Từ các nghiên cứu ở phần trên, Cr (VI) được chọn để thiết lập một số mô hình hấp phụ động như Thomas, Yoon – Nelson và Bohart – Adam trên PANi-vỏ lạc khi thay đổi tốc độ dòng chảy, nồng độ ban đầu và khối lượng chất hấp phụ (hình 3.59 ÷ 3.61, bảng 3.32 ÷ 3.34).
Hình 3.59. Phương trình động học Thomas (a), Yoon – Nelson (b) và Bohart-Adam (c) dạng tuyến tính tại các tốc độ dòng chảy khác nhau, nồng độ Cr (VI) ban đầu
101
Kết quả cho thấy, các phương trình thực nghiệm có hệ số tương quan khá cao (R2 > 0,85), chứng tỏ sự hấp phụ Cr (VI) của compozit PANi – vỏ lạc phù hợp với cả ba mô hình Thomas, Yoon – Nelson và Bohart - Adam. Các tham số trong cả ba mô hình (KT, q0, KYN, τ, KB, N0 ) đều phụ thuộc vào tốc độ dòng chảy, nồng độ ban đầu và khối lượng (chiều cao) chất hấp phụ PANi – vỏ lạc.
Theo mô hình Thomas, hệ số KT tăng khi tốc độ dòng chảy tăng, giảm khi nồng độ ban đầu của Cr (VI) tăng và chiều cao cột hấp phụ giảm; dung lượng hấp phụ cực đại q0 tăng khi tốc độ dòng chảy, nồng độ ban đầu chất bị hấp phụ và chiều cao cột hấp phụ tăng.
Hình 3.60. Phương trình động học Thomas (a), Yoon – Nelson (b) và Bohart-Adam (c) dạng tuyến tính tại các chiều cao cột hấp phụ khác nhau, nồng độ Cr (VI) ban đầu
Co = 4,97 mg/g, Q = 0,5 ml/phút
Theo mô hình Yoon – Nelson, hệ số KYN tăng khi tốc độ dòng chảy tăng và giảm khi nồng độ ban đầu của Cr (VI) tăng và chiều cao cột hấp phụ giảm; thời gian (τ) tại thời điểm nồng độ Cr (VI) thoát ra đạt 50% tăng khi nồng độ ban đầu của Cr (VI) và chiều cao cột hấp phụ tăng; tốc độ dòng chảy giảm.
Theo mô hình Bohart – Adam, hệ số KB tăng khi tốc độ dòng chảy và chiều cao cột hấp phụ tăng và giảm khi nồng độ ban đầu của Cr (VI) tăng, giá trị nồng độ chất bị hấp phụ bão hòa (N0) tăng khi nồng độ ban đầu Cr (VI) và tốc độ dòng chảy tăng; chiều cao cột hấp phụ giảm.
(b)
102
Bảng 3.32. Các phương trình động học Thomas, Yoon - Nelson và Bohart-Adam thực nghiệm dạng tuyến tính
Bảng 3.33. Các tham số trong phương trình động học hấp phụ theo tốc độ dòng chảy, nồng độ Cr (VI) ban đầu và chiều cao cột hấp phụ
Biến số Thomas Yoon-Nelson
Co (mg/l) Q (ml/phút) H (cm) KT (ml/phút/mg) qo (mg/g) R 2 KYN (phút-1) τ (phút) R 2 9,99 0,5 0,8 0,12 150,91 0,869 0,12.10-2 3018,3 0,869 4,97 0,5 0,8 0,62 51,08 0,928 0,31.10-2 2053,1 0,928 4,97 1,0 0,8 1,05 65,39 0,911 0,52.10-2 1320,4 0,911 4,97 2,0 0,8 1,20 104,69 0,856 0,60.10-2 1046,9 0,856 4,97 0,5 0,6 0,58 70,51 0,9212 0,29.10-2 2031,3 0,921 4,97 0,5 0,4 0,54 100,31 0,9117 0,26.10-2 2017,4 0,912 Biến số
Thomas Yoon-Nelson Bohart-Adam
