Chơng 4. Chuỗi Hàm Phức Và Thặng D Trang 60 Giáo Trình Toán Chuyên Đề > 0 : n N , z D, | z - a | | u n (z) - u n (a) | < / 3N Suy ra z D, | z - a | | S(z) - S(a) | | S(z) - S n (z) | + = N 0k nn |)a(u)z(u| + | S(a) - S n (a)| < Vậy hàm S(z) liên tục trên miền D. 2. Tích phân từng từ Nếu n , u n (z) liên tục trên đờng cong trơn từng khúc, nằm gọn trong miền D và )z(S)z(u D 0n n = + = thì hàm S(z) cũng khả tích trên đờng cong . + = + = = 0n n 0n n dz)z(udz)z(u (4.1.3) Chứng minh Theo tính chất 1. hàm S(z) liên tục và trơn từng khúc nên khả tích trên . Kí hiệu s() = b a dt|)t(| . Do tính hội tụ đều > 0, N > 0 : n > N , z | S(z) - S n (z) | < / s() Suy ra = n 0k n dz)z(udz)z(S dz)z(S)z(S n < 3. Đạo hàm từng từ Nếu n , u n (z) giải tích trong miền D và )z(S)z(u D 0n n = + = thì hàm S(z) cũng giải tích trong miền D. k , )z(S)z(u )k( D 0n )k( n = + = (4.1.4) Chứng minh Với mọi z D, B(z, R) D. Kí hiệu = B + và G = D - B(z, R/2) khi đó n , z )(u n giải tích trong G và z )(S z )(u G 0n n = + = Sử dụng công thức (3.4.3) và công thức (4.1.3) S(z) = + =0n n )z(u = + = 0n n d z )(u i2 1 = d z )(S i2 1 Theo định lý về tích phân Cauchy hàm S(z) giải tích trong miền D và do đó có đạo hàm mọi cấp trên miền D. Kết hợp công thức (3.5.3) và công thức (4.1.3) k , S (k) (z) = + d )z( )(S i2 !k 1k = + = + 0n 1k n d )z( )(u i2 !k = + =0n )k( n )z(u Click to buy NOW! P D F - X C h a n g e V i e w e r w w w . d o c u - t r a c k . c o m Click to buy NOW! P D F - X C h a n g e V i e w e r w w w . d o c u - t r a c k . c o m Chơng 4. Chuỗi Hàm Phức Và Thặng D Giáo Trình Toán Chuyên Đề Trang 61 4. Xác định trên biên Nếu n , u n (z) liên tục trên miền D , giải tích trong miền D và )z(S)z(u D 0n n + = = thì )z(S)z(u D 0n n = + = . Chứng minh Theo nguyên lý cực đại z D, a D : | S(z) - = n 0k k )z(u | | S(a) - = n 0k k )a(u | < Đ2. Chuỗi luỹ thừa phức Chuỗi hàm phức n 0n n )az(c + = = c 0 + c 1 (z - a) + + c n (z - a) n + (4.2.1) gọi là chuỗi luỹ thừa tâm tại điểm a. Định lý Abel Nếu chuỗi luỹ thừa hội tụ tại điểm z 0 a thì nó hội tụ tuyệt đối và đều trong mọi hình tròn B(a, ) với < | z 0 - a |. Chứng minh Do chuỗi số phức n 0 0n n )az(c + = hội tụ nên +n lim c n (z 0 - a) n = 0. Suy ra M > 0 sao cho n , | c n (z 0 - a) n | M Với mọi z B(a, ) đặt q = | z - a | / | z 0 - a | < 1 ta có n , z B(a, ), | c n (z - a) n | = | c n (z 0 - a) n | n 0 az az Mq n Do chuỗi số dơng + = 0n n q hội tụ, theo tiêu chuẩn Weierstrass suy ra chuỗi luỹ thừa hội tụ tuyệt đối và đều. Hê quả 1 Nếu chuỗi luỹ thừa phân kỳ tại z 1 thì nó phân kỳ trên miền | z - a | > | z 1 - a | Chứng