. Phải quan sát thực tế, thống kê, điều tra về tần số gặp gia đình kiểu GG, TT, GT.

27.HS: Phải lấy hết số liệu ở những cơ quan quản lý, lập bảng tính tần suất mới có thể trả lời, thưa Cô.

28.HS: Ngang nhau thì tỉ lệ trai gái mới là 1: 1 29.HS: Phải khảo sát và lập bảng thống kê. 30.HS: Khảo sát không mang tính chủ quan. 31.HS: GG, TT là 25%, GT là 50% .

Pha 2: Làm việc tập thể

32.GV: Trong thực tế, khi đứng trước câu hỏi này, theo em hầu như người ta sẽ làm gì để có thể trả lời?

33.Hòa: Thu thập số liệu bằng cách đi hỏi bất cứ gia đình hai con nào để số liệu mang tính khách quan hơn.

34.GV: Vì chúng ta không có điều kiện đi thực tế nên Cô sẽ hướng dẫn các em cách mô tả tình huống của bài toán này dựa vào các chữ số ngẫu

nhiên nha. Trước tiên, các em lấy chữ số ngẫu nhiên bằng cách mở bảng tính Excel, để dấu nháy vào một ô, gõ “=rand()” và nhấn phím Enter. Sau đó, để có được nhiều chữ số ngẫu nhiên đủ mô tả tình huống này, các em để chuột vào chỗ này sao cho xuất hiện dấu cộng, kéo chuột và thả chuột. Nếu muốn nhìn cho rõ số hơn thì các em có thể tăng cỡ chữ.

Tiếp theo, Cô giới thiệu cho các em một quy tắc để mô tả: Một cặp số tương ứng với hai con của một gia đình, từ 0 đến 4 ứng với con gái, từ 5 đến 9 ứng với con trai.

Chú ý rằng chúng ta chỉ quan tâm đến những chữ số sau dấu phẩy và dặn HS viết liên tục, ví dụ 55631668241…, nhóm đôi một số, ví dụ 55 tiếp theo là 63,…

GV vừa nói vừa thực hành trên máy tính và ghi trên bảng những gì cần thiết cho HS quan sát để họ có thể hiểu rõ các bước làm. Ở đây, GV cũng đã hướng dẫn cho HS cách thức không làm thay đổi các chữ số ngẫu

Một phần của tài liệu sự ngẫu nhiên trong dạy học thống kê lớp 10 (Trang 106 - 126)

Tải bản đầy đủ (PDF)

(126 trang)