Co (mg/l) Q (ml/ phút) H (cm) 9,99 0,5 0,8 y = -0,0012x + 3,6219 y = 0,0012x - 3,6219 y = 0,0012x – 3,6427 4,97 0,5 0,8 y = -0,0031x + 6,3646 y = 0,0031x - 6,3646 y = 0,0031x – 6,3588 4,97 1,0 0,8 y = -0,0052x + 6,8661 y = 0,0052x - 6,8661 y = 0,0051x – 6,8559 4,97 2,0 0,8 y = -0,006x + 6,2816 y = 0,006x - 6,2816 y = 0,0061x – 6,2817 4,97 0,5 0,6 y = -0,0029x + 5,8948 y = 0,0029x - 5,8948 y = 0,0029x - 5,8907 4,97 0,5 0,4 y = -0,0027x + 5,4451 y = 0,0027x - 5,4471 y = 0,0027x - 5,4446
103
Hình 3.61. Phương trình động học Thomas (a), Yoon – Nelson (b) và Bohart – Adam (c) dạng tuyến tính tại các nồng độ ban đầu của Cr (VI),
tốc độ dòng chảy Q = 0,5 ml/phút
Bảng 3.34. Các tham số trong phương trình động học hấp phụ Bohart-Adam theo tốc độ dòng chảy, nồng độ Cr (VI) ban đầu và chiều cao cột hấp phụ
Biến số Bohart-Adam Co (mg/l) Q (ml/phút) H (cm) KB (l/mg.phút) N0 (mg/l) R 2 9,99 0,5 0,8 0,12.10-3 188,64 0,864 4,97 0,5 0,8 0,62.10-3 63,72 0,926 4,97 1,0 0,8 1,03.10-3 83,51 0,913 4,97 2,0 0,8 1,22.10-3 127,95 0,856 4,97 0,5 0,6 0,58.10-3 84,13 0,919 4,97 0,5 0,4 0,54.10-3 125,28 0,909
Từ kết quả nghiên cứu theo mô hình động học, thời gian hoạt động của cột hấp phụ theo mô hình Bohart – dam [52] được xác định, từ đó xác định độ dài tầng chuyển khối theo công thức (3.2) và hiệu suất sử dụng cột (η) theo công thức (3.3) [4]:
104
(3.2)
(3.3)
Trong đó: tb: thời gian tại Ce = 2%.C0 (phút) ts: thời gian tại Ce = 90%.C0 (phút) L: độ dài tầng chuyển khối (cm) η: Hiệu suất sử dụng cột hấp phụ (%)
Bảng 3.35. Độ dài tầng chuyển khối L
Co (mg/l) Q (ml/phút) H (cm) tb (phút) ts (phút) L (cm) η (%) 9,99 0,5 0,8 609 5689 0,71 10,71 4,97 0,5 0,8 788 2764 0,54 32,50 4,97 1,0 0,8 584 1773 0,57 28,75 4,97 2,0 0,8 388 1392 0,58 27,86 4,97 0,5 0,6 681 2794 0,45 24,38 4,97 0,5 0,4 566 2835 0,32 19,98
Kết quả trong bảng 3.35 cho thấy, thời gian hoạt động của cột hấp phụ khá lớn, đạt từ 6,5 ÷ 13,1 giờ, mặc d lượng chất hấp phụ sử dụng rất nhỏ (50 ÷ 100 mg). Điều này chứng tỏ vật liệu compozit PANi – vỏ lạc rất thích hợp để làm vật liệu hấp phụ loại bỏ Cr (VI) ra khỏi môi trường nước.
Kết quả xác định độ dài tầng chuyển khối (L) và hiệu suất sử dụng cột hấp phụ (η) cho thấy, giá trị η tỉ lệ nghịch với nồng độ ban đầu chất bị hấp phụ, tốc độ dòng chảy và tỉ lệ thuận với chiều dài cột hấp phụ. Có nghĩa là thời gian sử dụng cột hấp phụ càng lớn khi tốc độ dòng chảy và nồng độ ban đầu chất bị hấp phụ nhỏ, chiều dài cột hấp phụ lớn. Kết quả này phù hợp với các kết quả thực nghiệm trong phần 3.3.2.1 đến 3.3.2.3 khi nghiên cứu ảnh hưởng của tốc độ dòng chảy, nồng độ ban đầu của chất bị hấp phụ Cr (VI) và khối lượng chất hấp phụ PANi – vỏ lạc.
