... 17) Chứng minh ( 20 ) Chứng minh x2 + ≥ ∀x ∈ ¡ ≤ ) x +2 x+8 ≥ ∀x >1 21 ) Chứng minh x −1 22 ) Cho n số a1 , a2 , , an không âm thoả a1 + a2 + + an = Chứng minh n −1 a1.a2 + a1.a3 + + an−1.an ... Chứng minh rằng: x y z 1 + + ≤ (ĐH 20 05) 2x + y + z x + y + z x + y + 2z x2 + x x x 12 15 20 x x x 42) Chứng minh với x ∈ ¡ ÷ + ÷ + ÷ ≥ + + (ĐH 20 05) 5 4 43) Cho x, y, ... 35) Cho số dương a, b, c thỏa a.b.c=1 Tìm GTNN biểu thức: bc ca ab + + (ĐHNN – 20 00) 2 a b + a c b c + b a c a + c 2b 36) Chứng minh bất đẳng thức sau với giả thiết a, b, c > : P= a b5 c + + ≥...
Ngày tải lên: 06/07/2014, 17:18
... 0: xa2 + 2b2 2xab 2b2 + xc2 2xbc d2 (5 x)c2 + 2( 5 x)cd d2 2( 5 x)da (5 x)a2 + Cộng bốn bất đẳng thức: 5a2 + 4b2 + 5c2 + d2 2x(ab + cd) + Ta chọn x, cho 2x = 2( 5 x) Suy x = 2( 5 x)(cd ... + 2b b + 2c c + 2a 16 Chứng minh Ta có 9a3 + a(a + 2b) 6a2 a + 2b 9b3 + b(b + 2c) 6b2 b + 2c c3 + c(c + 2a) 6c2 c + 2a 2( a2 + b2 + c2 2( ab + bc + ca) Từ bất đẳng thức ta có: b3 c3 a2 + b2 ... y), y > 0: c2 2( x y)ac c2 (x y)b2 + 2( x y)bc ya2 + yb2) 2yab (x y)a2 + Cộng ba bất đẳng thức: x(a2 + b2) + c2 2( x y)(ac + bc) + 2yab + + 8x Ta chọn y , cho 2y = 2( x y) Suy 2y + y = x,...
Ngày tải lên: 16/07/2014, 18:03
Bài tập sử dụng bất đẳng thức cosi giải phương trình chứa nghiệm kép có đáp án thầy đoàn trí dũng
Ngày tải lên: 17/09/2016, 10:05
Bài tập sử dụng bất đẳng thức cosi giải phương trình chứa nghiệm kép thầy đoàn trí dũng
Ngày tải lên: 17/09/2016, 10:05
HD học sinh một số PP sử dụng bất đẳng thức COSI dạng nghịch đảo
... + +2 x y2 Với GT ta cần tiêu hoá hết lợng x2y2 Dự đoán điểm rơi : x = y = 10 x2 y2 = Khi Giải : Ta có B = ( x y + Có x y + 1 = 2 16 25 6 x y 25 5 )+ 2 256 x y 25 6 x y 1 x2 y2 = 2 2 25 6 x y 25 6 ... chơng trình dạy bất đẳng thức là: "Hớng dẫn học sinh số phơng pháp sử dung bất đẳng thức Cô-Si dạng nghịch đảo" II- Mục đích nghiên cứu: Chỉ số phơng pháp để áp dụng bất đẳng thức Cô-Si dạng ... b2 c d + + + a+b+c+d b c d a Nhận xét: Nhận thấy dấu xảy a = b = c = d Khi : a = b b Giải : Ta có Tơng tự ta có : : a2 a2 +b b = 2a b b b2 +c c 2b c2 +d d d2 +a a Nh : Hay 2c 2d a2 b2...
Ngày tải lên: 03/07/2014, 16:01
Sử dụng bất đẳng thức Cosi để giải toán.
... biểu thức A = (3-x)(4-y)(2x+3y) biết x y Ta có: A = ( 6-2x)( 12- 3y)(2x+3y) 2. 3 Và 6-2x 0; 12- 3y ; 2x+3y x y Mà 6-2x+ 12- 3y+2x-3y=18 không đổi Suy A lớn khi: 6-2x= 12- 3y=2x-3y x=0 y =2 Vạy ... trị nhỏ chúng II Một số ví dụ 1 .Sử dụng bất đẳng thức côsi chứng minh bất đẳng khác Ví dụ 1: Chứng minh (a+b)(a+c)(b+c) 8abc (a,b,c > 0) áp dụng bất đẳng thức côsi cho hai số a,b> Ta có: a + ... abck l m (áp dụng bất đẳng thức côsi cho số abm,klc,abc) Từ ta có điều phải chứng minh -2- Sử dụng bất đẳng thức côsi tìm giá trị lớn nhất,nhỏ Ví dụ 3: Tìm giá trị nhỏ Y = 4x2-3x3 với x 4 3x...
