bảng tra đặc trưng hình học của thép chử h

Tài liệu chương 4 Đặc trưng hình học của mặt cắt ngang ppt

Tài liệu chương 4 Đặc trưng hình học của mặt cắt ngang ppt

... thức xác định mô men tĩnh của h nh phẳng và đồng thời cũng là công thức xác định trong tâm của h nh phẳng khi biết mmô men tĩnh và diện tích. Trong tr-ờng h p h nh phẳng bao gồm các h nh ghép ... còn phụ thuộc vào h nh dáng, nghĩa là còn phụ thuộc vào các thông số khác mà ta sẽ nghiên cứu trong ch-ơng này. 1 Mô men tĩnh và trọng tâm của h nh phẳng 1-Mô men tĩnh Xét 1 h nh phẳng có ... khả năng chịu lực của mặt cắt ngang chỉ phụ thuộc vào diện tích của mặt cắt ngang mà không phụ thuộc vào h nh dáng của chúng. Trong các tr-ờng h p chịu lực khác, ngoài diện tích, khả năng chịu...

Ngày tải lên: 14/12/2013, 14:15

5 1,8K 9
Tài liệu Chương 4. đặc trưng hình học của mặt cắt ngang pdf

Tài liệu Chương 4. đặc trưng hình học của mặt cắt ngang pdf

... MCN. Ví dụ thanh tròn rỗng (h nh 4.1a) chịu đợc M z gấp 2 lần thanh tròn đặc cùng diện tích MCN. Thanh h nh chữ nhật đặt đứng (h nh 4.1b) ứng suất nhỏ h n 4 lần khi đặt ngang (h nh 4.1c) với ... h nh h c của mặt cắt ngang Các thuyết bền 27 Chơng 4. đặc trng h nh h c của mặt cắt ngang - Các thuyết bền A. Đặc trng h nh h c của mặt cắt ngang I. Khái niệm Thí nghiệm kéo (nén): khả ... khả năng chịu tải của thanh phụ thuộc vo diện tích mặt cắt ngang (MCN). Thí nghiệm uốn, xoắn, : khả năng chịu lực của thanh không những phụ thuộc vo diện tích MCN, m còn h nh dạng v sự...

Ngày tải lên: 21/01/2014, 08:20

11 1,9K 22
Bài tập Đặc trưng hình học của tiết diện docx

Bài tập Đặc trưng hình học của tiết diện docx

... men quán tính chính trung tâm của tiết diện ghép bằng nhau. N o 24 a a N 20 o Trần Minh Tú - Nguyễn Thị H ờng Bộ môn SBVL - Đại h c Xây dựng 8 Chương 4 Đặc trưng h nh h c của tiết diện ... trục quán tính chính trung tâm và tính các mô men quán tính chính trung tâm của tiết diện ghép như h nh vẽ. 27 100x100x10 N o Trần Minh Tú - Nguyễn Thị H ờng Bộ môn SBVL - Đại h c Xây dựng ... Đại h c Xây dựng 1 - Nếu h nh bị khoét thì diện tích bị khoét mang giá trị âm. 4.1.4. Công thức chuyển trục song song Mặt cắt ngang ngang A trong h trục ban đầu Oxy có các đặc trưng h nh...