105
Từ kết quả nghiên cứu mô hình động học của quá trình hấp phụ Cr (VI) trên PANi – vỏ lạc, xác định được các thông số kĩ thuật để áp dụng vào một hệ xử lý kim loại nặng cụ thể trong thực tế. Tại điều kiện tốc độ dòng chảy 0,5 ml/phút, nồng độ ban đầu 4,97 mg/l, chiều cao cột hấp phụ 0,8 cm hiệu suất sử dụng cột hấp phụ lớn nhất (32,5%). Đây cũng là mục tiêu chính của phần nghiên cứu hấp phụ động.
106
KẾT LUẬN
1. Đã tổng hợp thành công vật liệu compozit P Ni trên cơ sở các PPNN là m n cưa, vỏ đỗ, vỏ lạc, vỏ trấu và rơm bằng phương pháp hóa học. Cấu trúc và tính chất của compozit được khẳng định bằng các phương pháp phân tích đặc trưng cấu trúc cho thấy: compozit tồn tại ở dạng sợi với kích cỡ 10 ÷ 50 nm; các vật liệu compozit có nhiệt độ phân hủy nhỏ hơn và độ dẫn điện của compozit dạng muối giảm xuống 31÷ 46 lần so với PANi riêng rẽ; compozit có cấu trúc dạng lỗ xốp với diện tích bề mặt riêng nhỏ (2 m2/g đối với PANi-vỏ lạc).
2. Nghiên cứu khả năng hấp phụ của các ion kim loại nặng Cr (VI), Pb (II) và Cd (II) trên các compozit đã tổng hợp cho thấy: Khả năng hấp phụ Cr (VI) trên các compozit tốt nhất ở môi trường axit mạnh (pH ≤ 3), hấp phụ Pb (II) và Cd (II) tốt nhất ở môi trường axit yếu (pH = 5÷ 6); thời gian đạt cân bằng hấp phụ t = 30 ÷ 40 phút; dung lượng hấp phụ tăng khi nồng độ ban đầu chất bị hấp phụ tăng; Hiệu suất hấp phụ phụ thuộc vào bản chất của chất hấp phụ, trong đó compozit P Ni – vỏ lạc có khả năng hấp phụ tốt nhất, với dung lượng hấp phụ Cr (VI), Pb (II) và Cd (II) cực đại tương ứng là 90,91; 196,08 và 140,85 mg/g;
3. Sự hấp phụ các ion kim loại Cr (VI), Pb (II) và Cd (II) trên các vật liệu compozit tuân theo mô hình hấp phụ đẳng nhiệt Langmuir và Freundlich. Quá trình hấp phụ của các ion kim loại tuân theo mô hình động học hấp phụ bậc 2: Tốc độ hấp phụ của vật liệu tại thời điểm t phụ thuộc vào bình phương dung lượng đã hấp phụ của vật liệu hấp phụ; đây là quá trình hấp phụ vật lý (Ea < 25 kJ/mol) và tự diễn biến ở điều kiện tiêu chuẩn với ∆G0
< 0.
4. Các vật liệu đã tổng hợp có khả năng hấp phụ các ion kim loại nặng Cr (VI), Pb (II) và Cd (II) trong mẫu thực với hiệu suất khá cao, trong đó, P Ni-vỏ lạc có khả năng hấp phụ các ion này tốt hơn P Ni-vỏ đỗ và P Ni-m n cưa.
