Hướng phát triển

Một phần của tài liệu Nghiên cứu chế tạo vật liệu tổ hợp ống nano tio2 ag ứng dụng trong quang xúc tác (Trang 71 - 83)

Qua các kết quả đạt được và hạn chế, chúng tôi đề xuất một số hướng phát triển cho đề tài:

- Khảo sát tốc độ phân giải ion Ag+ của TNTs/Ag trong các môi trường dung môi

khác nhau.

- Khảo sát khả năng quang xúc tác đối với ánh sáng khả kiến nhằm mở rộng

phạm vi ứng dụng, đồng thời làm rõ khả năng phân hủy chất hữu cơ của TNTs/Ag so với TNTs.

- Khảo sát khả năng quang xúc tác của các vật liệu TNTs, TNTs/Ag đối với nước

- Nghiên cứu chế tạo các vật liệu tổ hợp thủy tinh/TNTs/Ag, sứ/TNTs/Ag, nhựa/TNTs/Ag, … nhằm phát triển các ứng dụng khác.

Tài liệu tham khảo Tiếng Việt

1. Huỳnh Nguyễn Thanh Luận, Huỳnh Chí Cường, Lâm Quang Vinh, Hà Thúc Chí

Nhân, Lê Văn Hiếu (2014), "Tổng hợp vật liệu nano Ag và TiO2 nhằm ứng dụng

diệt khuẩn", Hội nghị Khoa Học trường Đại học Khoa Học Tự Nhiên.

2. Ngô Võ Kế Thành, Nguyễn Thị Phương Phong, Đặng Mậu Chiến (2009), "Nghiên cứu hoạt tính kháng khuẩn của tấm vải cotton ngâm trong dung dịch keo nano bạc", Tạp chí Phát Triển Khoa Học Công Nghệ. 3, pp. 69-76.

3. Thái Thủy Tiên, Quyền, Lê Văn Quyền, Âu Vạn Tuyền, Hà Hải Nhi, Nguyễn Hữu

Khánh Hưng, Huỳnh Thị Kiều Xuân (2013), "Nghiên cứu tổng hợp TiO2 ống nano

bằng phương pháp anod hóa ứng dụng trong quang xúc tác", Tạp chí Phát triển Khoa Học và Công Nghệ. 16, pp. 5-12.

4. Phạm Văn Việt, Trần Ngọc Quang, Cao Minh Thì, Vũ Thị Hạnh Thu, Lê Văn Hiếu

(2013), "Hoạt tính quang xúc tác của vật liệu nano TiO2 cấu trúc một chiều (1D)",

Đại học Sài Gòn. 13, pp. 83-91.

5. Ahmadbarudin, N. H., Sreekantan, S., Ong, M. T.Lai, C. W. (2014), "Synthesis, characterization and comparative study of nano-Ag–TiO2 against Gram-positive

and Gram-negative bacteria under fluorescent light", Food Control. 46, pp. 480-

487.

6. Ahmed, K. B. A., Kalla, D., Uppuluri, K. B.Anbazhagan, V. (2014), "Green synthesis of silver and gold nanoparticles employing levan, a biopolymer from

Acetobacter xylinum NCIM 2526, as a reducing agent and capping agent",

Carbohydrate Polymers. 112(0), pp. 539-545.

7. Almquist, C. B.Biswas, P. (2002), "Role of synthesis method and particle size of

nanostructured TiO2 on its photoactivity", Journal of Catalysis. 212, pp. 145-156.

8. Amin, S. A., Pazouki, M.Hosseinnia, A. (2009), "Synthesis of TiO2–Ag nanocomposite with sol–gel method and investigation of its antibacterial activity

against E. coli", Powder Technology. 196(3), pp. 241-245.

9. Arora, S., Tyagi, N., Bhardwaj, A., Rusu, L., Palanki, R., Vig, K., Singh, S. R., Singh, A. P., Palanki, S., Miller, M. E., Carter, J. E.Singh, S. (2015), "Silver nanoparticles protect human keratinocytes against UVB radiation-induced DNA

damage and apoptosis: potential for prevention of skin carcinogenesis",

Nanomedicine: Nanotechnology, Biology and Medicine. 11(5), pp. 1265-1275.

