Qua các kết quả đạt được và hạn chế, chúng tôi đề xuất một số hướng phát triển cho đề tài:
- Khảo sát tốc độ phân giải ion Ag+ của TNTs/Ag trong các môi trường dung môi
khác nhau.
- Khảo sát khả năng quang xúc tác đối với ánh sáng khả kiến nhằm mở rộng
phạm vi ứng dụng, đồng thời làm rõ khả năng phân hủy chất hữu cơ của TNTs/Ag so với TNTs.
- Khảo sát khả năng quang xúc tác của các vật liệu TNTs, TNTs/Ag đối với nước
- Nghiên cứu chế tạo các vật liệu tổ hợp thủy tinh/TNTs/Ag, sứ/TNTs/Ag, nhựa/TNTs/Ag, … nhằm phát triển các ứng dụng khác.
Tài liệu tham khảo Tiếng Việt
1. Huỳnh Nguyễn Thanh Luận, Huỳnh Chí Cường, Lâm Quang Vinh, Hà Thúc Chí
Nhân, Lê Văn Hiếu (2014), "Tổng hợp vật liệu nano Ag và TiO2 nhằm ứng dụng
diệt khuẩn", Hội nghị Khoa Học trường Đại học Khoa Học Tự Nhiên.
2. Ngô Võ Kế Thành, Nguyễn Thị Phương Phong, Đặng Mậu Chiến (2009), "Nghiên cứu hoạt tính kháng khuẩn của tấm vải cotton ngâm trong dung dịch keo nano bạc", Tạp chí Phát Triển Khoa Học Công Nghệ. 3, pp. 69-76.
3. Thái Thủy Tiên, Quyền, Lê Văn Quyền, Âu Vạn Tuyền, Hà Hải Nhi, Nguyễn Hữu
Khánh Hưng, Huỳnh Thị Kiều Xuân (2013), "Nghiên cứu tổng hợp TiO2 ống nano
bằng phương pháp anod hóa ứng dụng trong quang xúc tác", Tạp chí Phát triển Khoa Học và Công Nghệ. 16, pp. 5-12.
4. Phạm Văn Việt, Trần Ngọc Quang, Cao Minh Thì, Vũ Thị Hạnh Thu, Lê Văn Hiếu
(2013), "Hoạt tính quang xúc tác của vật liệu nano TiO2 cấu trúc một chiều (1D)",
Đại học Sài Gòn. 13, pp. 83-91.
5. Ahmadbarudin, N. H., Sreekantan, S., Ong, M. T.Lai, C. W. (2014), "Synthesis, characterization and comparative study of nano-Ag–TiO2 against Gram-positive
and Gram-negative bacteria under fluorescent light", Food Control. 46, pp. 480-
487.
6. Ahmed, K. B. A., Kalla, D., Uppuluri, K. B.Anbazhagan, V. (2014), "Green synthesis of silver and gold nanoparticles employing levan, a biopolymer from
Acetobacter xylinum NCIM 2526, as a reducing agent and capping agent",
Carbohydrate Polymers. 112(0), pp. 539-545.
7. Almquist, C. B.Biswas, P. (2002), "Role of synthesis method and particle size of
nanostructured TiO2 on its photoactivity", Journal of Catalysis. 212, pp. 145-156.
8. Amin, S. A., Pazouki, M.Hosseinnia, A. (2009), "Synthesis of TiO2–Ag nanocomposite with sol–gel method and investigation of its antibacterial activity
against E. coli", Powder Technology. 196(3), pp. 241-245.
9. Arora, S., Tyagi, N., Bhardwaj, A., Rusu, L., Palanki, R., Vig, K., Singh, S. R., Singh, A. P., Palanki, S., Miller, M. E., Carter, J. E.Singh, S. (2015), "Silver nanoparticles protect human keratinocytes against UVB radiation-induced DNA
damage and apoptosis: potential for prevention of skin carcinogenesis",
Nanomedicine: Nanotechnology, Biology and Medicine. 11(5), pp. 1265-1275.