5. Quá trình hấp phụ Cr (VI) trên PANi – vỏ lạc tuân theo mô hình động học Thomas, Yoon-Nelson, Bohart-Adam. Thời gian hoạt động của cột hấp phụ tăng khi tốc độ dòng chảy và nồng độ ban đầu Cr (VI) nhỏ; chiều dài cột hấp phụ lớn. Hiệu suất sử dụng cột hấp phụ lớn nhất tại điều kiện tối ưu: tốc độ dòng chảy 0,5 ml/phút, nồng độ ban đầu 4,97 mg/l và chiều cao cột hấp phụ 0,8 cm là 32,5%.
107
DANH MỤC CÁC CÔNG TRÌNH KHOA HỌC ĐÃ CÔNG BỐ
1. Bùi Minh Quý, Vi Thị Thanh Thủy, Vũ Quang T ng, Phan Thị Bình, Tổng hợp và
nghiên cứu tính chất compozit PANi – m n cưa, Tạp chí Khoa học và Công nghệ -
ĐHTN, 2012, 93(05), 11 – 15.
2. Bùi Minh Quý, Phan Thị Bình, Vũ Thị Thái Hà, Vũ Quang T ng, Tổng hợp và
nghiên cứu khả năng hấp phụ Cr (VI) của compozit PANi – vỏ lạc, Tạp chí Hóa
học, 2012, 50(3), 389 – 393.
3. Bùi Minh Quý, Vũ Thị Thái Hà, Vũ Quang T ng, Nguyễn Như Lâm, Đào Việt
Hùng, Nghiên cứu khả năng hấp phụ Cd (II) của compozit polyanilin – vỏ lạc, Tạp chí Khoa học và Công nghệ - ĐHTN, 2012, 96(08), 85 - 89,
4. Bùi Minh Quý, Phan Thị Bình, Nguyễn Thị Liên, Vũ Quang T ng, Tổng hợp và
nghiên cứu khả năng hấp phụ Cr (VI) của compozit PANi – vỏ đỗ, Tạp chí Hóa
học, 2012, 50 (4B), 149 – 152.
5. Thi Binh Phan, Thi Tot Pham, Thi Xuan Mai, Minh Quy Bui and Thi Thanh Thuy Mai, Synthesis and characterization of nanostructured composite based on rice
husk and polyaniline, Processdings of the sixth international workshop on
Advanced Materials Science and Nanotechnology, Halong City, Vietnam, 2012,
334 – 336.
6. Thi Binh Phan, Thi Tot Pham, Thi Xuan Mai and Minh Quy Bui, Adsorption of Pb (II) and Cd (II) ions onto nanostructured composite based on peanut shell and polyaniline, Processdings of the sixth international workshop on Advanced
Materials Science and Nanotechnology, Halong City, Vietnam, 2012, 329 – 333.
7. Phan Thi Binh, Pham Thi Tot, Mai Thi Thanh Thuy, Mai Thi Xuan, Bui Minh Quy, Nguyen The Duyen, Adsorption of Pb (II) and Cd (II) ions onto
nanostructured sawdust polyaniline composite, Vietnam Journal of Chemistry,
2013, 51(2), 239 – 245.
8. Phan Thi Binh, Pham Thi Tot, Mai Thi Thanh Thuy, Mai Thi Xuan, Bui Minh Quy, Nguyen The Duyen, Nanostructured composite based on polyaniline and rice
raw for removal of lead (II) and cadimium(II) from solution, Asian Jounal of
108
9. Bùi Minh Quy, Phan Thi Binh, Vu Duc Loi, Pseudo – isotherms for cadmium ion
onto peanut shell – polyaniline nanocompsite, Vietnam Journal of Chemistry, 2013,
51(5), 529 – 533.
10. Bui Minh Quy, Vu Quang Tung, Hoang Thi Huong, Nguyen Thi Ngan, Phan Thi Binh, Vu Duc Loi, Pseudo – isotherms for lead(II) ion onto bean shell –
polyaniline composite, Vietnam Journal of Chemistry, 2013,51(5A), 130 – 133.