10. Ayati, A., Ahmadpour, A., Bamoharram, F. F., Tanhaei, B., Manttari,

M.Sillanpaa, M. (2014), "A review on catalytic applications of Au/TiO2

nanoparticles in the removal of water pollutant", Chemosphere. 107, pp. 163-74.

11. Bashir, O.Khan, Z. (2014), "Silver nano-disks: Synthesis, encapsulation, and

role of water soluble starch", Journal of Molecular Liquids. 199, pp. 524-529.

12. Cao, G.-F., Sun, Y., Chen, J.-G., Song, L.-P., Jiang, J.-Q., Liu, Z.-T.Liu, Z.-W.

(2014), "Sutures modified by silver-loaded montmorillonite with antibacterial

properties", Applied Clay Science. 93-94, pp. 102-106.

13. Chae, J., Kim, D. Y., Kim, S.Kang, M. (2010), "Photovoltaic efficiency on dye-

sensitized solar cells (DSSC) assembled using Ga-incorporated TiO2 materials",

Journal of Industrial and Engineering Chemistry. 16(6), pp. 906-911.

14. Cojocaru, B., Neaţu, Ş., Sacaliuc-Pârvulescu, E., Lévy, F., Pârvulescu, V.

I.Garcia, H. (2011), "Influence of gold particle size on the photocatalytic activity for

acetone oxidation of Au/TiO2 catalysts prepared by dc-magnetron sputtering",

Applied Catalysis B: Environmental. 107(1-2), pp. 140-149.

15. Devi, L. G., Nagaraj, B.Rajashekhar, K. E. (2012), "Synergistic effect of Ag

deposition and nitrogen doping in TiO2 for the degradation of phenol under solar

irradiation in presence of electron acceptor", Chemical Engineering Journal. 181-

182, pp. 259-266.

16. Djellabi, R., Ghorab, M. F., Cerrato, G., Morandi, S., Gatto, S., Oldani, V., Di

Michele, A.Bianchi, C. L. (2014), "Photoactive TiO2–montmorillonite composite

for degradation of organic dyes in water", Journal of Photochemistry and

Photobiology A: Chemistry. 295, pp. 57-63.

17. Dutta, D. P., Singh, A.Tyagi, A. K. (2014), "Ag doped and Ag dispersed nano

ZnTiO3: Improved photocatalytic organic pollutant degradation under solar

irradiation and antibacterial activity", Journal of Environmental Chemical

Engineering. 2(4), pp. 2177-2187.

18. Fujishima, A., Rao, T. N.D.A. Tryk (2000), "Titanium dioxide photocatalysis",

19. Guan, H., Wang, X., Guo, Y., Shao, C., Zhang, X., Liu, Y.Louh, R.-F. (2013), "Controlled synthesis of Ag-coated TiO2 nanofibers and their enhanced effect in

photocatalytic applications", Applied Surface Science. 280, pp. 720-725.

20. Guo, G., Yu, B., Yu, P.Chen, X. (2009), "Synthesis and photocatalytic

applications of Ag/TiO2-nanotubes", Talanta. 79(3), pp. 570-5.

21. Han, X., Kuang, Q., Jin, M.Zheng, Z. X. L. (2009), "Synthesis of titania

nanosheets with a high percentage of exposed (001) facets and related

photocatalytic properties", American Chemical Society. 131, pp. 3152-3153.

22. Hanaor, D. A. H.Sorrell, C. C. (2010), "Review of the anatase to rutile phase

transformation", Journal of Materials Science. 46(4), pp. 855-874.

23. Hans, M., Támara, J. C., Mathews, S., Bax, B., Hegetschweiler, A.,

Kautenburger, R., Solioz, M.Mücklich, F. (2014), "Laser cladding of stainless steel

with a copper–silver alloy to generate surfaces of high antimicrobial activity",

Applied Surface Science. 320(0), pp. 195-199.

24. Hashimoto, K., Irie, H.Fujishima, A. (2005), "TiO2 Photocatalysis: A Historical

Overview and Future Prospects", Japanese Journal of Applied Physics. 44(12), pp.

8269-8285.