10. Ayati, A., Ahmadpour, A., Bamoharram, F. F., Tanhaei, B., Manttari,
M.Sillanpaa, M. (2014), "A review on catalytic applications of Au/TiO2
nanoparticles in the removal of water pollutant", Chemosphere. 107, pp. 163-74.
11. Bashir, O.Khan, Z. (2014), "Silver nano-disks: Synthesis, encapsulation, and
role of water soluble starch", Journal of Molecular Liquids. 199, pp. 524-529.
12. Cao, G.-F., Sun, Y., Chen, J.-G., Song, L.-P., Jiang, J.-Q., Liu, Z.-T.Liu, Z.-W.
(2014), "Sutures modified by silver-loaded montmorillonite with antibacterial
properties", Applied Clay Science. 93-94, pp. 102-106.
13. Chae, J., Kim, D. Y., Kim, S.Kang, M. (2010), "Photovoltaic efficiency on dye-
sensitized solar cells (DSSC) assembled using Ga-incorporated TiO2 materials",
Journal of Industrial and Engineering Chemistry. 16(6), pp. 906-911.
14. Cojocaru, B., Neaţu, Ş., Sacaliuc-Pârvulescu, E., Lévy, F., Pârvulescu, V.
I.Garcia, H. (2011), "Influence of gold particle size on the photocatalytic activity for
acetone oxidation of Au/TiO2 catalysts prepared by dc-magnetron sputtering",
Applied Catalysis B: Environmental. 107(1-2), pp. 140-149.
15. Devi, L. G., Nagaraj, B.Rajashekhar, K. E. (2012), "Synergistic effect of Ag
deposition and nitrogen doping in TiO2 for the degradation of phenol under solar
irradiation in presence of electron acceptor", Chemical Engineering Journal. 181-
182, pp. 259-266.
16. Djellabi, R., Ghorab, M. F., Cerrato, G., Morandi, S., Gatto, S., Oldani, V., Di
Michele, A.Bianchi, C. L. (2014), "Photoactive TiO2–montmorillonite composite
for degradation of organic dyes in water", Journal of Photochemistry and
Photobiology A: Chemistry. 295, pp. 57-63.
17. Dutta, D. P., Singh, A.Tyagi, A. K. (2014), "Ag doped and Ag dispersed nano
ZnTiO3: Improved photocatalytic organic pollutant degradation under solar
irradiation and antibacterial activity", Journal of Environmental Chemical
Engineering. 2(4), pp. 2177-2187.
18. Fujishima, A., Rao, T. N.D.A. Tryk (2000), "Titanium dioxide photocatalysis",
19. Guan, H., Wang, X., Guo, Y., Shao, C., Zhang, X., Liu, Y.Louh, R.-F. (2013), "Controlled synthesis of Ag-coated TiO2 nanofibers and their enhanced effect in
photocatalytic applications", Applied Surface Science. 280, pp. 720-725.
20. Guo, G., Yu, B., Yu, P.Chen, X. (2009), "Synthesis and photocatalytic
applications of Ag/TiO2-nanotubes", Talanta. 79(3), pp. 570-5.
21. Han, X., Kuang, Q., Jin, M.Zheng, Z. X. L. (2009), "Synthesis of titania
nanosheets with a high percentage of exposed (001) facets and related
photocatalytic properties", American Chemical Society. 131, pp. 3152-3153.
22. Hanaor, D. A. H.Sorrell, C. C. (2010), "Review of the anatase to rutile phase
transformation", Journal of Materials Science. 46(4), pp. 855-874.
23. Hans, M., Támara, J. C., Mathews, S., Bax, B., Hegetschweiler, A.,
Kautenburger, R., Solioz, M.Mücklich, F. (2014), "Laser cladding of stainless steel
with a copper–silver alloy to generate surfaces of high antimicrobial activity",
Applied Surface Science. 320(0), pp. 195-199.
24. Hashimoto, K., Irie, H.Fujishima, A. (2005), "TiO2 Photocatalysis: A Historical
Overview and Future Prospects", Japanese Journal of Applied Physics. 44(12), pp.
8269-8285.