11. Thi Tot Pham, Thi ThanhThuy Mai, Minh Quy Bui, Thi Xuan Mai, Hai Yen Tran, Thi Binh Phan, Nanostructured polyaniline rice husk composite as adsorption
materials synthesized by different methods, Advances in Natural Sciences:
Nanoscience and Nanotechnology, 2014, 5p.
12. Bùi Minh Quý, Vũ Quang T ng, Nguyễn Như Lâm, Trần Thị Thu Hà, Phan Thị Bình, Nghiên cứu khả năng loại bỏ Cr (VI) ra khỏi dung dịch nước của vật liệu
compozit PANi – vỏ lạc theo phương pháp hấp phụ động, Tạp chí Hóa học, 2014,
109
NHỮNG ĐÓNG GÓP MỚI CỦA LUẬN ÁN
1. Lần đầu tiên đã nghiên cứu tổng hợp và sàng lọc thành công một số vật liệu compozit PANi – PPNN trên các phụ phẩm nông nghiệp, như: P Ni – vỏ lạc, PANi – vỏ đỗ và PANi – rơm theo phương pháp hóa học. Các vật liệu compozit có kích cỡ nanomet và cấu trúc dạng sợi. Trong đó lựa chọn được compozit PANi – vỏ lạc có khả năng hấp phụ tốt nhất, với dung lượng hấp phụ Cr (VI), Pb (II) và Cd (II) cực đại đạt tương ứng 90,91; 196,08 và 140,85 mg/g; thời gian đạt cân bằng hấp phụ từ 30 ÷ 40 phút.
2. Đã nghiên cứu và thiết lập được mô hình hấp phụ đẳng nhiệt và xác định được các tham số trong mô hình, quá trình hấp phụ của Cr (VI), Pb (II) và Cd (II) trên các vật liệu hấp phụ compozit tuân theo phương trình động học hấp phụ bậc 2, đây là quá trình tự diễn biến (∆G0 < 0 ).
3. Đã nghiên cứu và thiết lập được mô hình Thomas, Yoon-Nelson, Bohart –Adam áp dụng cho quy trình xử lý Cr (VI) trên compozit PANi – vỏ lạc, xác định được các tham số trong mô hình để áp dụng trong thực tiễn,điều kiện tối ưu cho quy trình tại điều kiện tốc độ dòng chảy 0,5 ml/phút, nồng độ ban đầu 4,97 mg/l và chiều cao cột hấp phụ 0,8 cm đạt hiệu suất sử dụng cột hấp phụ cao nhất (32,5%).
110
TÀI LIỆU THAM KHẢO
1 Lê Mậu Quyền, Hóa học vô cơ, NXB Khoa Học và Kỹ Thuật, 2006,Hà Nội
2 Trịnh Thị Thanh, Độc học, môi trường và sức khỏe con người, NXB Đại học Quốc
gia, 2003, Hà Nội.
3 Thi Binh Phan, Ngoc Que Do and Thi Thanh Thuy Mai, The adsorption ability of Cr (VI) on sawdust–polyaniline nanocomposite, Adv. Nat. Sci.: Nanosci.
Nanotechnol, 2010, 1(3), 06p.
4 Lê Văn Cát, Hấp phụ và trao đổi ion trong kĩ thuật xử lý nước thải, NXB Thống kê, 2002, Hà Nội.
5 Lê Văn Cát, Cơ sở hóa học và kĩ thuật xử lý nước, NXB Thanh niên, 1999, Hà Nội.
6 R. Asari and N.Khoshbakht Fahim, Application of polypyrole coated on wood sawdust for removal of Cr (VI) ion from aqueous solutions, Journal of
Enggineering Sciece and Technology, 2008, 67, 367-374.
7 Reza Ansari, Application of polyaniline and its composites for adsorption/ recovery of chromium (VI) from aqueous solutions,Acta Chim. Slov. 2006, 53, 88-94.
8 R. Ansari and F. Raofie, Removal of Mercuric Ion from Aqueous Solutions Using Sawdust Coated by Polyaniline,E-Journal of Chemistry, 2006, 3(10), 35-43.