minh Giả sử trái lại chuỗi luỹ thừa hội tụ tại z : | z - a | > | z 1 - a |. Từ định lý suy ra chuỗi luỹ thừa hội tụ tại z 1 . Mâu thuẫn với giả thiết. Hệ quả 2 Tồn tại số R 0 sao cho chuỗi luỹ thừa hội tụ trong đờng tròn | z - a | = R và Click to buy NOW! P D F - X C h a n g e V i e w e r w w w . d o c u - t r a c k . c o m Click to buy NOW! P D F - X C h a n g e V i e w e r w w w . d o c u - t r a c k . c o m Chơng 4. Chuỗi Hàm Phức Và Thặng D Trang 62 Giáo Trình Toán Chuyên Đề phân kỳ ngoài đờng tròn | z - a | = R. Chứng minh Rõ ràng chuỗi luỹ thừa luôn hội tụ tại z = 0 và phân kỳ tại z = . Kí hiệu R 1 = Max{ 3 + : chuỗi luỹ thừa hội tụ trong | z - a | < } R 2 = Min{ 3 + : chuỗi luỹ thừa phân kỳ ngoài | z - a | < } Ta có R 1 = R 2 = R Số R gọi là bán kính hội tụ còn hình tròn B(a, R) gọi là hình tròn hội tụ của chuỗi luỹ thừa. Nếu D là miền hội tụ của chuỗi luỹ thừa thì ta luôn có B(a, R) D B (a, R) Hệ quả 3 Bán kính hội tụ đợc tính theo một trong các công thức sau đây R = +n lim 1n n c c + = +n lim n n |c| 1 (4.2.2) Chứng minh Lập luận tơng tự chuỗi luỹ thừa thực. Kí hiệu S(z) = + = 0n n n )az(c với z B(a, R) (4.2.3) Kết hợp các tính chất của hàm luỹ thừa với các tính chất của chuỗi hội tụ đều ta có các hệ quả sau đây. Hệ quả 4 Hàm S(z) liên tục trong hình tròn B(a, R) Chứng minh Suy ra từ tính liên tục của hàm luỹ thừa và chuỗi hội tụ đều. Hệ quả 5 Hàm S(z) khả tích trên đờng cong trơn từng khúc, nằm gọn trong B(a, R) dz)z(S = + = 0n n n dz)az(c (4.2.4) Chứng minh Suy ra từ tính khả tích của hàm luỹ thừa và công thức tích phân từng từ. Hệ quả 6 Hàm S(z) giải tích trong hình tròn B(a, R) k , S (k) (z) = + = + kn kn n )az(c)1kn) (1n(n (4.2.5) Chứng minh Suy ra từ tính giải tích của hàm luỹ thừa và công thức đạo hàm từng từ. Click to buy NOW! P D F - X C h a n g e V i e w e r w w w . d o c u - t r a c k . c o m Click to buy NOW! P D F - X C h a n g e V i e w e r w w w . d o c u - t r a c k . c o m Chơng 4. Chuỗi Hàm Phức Và Thặng D Giáo Trình Toán Chuyên Đề Trang 63 Hệ quả 7 k , c k = ! k 1 S (k) (a) (4.2.6) Chứng minh Suy ra từ công thức (4.2.5) với z = a. Ví dụ Chuỗi luỹ thừa + =0n n z hội tụ đều trong hình tròn B(0, 1) đến hàm S(z) = z 1 1 . Suy ra z B(0, 1), + = 0n z 0 n d = + = + + 0n 1n z 1n 1 = z 0 1 d = - ln(1 - z) k , + = + kn kn z)1kn) (1n(n = )k( z1 1 = 1k )z1( !k + , Đ3. Chuỗi Taylor Định lý Cho D = B(a, R), = D + và hàm f liên tục trên D , giải tích trong D. z D, f(z) = + = 0n n n )az(c với c n = + d )a( )(f i2 1 1n , n (4.3.1) Công thức (4.3.1) gọi là khai triển Taylor của hàm f tại điểm a. Chứng minh