25. He, C., Shu, D., Su, M., Xia, D., Mudar Abou, A., Lin, L.Xiong, Y. (2010),
"Photocatalytic activity of metal (Pt, Ag, and Cu)-deposited TiO2 photoelectrodes
for degradation of organic pollutants in aqueous solution", Desalination. 253(1-3),
pp. 88-93.
26. Ho, W., Yu, J. C.Lee, S. (2006), "Synthesis of hierarchical nanoporous F-doped
TiO2 spheres with visible light photocatalytic activity", Chemical community. 14,
pp. 1115-1117.
27. Hong, J.-Y., Bae, S.-E., Won, Y. S.Huh, S. (2015), "Simple preparation of
lotus-root shaped meso-/macroporous TiO2 and their DSSC performances", Journal
of Colloid and Interface Science. 448(0), pp. 467-472.
28. JINKAI, Z. (2007), Modified titanium dioxide photocatalysts for the
degradation of organic pollutants in waste water. , Department of chemical and
biomolecular engineering National University of Singapore, National University of Singapore.
29. Jovanović, Ž., Radosavljević, A., Šiljegović, M., Bibić, N., Mišković- Stanković, V.Kačarević-Popović, Z. (2012), "Structural and optical characteristics
of silver/poly(N-vinyl-2-pyrrolidone) nanosystems synthesized by γ-irradiation",
Radiation Physics and Chemistry. 81(11), pp. 1720-1728.
30. Kim, I.-D., Rothschild, A., Lee, B. H., Kim, D. Y., Jo, S. M.Tuller, H. L.
(2006), " Ultrasensitive chemiresistors based on electrospun TiO2 nanofibers", Nano
letters. 6, pp. 2009-2013.
31. Ko, K. H., Lee, Y. C.Jung, Y. J. (2005), "Enhanced efficiency of dye-sensitized
TiO2 solar cells (DSSC) by doping of metal ions", Journal of Colloid and Interface
Science. 283(2), pp. 482-487.
32. Kondo, Y., Yoshikawa, H., Awaga, K., Murayama, M., Mori, T., K.
SunadaIijima, S. (2008), "Preparation, photocatalytic activities, and dye-sensitized
solar-cell performance of submicron-scale TiO2 hollow spheres", langmuir. 24, pp.
547-550.
33. Kong, D., Tan, J. Z. Y., Yang, F., Zeng, J.Zhang, X. (2013), "Electrodeposited
Ag nanoparticles on TiO2 nanorods for enhanced UV visible light photoreduction
CO2 to CH4", Applied Surface Science. 277, pp. 105-110.
34. Konwar, U., Karak, N.Mandal, M. (2010), "Vegetable oil based highly
branched polyester/clay silver nanocomposites as antimicrobial surface coating
materials", Progress in Organic Coatings. 68(4), pp. 265-273.
35. Korbekandi, H.Iravani, S. (2010), Silver Nanoparticles, Genetics and Molecular
Biology Department, Isfahan University of Medical Sciences.
36. Lawless, D., Kapoor, S., Kennepohl, P., Meisel, D.Serpone, N. (1994),
"Reduction and aggregation of silver ions at the surface of colloidal silica", Physical
Chemistry 98, pp. 9619-9623.
37. Lee, Y., Chae, J.Kang, M. (2010), "Comparison of the photovoltaic efficiency
on DSSC for nanometer sized TiO2 using a conventional sol–gel and solvothermal
methods", Journal of Industrial and Engineering Chemistry. 16(4), pp. 609-614.
38. Lei, Y., Gao, G., Liu, W., Liu, T.Yin, Y. (2014), "Synthesis of silver
nanoparticles on surface-functionalized multi- walled carbon nanotubes by
ultraviolet initiated photo-reduction method", Applied Surface Science. 317(0), pp.
39. Leong, K. H., Gan, B. L., Ibrahim, S.Saravanan, P. (2014), "Synthesis of surface plasmon resonance (SPR) triggered Ag/TiO2 photocatalyst for degradation
of endocrine disturbing compounds", Applied Surface Science. 319, pp. 128-135.