Ngày tải lên: 13/07/2014, 04:00
Kỹ thuật sử dụng bất đẳng thức côsi
... rằng: a b2 b2 c c a 8a 2b 2c a, b, c Giải Sai lầm thường gặp: Sử dụng: x, y x2 - 2xy + y2 = ( x- y )2 ≥ x2 + y2 ≥ 2xy Do đó: a b 2ab 2 2 2 2 2 b c 2bc a b ... a2 1 b2 c 2 b c a Giải Sai lầm thường gặp: S 33 a 12 b2 12 c2 12 36 a 12 b2 12 c2 12 b c a b b c a 36 a 12 ... toán sử dụng BĐT Cô Si toán nói mà phải qua phép biển đổi đến tình thích hợp sử dụng BĐT Cô Si Trong toán dấu “ ≥ ” đánh giá từ TBC sang TBN = 2. 2 .2 gợi ý đến việc sử dụng bất đẳng thức Côsi...
Ngày tải lên: 07/02/2017, 12:11
skkn kinh nghiệm hướng dẫn học sinh phương pháp sử dụng bất đẳng thức cô si dạng nghịch đảo
... chương trình dạy bất đẳng thức là: "Hướng dẫn học sinh số phương pháp sử dung bất đẳng thức Cô-Si dạng nghịch đảo" II- Mục đích nghiên cứu: Chỉ số phương pháp để áp dụng bất đẳng thức Cô-Si dạng ... minh bất đẳng thức tìm cực trị Hướng dẫn học sinh sử dụng vào giải toán chứng minh bất đẳng thức tìm cực trị (đối với học sinh giỏi lớp 8-9 ) III- Phương pháp nghiên cứu +Chứng minh bất đẳng thức ... ) 2 Nhận xét : Ta có B = x y + x y + Với GT ta cần tiêu hoá hết lượng x2y2 Dự đoán điểm rơi : x = y = 11 x2 y2 = Khi 1 = 2 16 25 6 x y 25 5 2 Giải : Ta có B = ( x y + 25 6 x y ) + 25 6 x y 2 Có...
Ngày tải lên: 18/12/2014, 09:05
Giáo trình hướng dẫn cách sử dụng bất đẳng thức cauchy và điều kiện để thỏa đẵng thức cauchy phần 2 pdf
... (eiz + e-iz) = ( + )z n = - z2 + z4 + = 2! 4! n! n! n n (1) n n (2n)! z n =0 + Tơng tự khai triển iz -iz 1 (e - e ), ch z = (ez + e-z), sh z = (ez - e-z) sin z = 2i 2 + m ( m 1) m(m 1) ( m ... 1) ( m n + 1) n (1 + z)m = + mz + z + = z n! 2! n =0 Với m = 1 = - z + z2 - = + (1) n n z 1+ z n =0 Thay z z2 + = - z2 + z4 - = ( 1) n z n + z2 n =0 Suy d 1+ = z ln(1 + z) = z n =0 (1) ... đợc tính theo công thức sau n + cn = lim n + c n +1 n (4 .2. 2) | cn | Chứng minh Lập luận tơng tự chuỗi luỹ thừa thực Kí hiệu + S(z) = c n =0 n (z a ) n với z B(a, R) (4 .2. 3) Kết hợp tính...
Ngày tải lên: 23/07/2014, 08:20
phương pháp tiếp tuyến giải bất đẳng thức 2
... thành: (1 2a )2 (1 2b )2 (1 2c )2 (1 a ) a (1 b )2 b (1 c )2 c Lời giải: Ta giả sử 4a a 4b2 4b 4c 4c 2a 2a 2b2 2b 2c 2c 1 27 27 ... ( c ) 2a 2a 2b 2b 2c 2c Trong f ( x ) với x (0;1) 2x2 2x 1 54 x 27 Tiếp tuyến đồ thị hàm số y=f(x) điểm có hoành độ x y 25 2 54 x 27 2( 54 x 27 x 1) 2( 3x 1) ... Ta có: 25 25 (2 x x 1) 25 (2 x x 1) 54( a b c) 81 27 f ( a ) f ( b ) f (c ) đpcm 25 Chú ý: Với toán ta sử dụng Phương pháp hệ số bất định để chứng minh (ví dụ 1.6. 12/ trang68...