Ngày tải lên: 16/03/2014, 15:20

8 4,7K 46
SBVL1   Chương 4:   Đặc Trưng Hình Học Của Tiết Diện

SBVL1 Chương 4: Đặc Trưng Hình Học Của Tiết Diện

... nng chu lc ca thanh phụ thuộc vào diện tích, h nh dáng, cách sắp xếp, của mt ct ngang ã Cỏc i lng m ln ph thuc vo h nh dạng, kích thước của mặt cắt ngang - đặc trưng h nh h c của mặt cắt ngang F y x z y x z F ... Architechture 4.1. Khỏi nim chung ã Kộo nộn ỳng tõm: ng sut, bin dng ph thuc vo din tớch mt ct ngang ã Thanh tiết diện chữ nhật khả năng chịu lực theo hai phng x, y khỏc nhau ã Kh nng chu ... src=" 3H+ Al19+2VcBAABgKvEGBwAAAJA8b3AwaTZ+4leT8Df90+fNPJCZ9LfJqp/33QCAhHiDAwAAAEieNzgAmNYm5W2yBKbF+24AQGq8wQEAAAAkT+AAAAAAkidwAAAAAMkTOAAAAIDkCRwAAABA8gQOAAAAIHkCBwAAAJA8gQMAAABInsABAAAAJE/gAAAAAJIncAAAAADJEzgAAACA5AkcAAAAQPIEDgAAACB5AgcAAACQPIEDoBr19fX19fWZBwAAmKAZpgCg2hQKhQcffHD8Mfd8+c7/e93XzRUkqre3NyKOHj16+PBhs1HNbrzxxlmzZjU0NDQ3N5sNrsAfCxHx7rvvDgwMjDOysbHxhhtuyD63tLSYOigTOACqzrx58y445icv/Uzg+Ehs/NPnTQJXRl9f39tvv/3SSy91d3ebjRR1dXXddtttixcvzuVyZoNLNjg4eOjQoXfeeefkyZP79+/v6+u7/D8TOjo6mpublyxZMmfOnBtvvPGaa65paGgw1UxDAgdA1Sl/n3DjJ37lmRymgD179vzrv/5roVA478ebaofbZtqMVr1Ojcw8cCZf/r/btm3btm1bRHR1dX35y1/2nXMmaHBw8MCBAwcOHNi/f//OnTsvOP6CfzIUzjT3j9Sd+yNZIjnvF+/s7FyyZMnChQsXLlyodzBNCBwATFMvv/zy5P4D3HXXXVEhY2UNa9L/Cbl8+/bt+9GPflROG021w8tnHfpU/bH5uVO5GtOTjIGRGX840/T74fzu09fGB6Wjs7Pz/vvv99zImAYHB3t6el577bVdu3YVi8UPD1g4szi79syi+uMRccPMkxExt3boYv9YKI3GiZH6iHj3zJyIeGto3rlVbufOneXkkc/nb7vtts9+9rNLly61aJnCBA4AgI9eX1/fY489Vn7zfMWs92+d/cd5uSEzk6LG2rOL6ouL6ou3NxX+cGbO/3tyYW+pMXt6XLNmzT/+4z/atEKmUCj09PS8+uqrH35ja2n94UX1x/O1Q1fPON1Ye/Yj+dvlaiL7UyX732UNR7IfHxiZcfTsrOJI/VtD83qGFkREsVgsv4LU1tZ2++23L126tK2tzZeMKUbgAAD4iO3bt2/Tpk3Zt22X 1h/ +m6aD0sbUkKuJ1rqT37i6++DwnJ+cWNw/Urd169Y33njj4Ycf9l3x6axQKPz617/+2c9+du7LGk21wzfXH/lkXXHBjNNX+E+AxtqzjXUnW+PksoYj/xBvHy/VHz476/fD+TeG5veP1BUKhc2bN0dEPp+/8847b731VqWDKUPgAAD4KO3YsePxxx/PHm/WzXtd2piSWutOfvPqPXtOX/NK/8Lu7u777rvvySefdNPKdNPb2/sf//Ef53WNhTOLi+uPLao/Xj2/9+flhublhhbVF++YUzheqn9raN6bQ1cdOJMvFotbt27dunVrVjq++MUvOlmG1AkcAAAfmWeffXbr1q3ZQ87fN7/1Ub2IThXK1cSK2Yf+YsbAj4ufLhaL995776ZNm9rb283MlFcqlX7729+ed3LwwpnFW2e/31Z3oq5mpJr/4eflhlbMPrRi9qHh0drC8Nxfn7r23NLR1ta2du3az3zmM3ZdkSiBAwDgo7Fjx46sbiytP/x3c992jOh00Fp38lvz//OHx27pH6nbtGmT9zimtsHBwRdffDH7bZ5pyQ38TdM