40. Li, H., Bian, Z., Zhu, J., Zhang, D., Li, G., Huo, Y., Li, H.Lu, Y. (2007),
"Mesoporous titania spheres with tunable chamber stucture and enhanced
photocatalytic activity", American Chemical Society. 129, pp. 8406-8407.
41. Li, H., Cui, Q., Feng, B., Wang, J., Lu, X.Weng, J. (2013), "Antibacterial
activity of TiO2 nanotubes: Influence of crystal phase, morphology and Ag
deposition", Applied Surface Science. 284, pp. 179-183.
42. Li, J.Xu, D. (2010), "Tetragonal faceted-nanorods of anatase TiO2 single
crystals with a large percentage of active {100} facets", Chemical community. 46,
pp. 2301-2303.
43. Li, M., Wang, R., Zhong, P., Li, X., Huang, Z.Zhang, C. (2012), "Ag–TiO2–Ag
core–shell–satellite nanowires: Facile synthesis and enhanced photocatalytic
activities", Materials Letters. 80, pp. 138-140.
44. Li, X., Xiong, Y., Li, Z.Xie, Y. (2006), "Large-scale fabrication of TiO2
hierarchical hollowspheres", inorganic chemistry. 45, pp. 3493-3495.
45. Lin, W.-C., Chen, C.-N., Tseng, T.-T., Wei, M.-H., Hsieh, J. H.Tseng, W. J.
(2010), "Micellar layer-by-layer synthesis of TiO2/Ag hybrid particles for
bactericidal and photocatalytic activities", Journal of the European Ceramic
Society. 30(14), pp. 2849-2857.
46. Linsebigler, A. L., Lu, G.Yates, J. T. (1995), "Photocatalysis on TiOn Surfaces:
Principles, Mechanisms, and Selected Results", American Chemical Society. 95, pp.
735-758.
47. Liu, B., Nakata, K., Sakai, M., Saito, H., Ochiai, T., Murakami, T., Takagi,
K.Fujishima, A. (2011), "Mesoporous TiO2 core shell spheres composed of nanocrystals with exposed high-energy facets: facile synthesis and formation
mechanism", langmuir. 27, pp. 8500-8508.
48. Liu, F., Liu, H., Li, X., Zhao, H., Zhu, D., Zheng, Y.Li, C. (2012), "Nano-
TiO2@Ag/PVC film with enhanced antibacterial activities and photocatalytic
49. Liu, G., Hoivik, N., Wang, K.Jakobsen, H. (2012), "Engineering TiO2
nanomaterials for CO2 conversion/solar fuels", Solar Energy Materials and Solar
Cells. 105, pp. 53-68.
50. Liu, W., Zhang, Z., Liu, H., He, W., Ge, X.Wang, M. (2007), "Silver nanorods
using HEC as a template by γ-irradiation technique and absorption dose that
changed their nanosize and morphology", Materials Letters. 61(8–9), pp. 1801-
1804.
51. Liu, Z., Zhang, X., Nishimoto, S., Murakami, T.Fujishima, A. (2008),
"Efficient photocatalytic degradation of gaseous acetaldehyde by highly ordered
TiO2 nanotube arrays.", Environment Science and Technology. 42(22), pp. 8547-
8551.
52. Logeswari, P., Silambarasan, S.Abraham, J. (2015), "Synthesis of silver
nanoparticles using plants extract and analysis of their antimicrobial property",
Journal of Saudi Chemical Society. 19(3), pp. 311-317.
53. Long, N. V., Van Viet, P., Van Hieu, L., Thi, C. M., Yong, Y.Nogami, M.
(2014), "The Controlled Hydrothermal Synthesis and Photocatalytic
Characterization of TiO2 Nanorods: Effects of Time and Temperature", Advanced
Science, Engineering and Medicine. 6(2), pp. 214-220.
54. Matos, R. A. d., Cordeiro, T. d. S., Samad, R. E., Sicchieri, L. B., Vieira Júnior,
N. D.Courrol, L. C. (2013), "Synthesis of silver nanoparticles using agar–agar water
solution and femtosecond pulse laser irradiation", Colloids and Surfaces A:
Physicochemical and Engineering Aspects. 423(0), pp. 58-62.