25. He, C., Shu, D., Su, M., Xia, D., Mudar Abou, A., Lin, L.Xiong, Y. (2010),

"Photocatalytic activity of metal (Pt, Ag, and Cu)-deposited TiO2 photoelectrodes

for degradation of organic pollutants in aqueous solution", Desalination. 253(1-3),

pp. 88-93.

26. Ho, W., Yu, J. C.Lee, S. (2006), "Synthesis of hierarchical nanoporous F-doped

TiO2 spheres with visible light photocatalytic activity", Chemical community. 14,

pp. 1115-1117.

27. Hong, J.-Y., Bae, S.-E., Won, Y. S.Huh, S. (2015), "Simple preparation of

lotus-root shaped meso-/macroporous TiO2 and their DSSC performances", Journal

of Colloid and Interface Science. 448(0), pp. 467-472.

28. JINKAI, Z. (2007), Modified titanium dioxide photocatalysts for the

degradation of organic pollutants in waste water. , Department of chemical and

biomolecular engineering National University of Singapore, National University of Singapore.

29. Jovanović, Ž., Radosavljević, A., Šiljegović, M., Bibić, N., Mišković- Stanković, V.Kačarević-Popović, Z. (2012), "Structural and optical characteristics

of silver/poly(N-vinyl-2-pyrrolidone) nanosystems synthesized by γ-irradiation",

Radiation Physics and Chemistry. 81(11), pp. 1720-1728.

30. Kim, I.-D., Rothschild, A., Lee, B. H., Kim, D. Y., Jo, S. M.Tuller, H. L.

(2006), " Ultrasensitive chemiresistors based on electrospun TiO2 nanofibers", Nano

letters. 6, pp. 2009-2013.

31. Ko, K. H., Lee, Y. C.Jung, Y. J. (2005), "Enhanced efficiency of dye-sensitized

TiO2 solar cells (DSSC) by doping of metal ions", Journal of Colloid and Interface

Science. 283(2), pp. 482-487.

32. Kondo, Y., Yoshikawa, H., Awaga, K., Murayama, M., Mori, T., K.

SunadaIijima, S. (2008), "Preparation, photocatalytic activities, and dye-sensitized

solar-cell performance of submicron-scale TiO2 hollow spheres", langmuir. 24, pp.

547-550.

33. Kong, D., Tan, J. Z. Y., Yang, F., Zeng, J.Zhang, X. (2013), "Electrodeposited

Ag nanoparticles on TiO2 nanorods for enhanced UV visible light photoreduction

CO2 to CH4", Applied Surface Science. 277, pp. 105-110.

34. Konwar, U., Karak, N.Mandal, M. (2010), "Vegetable oil based highly

branched polyester/clay silver nanocomposites as antimicrobial surface coating

materials", Progress in Organic Coatings. 68(4), pp. 265-273.

35. Korbekandi, H.Iravani, S. (2010), Silver Nanoparticles, Genetics and Molecular

Biology Department, Isfahan University of Medical Sciences.

36. Lawless, D., Kapoor, S., Kennepohl, P., Meisel, D.Serpone, N. (1994),

"Reduction and aggregation of silver ions at the surface of colloidal silica", Physical

Chemistry 98, pp. 9619-9623.

37. Lee, Y., Chae, J.Kang, M. (2010), "Comparison of the photovoltaic efficiency

on DSSC for nanometer sized TiO2 using a conventional sol–gel and solvothermal

methods", Journal of Industrial and Engineering Chemistry. 16(4), pp. 609-614.

38. Lei, Y., Gao, G., Liu, W., Liu, T.Yin, Y. (2014), "Synthesis of silver

nanoparticles on surface-functionalized multi- walled carbon nanotubes by

ultraviolet initiated photo-reduction method", Applied Surface Science. 317(0), pp.

39. Leong, K. H., Gan, B. L., Ibrahim, S.Saravanan, P. (2014), "Synthesis of surface plasmon resonance (SPR) triggered Ag/TiO2 photocatalyst for degradation

of endocrine disturbing compounds", Applied Surface Science. 319, pp. 128-135.