71d81PqyuZiQ7WSYrHb/ov7G31FgoFB555JGIWLNmzd13323jFckROAAAPgKFQiHbmbK0/vA/NL9tQqaPxtqz37jqdz88dkuxWPz2t7/9xBNP+O731NPb2/vMM8+cew/rqsaDHQ2Hp8AetHLpOF6q7x5csH2gNSKyFzo6Ozvvvfde+1ZIiMABAHC5+vr6vvOd70TEwpnFv5urbkw7jbVn1817/X8c/atCobBx48bvfve75mTKOC9tNNUO395UuLn+yNR7RWtebmhV43tfmP3eG0PzX+1v6x+py64KkjlIiMABAHC5nnrqqWKx2FQ7/PfNb13OY8/xUn1EvHtmjim98m6YeTI+uG7z 0h4 Ov5Z//cfFT3d3d+/YsWPlypWmNHXnpY2W3MDfzjnQWnfy4 /h7 lUbjxEh9RAyP5nrPzp7gcr2cFVtJriaWNRxZ1nDk4PD/cSOyzEESBA4AgMtSKBSyR6B75r55CaeKlkbjD2fmHDjTvOf0Nf0jdeZzcjXVDi+fdWjhzL7rZp682FbVWndyxaz3d5++dsuWLbfddpuNKukaHBz8wQ9+8DGljaxlHD4763ip4d0zc06NzDxwJn+Zv+bS+sMRsaj+eL526OoZpz+S443LNyKflznuv/9+Z3NQtQQOAIDL8r3vfS97wLjY55/SaLwxNP+FE4vO+/G2trbW1lYTeyUdPHgwuxGjf6Ru+0Dr9oiI+Mrcty52J8LfNB3cffraYrG4a9cuL3GkqFQqvfLKK5s3b87+70eVNgZGZvzhTNPvh/OF4ebeUuP4gzs7Oye4XMt6hhaU/zeT3Vb7FzMGrpk5cDkHoI6ZOe6777477rhDwqMKCRwAAJdu37592ZPG3zQdvIiHqNEo73LPfqSjo+PLX/7y0qVLfWt0Eg0ODvb09Lz00kvd3d0R8cKJRa/Wtt3eVFjWcGSCv0JdzciqxoPbB1q3bNmyYsUKX83kfjtv2rSpWCxGRFPt8F1z/r9F9cVL/tWy20l+P5x/Y2j +h1 /Oyufzy5Yt+9znPhcRS5YsiYhL2P1RKpWOHDly+vTpd955549//ON7771XfuvkwJl8+cWQltzApxqOfqr+2PzcqUvbQ5dljreG8i+f/Mv+kbrNmzf/5Cc/2bBhg3uRETgAAKaOf//3f4+IpfUXcZnC8Gjts8Ul5WcP3wutHg0NDcuXL1++fHmpVPrpT3+6devW/pG6F04s+t3pT6zO75/gt8G/MPu9PaevKRaLPT09y5cvN6tJOG9Pyh1NB5bPOnRpLWBgZEbP4PzXTrec96ZGPp+/7bbbFi9evGTJkvnz538kv+VzuVyWRdra2rIfWb9+/eDg4KFDh3p6evbv35/9G/WWGnsHGrPrUZbWH17WcPiTdcVL+LdbVF/8Zt2ePaeveaV/YbFY3LBhgx0rCBwAAFPnoSj7Vv8XGv8w8YefHx67Jft27po1a+6++27PBlUol8utXr367rvvfvHFF7du3XrgTP77Rz/7jat+N5GjDXI1sXzWoe0DrS+99JLAkYQdO3Zs2bIle3Fjaf3hu+b+/hL2dAyP1v729Cc+3DW6uro++9nP3nTTTc3NzVfmX6ehoaGtra 2tra2 rq2v9+vW9vb379+//+c9/nv 1h1 TO0INvJsmLW+zfXH73Ys2ZyNbFi9qHPzPrTyyc+2TO0YOfOnXv37l23bp0NWVQJgQMA4BL19PRERFPtcMuMUxMZf3B4zo+Ln46IfD7v7e7q19DQsHr16mXLlm3YsKF/pO5fjvz11/KvT+Q4hk/VH9s+0Nrd3T04OChgVbPBwcFHH300e/K/5D0pB4fn/Ofpa849/yKfz99zzz1Lly4tv1gxiVpaWlpaWlauXFkqld58881du3Zt27YtInafvnb36WuzU3U/N+vQRZ1LWlcz8g/Nby8bOvzyyb8sFouPP/74z3/+84cffthqZ9IJHAAAl2j79u0RcXP9hA5oGBiZUa4bTz755BX7di6Xqb29/ZlnnnnggQeKxeKPi5/+1vz/vOCj4Pzcn4PXgQMHZKyqde6JGytmvX97U+Gi3mUYHq3dP3TVuSfp5PP5O++889Zbb62GrvFhuVyuvb29vb193bp15dLx51N1B1ov4TjVbMfKq/1tu09f293dfd999+m2TDqBAwDgEmX722+uPzqRZ6EfHrslewR6+umnnbiRlubm5ieffDJrHD88dss3r94z/pNwriay+2J37drlea8KlUqlLVu2ZC8yNNUO35vfN8GXsMq/nX916trsSItMZ2fnnXfemcrXulw61q5du3v37ueff75QKPSWGn9c/HRLbuC/Nf 