55. Nakata, K.Fujishima, A. (2012), "TiO2 photocatalysis: Design and
applications", Journal of Photochemistry and Photobiology C: Photochemistry
Reviews. 13(3), pp. 169-189.
56. Nakata, K., Liu, B., Ishikawa, Y., Sakai, M., Saito, H., Ochiai, T., Sakai, H., T.
Murakami, Abe, M., Takagi, K.Fujishima, A. (2011), "Fabrication and
photocatalytic properties of TiO2 nanotube arrays modified with phosphate",
chemical letters. 40, pp. 1107-1109.
57. Nam, S. H., Shim, H.-S., Kim, Y.-S., Dar, M. A., Kim, J. G.Kim, W. B. (2010),
prepared via electrospinning for use in lithium-ion batteries", ACS Applied
Materials & Interfaces. 12, pp. 2046-2052.
58. Park, J.-A., Moon, J., Lee, S.-J., Kim, S. H., Zyung, T.Chu, H. Y. (2010),
"Structure and CO gas sensing properties of electrospun TiO2 nanofibers",
Materials Letters. 64, pp. 255-257.
59. Phonthammachai, N., Gulari, E., Jamieson, A. M.Wongkasemjit, S. (2006),
"Photocatalytic membrane of a novel high surface area TiO2 synthesized from
titanium triisopropanolamine precursor", Applied Organometallic Chemistry. 20(8),
pp. 499-504.
60. Praus, P., Turicová, M., Machovič, V., Študentová, S.Klementová, M. (2010),
"Characterization of silver nanoparticles deposited on montmorillonite", Applied
Clay Science. 49(3), pp. 341-345.
61. Quan, X., Yang, S., Ruan, X.Zhao, H. (2005), "Preparation of titania nanotubes
and their environmental applications as electrode", Environment Science and
Technology. 39, pp. 3770-3775.
62. Ramakrishna, S., Fujihara, K., Teo, W.-E., Lim, T.-C.Z. Ma (2005), An
Introduction to Electrospinning and Nanofibers, World Scientific, Singapore.
63. Rivera, V. A. G., Ferri, F. A.Marega, E. (2012), "Localized Surface Plasmon
Resonances: Noble Metal Nanoparticle Interaction with Rare-Earth Ions".
64. Sahyun, M. R. V.Serpone, N. (1997), "Primary events in the photo-catalytic
deposition of silver on nanoparticulate TiO2", Langmuir. 13, pp. 5082-5088.
65. Sakai, N., Ebina, Y., Takada, K., Sasaki, T. (2004), "Electronic band structure
of titania semiconductor nanosheets revealed by electrochemical and photoelectro-
chemical studies", Journal of the American Chemical Society. 126, pp. 5851-5858.
66. Schneider, J., Matsuoka, M., Takeuchi, M., Zhang, J., Horiuchi, Y., Anpo,
M.Bahnemann, D. W. (2014), "Understanding TiO2 photocatalysis: mechanisms
and materials", Chem Rev. 114(19), pp. 9919-86.
67. Shibata, T., Sakai, N., Fukuda, K., Ebina, Y.Sasaki, T. (2007), "Photocatalytic
properties of titania nanostructured films fabricated from titania nanosheets",
Physical Chemistry Chemical Physics. 9, pp. 2413–2420.
68. Shichi, T.Katsumata, K.-i. (2010), "Development of photocatalytic self-
69. Shivaji, S., Madhu, S.Singh, S. (2011), "Extracellular synthesis of antibacterial
silver nanoparticles using psychrophilic bacteria", Process Biochemistry. 46(9), pp.
1800-1807.
70. Sohi, P. A. (2013), Design and Fabrication of Silver Deposited TiO2
Nanotubes: Antibacterial Applications, Electrical and Computer Engineering,
Concordia University, Montreal, Quebec, Canada.
71. Soliman, Y. S. (2014), "Gamma-radiation induced synthesis of silver
nanoparticles in gelatin and its application for radiotherapy dose measurements",
Radiation Physics and Chemistry. 102, pp. 60-67.