40. Li, H., Bian, Z., Zhu, J., Zhang, D., Li, G., Huo, Y., Li, H.Lu, Y. (2007),

"Mesoporous titania spheres with tunable chamber stucture and enhanced

photocatalytic activity", American Chemical Society. 129, pp. 8406-8407.

41. Li, H., Cui, Q., Feng, B., Wang, J., Lu, X.Weng, J. (2013), "Antibacterial

activity of TiO2 nanotubes: Influence of crystal phase, morphology and Ag

deposition", Applied Surface Science. 284, pp. 179-183.

42. Li, J.Xu, D. (2010), "Tetragonal faceted-nanorods of anatase TiO2 single

crystals with a large percentage of active {100} facets", Chemical community. 46,

pp. 2301-2303.

43. Li, M., Wang, R., Zhong, P., Li, X., Huang, Z.Zhang, C. (2012), "Ag–TiO2–Ag

core–shell–satellite nanowires: Facile synthesis and enhanced photocatalytic

activities", Materials Letters. 80, pp. 138-140.

44. Li, X., Xiong, Y., Li, Z.Xie, Y. (2006), "Large-scale fabrication of TiO2

hierarchical hollowspheres", inorganic chemistry. 45, pp. 3493-3495.

45. Lin, W.-C., Chen, C.-N., Tseng, T.-T., Wei, M.-H., Hsieh, J. H.Tseng, W. J.

(2010), "Micellar layer-by-layer synthesis of TiO2/Ag hybrid particles for

bactericidal and photocatalytic activities", Journal of the European Ceramic

Society. 30(14), pp. 2849-2857.

46. Linsebigler, A. L., Lu, G.Yates, J. T. (1995), "Photocatalysis on TiOn Surfaces:

Principles, Mechanisms, and Selected Results", American Chemical Society. 95, pp.

735-758.

47. Liu, B., Nakata, K., Sakai, M., Saito, H., Ochiai, T., Murakami, T., Takagi,

K.Fujishima, A. (2011), "Mesoporous TiO2 core shell spheres composed of nanocrystals with exposed high-energy facets: facile synthesis and formation

mechanism", langmuir. 27, pp. 8500-8508.

48. Liu, F., Liu, H., Li, X., Zhao, H., Zhu, D., Zheng, Y.Li, C. (2012), "Nano-

TiO2@Ag/PVC film with enhanced antibacterial activities and photocatalytic

49. Liu, G., Hoivik, N., Wang, K.Jakobsen, H. (2012), "Engineering TiO2

nanomaterials for CO2 conversion/solar fuels", Solar Energy Materials and Solar

Cells. 105, pp. 53-68.

50. Liu, W., Zhang, Z., Liu, H., He, W., Ge, X.Wang, M. (2007), "Silver nanorods

using HEC as a template by γ-irradiation technique and absorption dose that

changed their nanosize and morphology", Materials Letters. 61(8–9), pp. 1801-

1804.

51. Liu, Z., Zhang, X., Nishimoto, S., Murakami, T.Fujishima, A. (2008),

"Efficient photocatalytic degradation of gaseous acetaldehyde by highly ordered

TiO2 nanotube arrays.", Environment Science and Technology. 42(22), pp. 8547-

8551.

52. Logeswari, P., Silambarasan, S.Abraham, J. (2015), "Synthesis of silver

nanoparticles using plants extract and analysis of their antimicrobial property",

Journal of Saudi Chemical Society. 19(3), pp. 311-317.

53. Long, N. V., Van Viet, P., Van Hieu, L., Thi, C. M., Yong, Y.Nogami, M.

(2014), "The Controlled Hydrothermal Synthesis and Photocatalytic

Characterization of TiO2 Nanorods: Effects of Time and Temperature", Advanced

Science, Engineering and Medicine. 6(2), pp. 214-220.

54. Matos, R. A. d., Cordeiro, T. d. S., Samad, R. E., Sicchieri, L. B., Vieira Júnior,

N. D.Courrol, L. C. (2013), "Synthesis of silver nanoparticles using agar–agar water

solution and femtosecond pulse laser irradiation", Colloids and Surfaces A:

Physicochemical and Engineering Aspects. 423(0), pp. 58-62.