9 R. Ansari and F. Raofie, Removal of Lead Ion from Aqueous Solutions Using Sawdust Coated by Polyaniline,E-Journal of Chemistry, 2006, 3(10), 49-59. 10 Reza Ansari; Amin Pornahad, Removal of Ce(IV) Ions from Aqueous Solutions
Using Sawdust Coated by Electroactive Polymers, Separation Science and
Technology, 2010, 45(16), 2376- 2382.
11 Deli Liu; Dezhi Sun; Yangqing Li, Removal of Cu(II) and Cd (II) From Aqueous Solutions by Polyaniline on Sawdust, Separation Science and Technology, 2011,
46(2), 321 – 329.
12 M. S. Mansour, M. E. Ossman, H. A. Farag, Removal of Cd (II) ion from waste water by adsorption onto polyaniline coated on sawdust, Desalination, 2011, 272, 301–305.
13 Mohsen Ghorbani, Mohammad Soleimani Lashkenari, Hossein Eisazadeh, Application of polyaniline nanocomposite coated on rice husk ash for removal of Hg(II) from aqueous media, Synthetic Metals, 2011, 161, 1430– 1433.
111
14 Reza Katal, H. Pahlavanzadeh,Zn (II) Ion Removal From Aqueous Solution By Using a Polyaniline Composite, J. Vinyl & Aditive Technology, 2011, 17(2), 138-145.
15 Hoàng Xuân Lượng, Cơ học vật liệu composite, Học viện Kỹ thuật quân sự (tài liệu lưu hành nội bộ), 2003, Hà Nội.
16 GS.TSKH. Nguyễn Văn Thái (chủ biên), Nguyễn Hữu Dũng, Phạm Quang Lộc, B i Chương, Nguyễn nh Dũng, Công nghệ vật liệu, NXB Khoa học và Kỹ thuật,
2006, Hà Nội.
17 Nguyễn Hoa Thịnh, Nguyễn Đình Đức, Vật liệu compozit - cơ học và công nghệ, Nhà xuất bản Khoa học và Kỹ thuật, Hà Nội, 2001.
18 Nguyễn Việt Bắc, Chu Chiến Hữu, Bùi Hồng Thỏa, Phạm Minh Tuấn, Polyanilin: Một số tính chất và ứng dụng, Tạp chí khoa học và công nghệ, 2005, 43, 240 – 243.
19 Nguyễn Tuấn Dung, Hồ Thu Hương, Vũ kế Oánh, Tô Thị Xuân Hằng, Tổng hợp hóa học polyanilin hoạt hóa bằng camphosulfonic axit, Tạp chí hóa học, 2009, 47 (4A), 44 – 48. 20 Faris Yilmaz, Polyaniline: synthesis, characterisation, solution properties and
composites, Ph.D thesis, Middle East technical University, 2007, Cyprus.
21 Vahid Mottaghitalab, Development and characterisation of polyaniline – carbon nanotube conducting composite fibres, Ph.D thesis, University of Wollongong,
2006, Australia.
22 M. S. Rahmanifar, M. F. Mousavi, M. Shamsipur, M. Gheami, What is the limiting factor of the cycle – life of Zn – polyaniline rechargeable batteries, J.
Power Sources, 2004, 132, 296 – 300.
23 Arkady A. Karyakin, Lylia V. Lukachova, Elena E. Karyakina, Andrey V. Orlov and Galina P. Karpachova, The improvedpotentiometric pH response of electrodes modified with processible polyaniline. Application to glucose biosensor, Anal. Commun., 1999, 36, 153–156.
24 Denise Alves Fungaro, Sulfonated Polyaniline coated mercury film electrodes for voltammetric analysis of metal in water, Sensors, 2001, 1, 206 – 214.
25 M.Özden, E. Ek_Inc_I and A. E. Karagözler, Electrochemical Preparation and Sensor Properties of Conducting Polyaniline Films, Turk J. Chem, 1999, 23, 89-98. 26 Nguyễn Hải Bình, Nguyễn Lê Huy, Vũ Thị Hồng Ân, Nguyễn Ngọc Hưng, Vũ