72. Song, M. Y., Kim, D. K., Ihn, K. J., Jo, S. M.Kim, D. Y. (2005), "New
application of electrospun TiO2 electrode to solid-state dye-sensitized solar cells",
Synthetic Metals. 153, pp. 77-80.
73. Song, M. Y., Kim, D. K., Jo, S. M.Kim, D. Y. (2005), "Enhancement of the
photocurrent generation in dye-sensitized solar cell based on electrospun TiO2
electrode by surface treatment", Synthetic Metals. 155, pp. 635-638.
74. Sreekantan, S.Wei, L. C. (2010), "Study on the formation and photocatalytic
activity of titanate nanotubes synthesized via hydrothermal method", Journal of
Alloys and Compounds. 490(1-2), pp. 436-442.
75. Srisitthiratkul, C., Pongsorrarith, V.Intasanta, N. (2011), "The potential use of
nanosilver-decorated titanium dioxide nanofibers for toxin decomposition with
antimicrobial and self-cleaning properties", Applied Surface Science. 257(21), pp.
8850-8856.
76. Subrahmanyam, A., Biju, K. P., Rajesh, P., Jagadeesh Kumar, K.Raveendra
Kiran, M. (2012), "Surface modification of sol gel TiO2 surface with sputtered
metallic silver for Sun light photocatalytic activity: Initial studies", Solar Energy
Materials and Solar Cells. 101, pp. 241-248.
77. Sung-Suh, H. M., Choi, J. R., Hah, H. J., Koo, S. M.Bae, Y. C. (2004),
"Comparison of Ag deposition effects on the photocatalytic activity of
nanoparticulate TiO2 under visible and UV light irradiation", Journal of
Photochemistry and Photobiology A: Chemistry. 163(1-2), pp. 37-44.
78. Syed, A., Saraswati, S., Kundu, G. C.Ahmad, A. (2013), "Biological synthesis
cytoxicity using normal and cancer cell lines", Spectrochimica Acta Part A:
Molecular and Biomolecular Spectroscopy. 114(0), pp. 144-147.
79. Tan, T. T. Y., Yip, C. K., Beydoun, D.Amal, R. (2003), "Effects of nano-Ag
particles loading on TiO2 photocatalytic reduction of selenate ions", Chemical
Engineering Journal. 95(1-3), pp. 179-186.
80. Tavaf, Z., Tabatabaei, M., Khalafi-Nezhad, A., Panahi, F.Hosseini, A., "Green
synthesis of silver nanoparticles by reduced glycated casein adducts: Assessment of
their antibacterial and antioxidant activity against Streptococcus mutans", European
Journal of Integrative Medicine(0).
81. Tijing, L. D., Amarjargal, A., Jiang, Z., Ruelo, M. T. G., Park, C.-H., Pant, H.
R., Kim, D.-W., Lee, D. H.Kim, C. S. (2013), "Antibacterial tourmaline nanoparticles/polyurethane hybrid mat decorated with silver nanoparticles prepared
by electrospinning and UV photoreduction", Current Applied Physics. 13(1), pp.
205-210.
82. Viet, P. V., Phan, B. T., Hieu, L. V.Thi, C. M. (2014), "The Effect of Acid
Treatment and Reactive Temperature on the Formation of TiO2 Nanotubes",
Journal of Nanoscience and Nanotechnology. 15, pp. 1-5.
83. Xu, G., Qiao, X., Qiu, X.Chen, J. (2011), "Preparation and Characterization of
Nano-silver Loaded Montmorillonite with Strong Antibacterial Activity and Slow
Release Property", Journal of Materials Science & Technology. 27(8), pp. 685-690.
84. Yang, B., Liu, Z., Guo, Z., Zhang, W., Wan, M., Qin, X.Zhong, H. (2014), "In
situ green synthesis of silver–graphene oxide nanocomposites by using tryptophan
as a reducing and stabilizing agent and their application in SERS", Applied Surface
Science. 316(0), pp. 22-27.
85. Yang, D., Sun, Y., Tong, Z., Tian, Y., Li, Y.Jiang, Z. (2015), "Synthesis of