Ngày tải lên: 18/08/2014, 14:16
Giải hệ phương trình bằng cách sử dụng bất đẳng thức
... x 2x 2 2016 Ta có xy 20 16 1 x 1 22 016 2 xy 20 16 y 2y 2 2016 1 xy 20 16 y 1 22 016 x2 y xy 20 16 22 016 xy 20 16 22 016 xy xy Mà x y xy Để đẳng thức ... tục sử dụng bất đẳng thức a n 1 na đẳng thức a 1 2a n 1 n 1 với n ta đƣợc lần lƣợt bất 1 b2 1 2b 27 27 Đẳng thức xảy a b Suy ta có bất đẳng thức a 1 2a ... minh hai bất đẳng thức kinh điển bất đẳng thức AM – GM, bất đẳng thức Bunhia–Cauchy – Schwart (B – C – S), với bất đẳng thức Minkowski, bất đẳng thức giá trị tuyệt đối số bổ đề bất đẳng thức hay...
Ngày tải lên: 07/03/2017, 10:05
Giải hệ phương trình bằng cách sử dụng bất đẳng thức
... x 2x 2 2016 Ta có xy 20 16 1 x 1 22 016 2 xy 20 16 y 2y 2 2016 1 xy 20 16 y 1 22 016 x2 y xy 20 16 22 016 xy 20 16 22 016 xy xy Mà x y xy Để đẳng thức ... tục sử dụng bất đẳng thức a n 1 na đẳng thức a 1 2a n 1 n 1 với n ta đƣợc lần lƣợt bất 1 b2 1 2b 27 27 Đẳng thức xảy a b Suy ta có bất đẳng thức a 1 2a ... minh hai bất đẳng thức kinh điển bất đẳng thức AM – GM, bất đẳng thức Bunhia–Cauchy – Schwart (B – C – S), với bất đẳng thức Minkowski, bất đẳng thức giá trị tuyệt đối số bổ đề bất đẳng thức hay...
Ngày tải lên: 08/03/2017, 02:06
Kĩ thuật sử dụng bất đẳng thức cauchy-schwarz
... b2 a b2 Ta ý đến đẳng thức sau 4a2+b2+c2=2a2+(a2+b2)+(a2+c2) sử dụng bất đẳng thức Cauchy-Schwarz ta phân tích sau ( a b c) a2 b2 c2 2 2 2 a b c 2 a ( a b ) ( a c ) 2a ... ý đẳng thức xảy điểm (a,b,c)=(t,t,0) (t R) hoán vị Ta ý đến đẳng thức 3a2+(b+c )2= (2a2+2bc)+(a2+b2+c2) Từ sử dụng bất đẳng Cauchy-Schwarz ta a2 a2 a2 1 ( ) 2 2 2 3a (b c) (2a 2bc) ... ) 2a 2bc a b c Sử dụng ước lượng ta a2 a2 a2 a2 ( ( 2 ) ( 1) 3a2 (b c )2 2a 2bc a b c 2a bc a2 b2 c2 1 Cuối ta cần chứng minh 2a bc 2b ca 2c ab Bất đẳng...
Ngày tải lên: 12/09/2012, 16:21
Kỹ thuật sử dụng bất đẳng thức cô si
... 2: Chứng minh rằng: a b2 b2 c bc ca ab a b c a b c c2 a2 b c a a b c Dấu “ = ” xảy a = b = c abc Giải 16 Áp dụng BĐT Côsi ta có: a2 b2 b2 c2 b2 c2 c2 a2 c2 a2 a2 b2 a b2 b2 c b2 c c2 a2 a2 ... b2 b2 c c a 8a 2b 2c a, b, c Giải Sai lầm thường gặp: Sử dụng: x, y x2 - 2xy + y2 = ( x- y )2 ≥ a b2 2ab b2 c 2bc c a 2ca x2 + y2 ≥ 2xy Do đó: a b2 b2 c c a Ví dụ: 8a 2b 2c a, b, c (Sai) 24 = 2. 3.4 ... c (Sai) 24 = 2. 3.4 ≥ ( -2) (-5).3 = 30 ( Sai ) Lời giải đúng: Sử dụng BĐT Cô Si: x2 + y2 ≥ a b2 bc c2 a2 = 2| xy| ta có: ab b2 c x2 y 2 ca a b2 b2 c c a 8| a 2b2c2 | 8a 2b2c2 a, b, c (Đúng) Bình...