Với mọi z D cố định. Theo công thức tích phân Cauchy f(z) = d z )(f i2 1 (1) Với ta có q = | z - a | / | - a | < 1 suy ra khai triển z 1 = a az 1 1 a 1 = + = 0n n a az a 1 và z )(f = + = 0n n a az a )(f (2) Do hàm f liên tục nên có module bị chặn trên miền D suy ra M > 0 : , n a az a )(f R M q n Theo tiêu chuẩn Weierstrass chuỗi (2) hội tụ đều trên , do đó có thể tích phân từng từ dọc theo đờng cong . Tích phân từng từ công thức (1) suy ra công thức (4.3.1) Click to buy NOW! P D F - X C h a n g e V i e w e r w w w . d o c u - t r a c k . c o m Click to buy NOW! P D F - X C h a n g e V i e w e r w w w . d o c u - t r a c k . c o m Chơng 4. Chuỗi Hàm Phức Và Thặng D Trang 64 Giáo Trình Toán Chuyên Đề Hệ quả Kết hợp công thức (4.2.6) và (4.3.1) ta có k , c k = ! k 1 f (k) (a) (4.3.2) Nhận xét Theo định lý Cauchy có thể lấy là đờng cong bất kì đơn, kín, trơn từng khúc bao a và z, định hớng dơng và nằm gọn trong B(a, R). Thông thờng, chúng ta khai triển hàm f(z) trong hình tròn B(0, R) chuỗi nhận đợc gọi là chuỗi Maclorinh tơng tự nh hàm thực. Ví dụ 1. e z = 1 + ! 1 1 z + + ! n z n + = + =0n n !n z và e -z = + = 0n n n !n z )1( 2. cos z = 2 1 (e iz + e -iz ) = n nn z) !n )i( !n i ( 2 1 + = 1 - ! 2 1 z 2 + ! 4 1 z 4 + = + = 0n n2 n z )!n2( )1( Tơng tự khai triển sin z = i 2 1 (e iz - e -iz ), ch z = 2 1 (e z + e -z ), sh z = 2 1 (e z - e -z ) 3. (1 + z) m = 1 + mz + !2 )1m(m z 2 + = n 0n z !n )1nm) (1m(m + = + Với m = 1 z 1 1 + = 1 - z + z 2 - = + = 0n nn z)1( Thay z bằng z 2 2 z 1 1 + = 1 - z 2 + z 4 - = + = 0n n2n z)1( Suy ra ln(1 + z) = + z 0 1 d = + = 0n z 0 nn d)1( = 1n 0n n z 1n )1( + + = + arctanz = + z 0 2 1 d = + = 0n z 0 n2n d)1( = 1n2 0n n z 1n2 )1( + + = + Đ4. Không điểm của hàm giải tích Định lý Cho hàm f giải tích trong miền D và dy số (z n ) n hội tụ trên miền D đến điểm a D. Nếu n , f(z n ) = 0 thì R > 0 sao cho z B(a, R), f(z) = 0. Click to buy NOW! P D F - X C h a n g e V i e w e r w w w . d o c u - t r a c k . c o m Click to buy NOW! P D F - X C h a n g e V i e w e r w w w . d o c u - t r a c k . c o m . R /2) khi đó n , z )(u n giải tích trong G và z )(S z )(u G 0n n = + = Sử dụng công thức (3.4.3) và công thức (4.1.3) S(z) = + =0n n )z(u = + = 0n n d z )(u i2 1 . Chuỗi Hàm Phức Và Thặng D Trang 64 Giáo Trình Toán Chuyên Đề Hệ quả Kết hợp công thức (4 .2. 6) và (4.3.1) ta có k , c k = ! k 1 f (k) (a) (4.3 .2) Nhận xét Theo định lý Cauchy có thể. + =0n n !n z và e -z = + = 0n n n !n z )1( 2. cos z = 2 1 (e iz + e -iz ) = n nn z) !n )i( !n i ( 2 1 + = 1 - ! 2 1 z 2 + ! 4 1 z 4 + = + = 0n n2 n z )!n2( )1( Tơng tự