55. Nakata, K.Fujishima, A. (2012), "TiO2 photocatalysis: Design and

applications", Journal of Photochemistry and Photobiology C: Photochemistry

Reviews. 13(3), pp. 169-189.

56. Nakata, K., Liu, B., Ishikawa, Y., Sakai, M., Saito, H., Ochiai, T., Sakai, H., T.

Murakami, Abe, M., Takagi, K.Fujishima, A. (2011), "Fabrication and

photocatalytic properties of TiO2 nanotube arrays modified with phosphate",

chemical letters. 40, pp. 1107-1109.

57. Nam, S. H., Shim, H.-S., Kim, Y.-S., Dar, M. A., Kim, J. G.Kim, W. B. (2010),

prepared via electrospinning for use in lithium-ion batteries", ACS Applied

Materials & Interfaces. 12, pp. 2046-2052.

58. Park, J.-A., Moon, J., Lee, S.-J., Kim, S. H., Zyung, T.Chu, H. Y. (2010),

"Structure and CO gas sensing properties of electrospun TiO2 nanofibers",

Materials Letters. 64, pp. 255-257.

59. Phonthammachai, N., Gulari, E., Jamieson, A. M.Wongkasemjit, S. (2006),

"Photocatalytic membrane of a novel high surface area TiO2 synthesized from

titanium triisopropanolamine precursor", Applied Organometallic Chemistry. 20(8),

pp. 499-504.

60. Praus, P., Turicová, M., Machovič, V., Študentová, S.Klementová, M. (2010),

"Characterization of silver nanoparticles deposited on montmorillonite", Applied

Clay Science. 49(3), pp. 341-345.

61. Quan, X., Yang, S., Ruan, X.Zhao, H. (2005), "Preparation of titania nanotubes

and their environmental applications as electrode", Environment Science and

Technology. 39, pp. 3770-3775.

62. Ramakrishna, S., Fujihara, K., Teo, W.-E., Lim, T.-C.Z. Ma (2005), An

Introduction to Electrospinning and Nanofibers, World Scientific, Singapore.

63. Rivera, V. A. G., Ferri, F. A.Marega, E. (2012), "Localized Surface Plasmon

Resonances: Noble Metal Nanoparticle Interaction with Rare-Earth Ions".

64. Sahyun, M. R. V.Serpone, N. (1997), "Primary events in the photo-catalytic

deposition of silver on nanoparticulate TiO2", Langmuir. 13, pp. 5082-5088.

65. Sakai, N., Ebina, Y., Takada, K., Sasaki, T. (2004), "Electronic band structure

of titania semiconductor nanosheets revealed by electrochemical and photoelectro-

chemical studies", Journal of the American Chemical Society. 126, pp. 5851-5858.

66. Schneider, J., Matsuoka, M., Takeuchi, M., Zhang, J., Horiuchi, Y., Anpo,

M.Bahnemann, D. W. (2014), "Understanding TiO2 photocatalysis: mechanisms

and materials", Chem Rev. 114(19), pp. 9919-86.

67. Shibata, T., Sakai, N., Fukuda, K., Ebina, Y.Sasaki, T. (2007), "Photocatalytic

properties of titania nanostructured films fabricated from titania nanosheets",

Physical Chemistry Chemical Physics. 9, pp. 2413–2420.

68. Shichi, T.Katsumata, K.-i. (2010), "Development of photocatalytic self-

69. Shivaji, S., Madhu, S.Singh, S. (2011), "Extracellular synthesis of antibacterial

silver nanoparticles using psychrophilic bacteria", Process Biochemistry. 46(9), pp.

1800-1807.

70. Sohi, P. A. (2013), Design and Fabrication of Silver Deposited TiO2

Nanotubes: Antibacterial Applications, Electrical and Computer Engineering,

Concordia University, Montreal, Quebec, Canada.

71. Soliman, Y. S. (2014), "Gamma-radiation induced synthesis of silver

nanoparticles in gelatin and its application for radiotherapy dose measurements",

Radiation Physics and Chemistry. 102, pp. 60-67.

72. Song, M. Y., Kim, D. K., Ihn, K. J., Jo, S. M.Kim, D. Y. (2005), "New

application of electrospun TiO2 electrode to solid-state dye-sensitized solar cells",

Synthetic Metals. 153, pp. 77-80.