Ngày tải lên: 20/09/2012, 17:34
Đề tài NCKH: Sử dụng bất đẳng thức trong giải toán THCS
... a2+b2+c2+d2+e2- ab-ac-ad ae ( 4a2+4b2+4c2+4d2+4e2- 4ab-4ac-4ad 4ae) = = = [(a2+4b2+4ab)+(a2+c2+4ac)+(a2+4d2+4ad)+(a2+4e2+4ae)] [(a+2b )2+ (a+2c )2+ (a+2d )2+ (a+2e )2] Do (a+2b )2 (a+2c )2 (a+2d )2 ... (1-y2).x +4y2 Ta thấy (y2+1 )2 x2+ 4y (1-y2).x +4y2 tam thức bạc hai biến x a= (y2+1 )2 >0 Xét = [2 (1-y2) ]2- (y2+1 )2. 4y2= -16 y2 y x2 y4 +2( x2 +2) y2+4xy +x2 - 4xy3 x,y x2 y4 +2( x2 +2) y2+4xy +x2 ... Các Bất đẳng thức thờng dùng Kỹ biến đổi tơng đơng Bất đẳng thức Các HĐ thức 3- Bài tập mẫu Bài Chứng minh : x2+2y2+2z2 2xy +2yz+2z-1 (*) Giải (*) x2+2y2+2z2 -2xy -2yz-2z +1 (x2-2xy+y2)+(y2-2yz+z2)+(z2-2z+1)...
Ngày tải lên: 08/11/2013, 13:11
Gián án Sử dụng bất đẳng thức Bunhiacopxki
... y4 + z4 Lời giải: Từ giả thiết 42= (xy+yz+zx )2 ≤ (x2 +y2 +z2)(y2+z2+x2) Suy ra: (x2+y2+z2 )2 ≥ 42 ⇒ ( 12 + 12 + 12 )( x + y + z ) ≥ 16 SÁNG KIẾN KINH NGHIỆM NĂM 20 09 x4 + y4 + z ≥ MinA = Giáo viên: ... DUNG PHƯƠNG PHÁP NGHIÊN CỨU SỬ DỤNG BẤT ĐẲNG THỨC BUNHIACOPSKI ĐỂ GIẢI MỘT SỐ BÀI TOÁN CỰC TRỊ ĐẠI SỐ Sử dụng kết quả: a Nếu a1 x1 + a x + + a n x n = C , C số C2 Min( x + x + + x ) = 2 a1 ... Một số tập áp dụng Cho số x, y thỏa mãn 2x + 5y = Tìm giá trị nhỏ của: a/ A=x2+y2 b/ B=2x2+5y2 Cho x, y, z ≥ thỏa mãn điều kiện x + y + z = Tìm giá trị nhỏ biểu thức a/ A=x2+y2+z2 b/ B=x4+y4+z4...
Ngày tải lên: 03/12/2013, 15:11
Tài liệu Kỹ thuật sử dụng bất đẳng thức cô-si docx
... 2: Chứng minh rằng: a b2 b2 c bc ca ab a b c a b c c2 a2 b c a a b c Dấu “ = ” xảy a = b = c abc Giải 16 Áp dụng BĐT Côsi ta có: a2 b2 b2 c2 b2 c2 c2 a2 c2 a2 a2 b2 a b2 b2 c b2 c c2 a2 a2 ... b2 b2 c c a 8a 2b 2c a, b, c Giải Sai lầm thường gặp: Sử dụng: x, y x2 - 2xy + y2 = ( x- y )2 ≥ a b2 2ab b2 c 2bc c a 2ca x2 + y2 ≥ 2xy Do đó: a b2 b2 c c a Ví dụ: 8a 2b 2c a, b, c (Sai) 24 = 2. 3.4 ... c (Sai) 24 = 2. 3.4 ≥ ( -2) (-5).3 = 30 ( Sai ) Lời giải đúng: Sử dụng BĐT Cô Si: x2 + y2 ≥ a b2 bc c2 a2 = 2| xy| ta có: ab b2 c x2 y 2 ca a b2 b2 c c a 8| a 2b2c2 | 8a 2b2c2 a, b, c (Đúng) Bình...
Ngày tải lên: 12/12/2013, 22:15