73. Song, M. Y., Kim, D. K., Jo, S. M.Kim, D. Y. (2005), "Enhancement of the

photocurrent generation in dye-sensitized solar cell based on electrospun TiO2

electrode by surface treatment", Synthetic Metals. 155, pp. 635-638.

74. Sreekantan, S.Wei, L. C. (2010), "Study on the formation and photocatalytic

activity of titanate nanotubes synthesized via hydrothermal method", Journal of

Alloys and Compounds. 490(1-2), pp. 436-442.

75. Srisitthiratkul, C., Pongsorrarith, V.Intasanta, N. (2011), "The potential use of

nanosilver-decorated titanium dioxide nanofibers for toxin decomposition with

antimicrobial and self-cleaning properties", Applied Surface Science. 257(21), pp.

8850-8856.

76. Subrahmanyam, A., Biju, K. P., Rajesh, P., Jagadeesh Kumar, K.Raveendra

Kiran, M. (2012), "Surface modification of sol gel TiO2 surface with sputtered

metallic silver for Sun light photocatalytic activity: Initial studies", Solar Energy

Materials and Solar Cells. 101, pp. 241-248.

77. Sung-Suh, H. M., Choi, J. R., Hah, H. J., Koo, S. M.Bae, Y. C. (2004),

"Comparison of Ag deposition effects on the photocatalytic activity of

nanoparticulate TiO2 under visible and UV light irradiation", Journal of

Photochemistry and Photobiology A: Chemistry. 163(1-2), pp. 37-44.

78. Syed, A., Saraswati, S., Kundu, G. C.Ahmad, A. (2013), "Biological synthesis

cytoxicity using normal and cancer cell lines", Spectrochimica Acta Part A:

Molecular and Biomolecular Spectroscopy. 114(0), pp. 144-147.

79. Tan, T. T. Y., Yip, C. K., Beydoun, D.Amal, R. (2003), "Effects of nano-Ag

particles loading on TiO2 photocatalytic reduction of selenate ions", Chemical

Engineering Journal. 95(1-3), pp. 179-186.

80. Tavaf, Z., Tabatabaei, M., Khalafi-Nezhad, A., Panahi, F.Hosseini, A., "Green

synthesis of silver nanoparticles by reduced glycated casein adducts: Assessment of

their antibacterial and antioxidant activity against Streptococcus mutans", European

Journal of Integrative Medicine(0).

81. Tijing, L. D., Amarjargal, A., Jiang, Z., Ruelo, M. T. G., Park, C.-H., Pant, H.

R., Kim, D.-W., Lee, D. H.Kim, C. S. (2013), "Antibacterial tourmaline nanoparticles/polyurethane hybrid mat decorated with silver nanoparticles prepared

by electrospinning and UV photoreduction", Current Applied Physics. 13(1), pp.

205-210.

82. Viet, P. V., Phan, B. T., Hieu, L. V.Thi, C. M. (2014), "The Effect of Acid

Treatment and Reactive Temperature on the Formation of TiO2 Nanotubes",

Journal of Nanoscience and Nanotechnology. 15, pp. 1-5.

83. Xu, G., Qiao, X., Qiu, X.Chen, J. (2011), "Preparation and Characterization of

Nano-silver Loaded Montmorillonite with Strong Antibacterial Activity and Slow

Release Property", Journal of Materials Science & Technology. 27(8), pp. 685-690.

84. Yang, B., Liu, Z., Guo, Z., Zhang, W., Wan, M., Qin, X.Zhong, H. (2014), "In

situ green synthesis of silver–graphene oxide nanocomposites by using tryptophan

as a reducing and stabilizing agent and their application in SERS", Applied Surface

Science. 316(0), pp. 22-27.

85. Yang, D., Sun, Y., Tong, Z., Tian, Y., Li, Y.Jiang, Z. (2015), "Synthesis of

Một phần của tài liệu Nghiên cứu chế tạo vật liệu tổ hợp ống nano tio2 ag ứng dụng trong quang xúc tác (Trang 71 - 83)

Tải bản đầy đủ (PDF)

(83 trang)