5h4 pcH5WrijjmFz8760zPF9uxUjq6urnXr1vkjjskicAAAXIrBwcHsw9UzTl9w8LPFJf0jddm7G/7TP0VZ47j33nv7R+r+rdi+dt6+8cdfN7M/TseJEydMXbXp6+v79re/nV1+dLEnbpyXNrJXNtI9SaehoWHlypUrV64sFArPPffczp07e0uN5cuDJp45WmacevDq17JTObZt29bT0/Pd737XS2pMilpTAABwaY9J2YcLbljYOzg/uzNlw4YN/qM/Xc3NzZs2bYqIA2fybw3lL/DoWHM2Ig4ePGjeqsq+ffseeOCBrG58Ze5b/9D89gTrxvBo7faB6/+fw7dmdSOfzz/00ENPP/306tWrp8DBE21tbevXr//JT36yZs2aiMguD3ri6PK9g/NLoxP6FbJTOb4y962IKBQKDzzwwL59+6w3rjyBAwDgY1QajVf72yJizZo1diukrr29vbOzMyJePvmX4z/4LZhxOnvSM2nVY9u2bRs2bCgWi021w//96v+9rOHIBH8L7x2c/+G0sXLlyin2NlZ2qu55mWPzsY6Dw3Mm+Cssazjy36/+3021w9l2lWwTEFxJAgcAwKXYv39/RCyceYE7F94Ymp+dQXj33XebtCng/vvvz5793hiaP6HH41LJpE26Uqm0efPmzZs3Z79nH7z6tXm5oYn8hQeH5zxxdPkLJxbFlE4b5zovc2RnczzXd9PxUv1E/vJ5uaEHr34t+4Mxm3O/BbiSBA4AgEs3u/bMeI9V57y+4QLFKfP4lz34ZV/ZSubW/vn5+ciRIyZtcpVKpY0bN2ZvE6xqPPjP+X0T2ZYyMDLjub6bflz8dBYo77vvvimfNs5b56tXr37mmWeyV5Z6hhb8j6N/tfvUNRPZsVJXM/LP+X2rGg9GxLZt2zZu3KhxcMUIHAAAH5cjpdle3 5h6 sq9m/0hd79nZlcZc1IWjfHz6+vq++tWvdnd3R8QdTQdWNb43kS/N3sH5/3Lkr3uGFkREZ2fnM88809XVNQ2PB25ubl6/fv2mTZuyi29f6V+4+VjHRF7lyNXEqsb37mg6EBHd3d1f/epXy4cWwcdK4AAA+Lj819BVEdHR0eH1jamkoaGho6Oj/PWlavX19WWX+0bE1/Kvr 5h9 6IJ/ycDIjH893l7ek7Jp06b169dP87OB29vbn3jiifvuuy8iekuN/+PoX20fuH4ir3KsmH3oa/nXI6JYLD7wwAMaB1eAwAEA8HHZc/qaiPjyl79sKqaYL33pS+WvL9WpXDeyI0Vb605e8C95ayj/w2O3ZHcedXV1Pf300w4GzuRyua6urqeeeipLe9sHWjcf6xgYmXHBv7C17mT52FGNgytA4AAA+FgMjMzI9qfcdNNNZmOKueWWWyKif6RuIs94XHnn1o1vXPW7Cx4pWhqNV062be1r7x+py+fz3//+9++7775puCdlfC0tLd/97nfLr3L8y5G/3jt44aN25+WGvnHV7zQOrgyBAwDgYzE8+ueno2n+fvuUVP6alr/KVI/z6kZj7dnxxw+MzNh8rGP36WsjorOz8+mnn86OnGBM2asc+Xw+Il44seiVk20X3K7SWHtW4+DKEDgAAD4WJ0t1EZE9BjBVCRzV5mLrxsHhOT88dktvqTEivvOd76xfv96LGxfU0tLy9NNPd3V1RcTu09f+W 7H9 gq8yaRxcGQIHAMDHojhSHxHLli0zFVNSdn3mOBepcOVdbN3YPnB9dhFsPp9/6qmnli9fbg4nKJfL3XfffQ899FBEHDiT/+GxWy74e0Hj4AoQOAAAgORdVN0ojcb2geu3D7RGREdHx+bNm1taWszhxVq5cuX3v//9fD7fP1L3w2O3HByeM/54jYOPm8ABAACkrVQqPfbYYxOvG/9WbM/qxpo1azZu3Ogi50vW1tb25JNPZqeW/Lj46e0D148//tzG8dhjj5VKJXPIR0jgAAAA0rZx48bu7u6IuGfumxOpG9ldsGvWrFm9erVDNy5Tc3PzE088Ub5BdiKN4565b0ZEd3f3xo0bTSAfIYEDAABI2LPPPpvVjTXN+1rrTo4zMrswJasbmzZtWr16tdn7SORyuY0bN65ZsyYm1jha606uad4XEd3d3c8++6wJ5KMicAAAAKnas2fP1q1bI2JV48FF9cVxRg6MzChfmLJp06b29naz9xHK5XKrV6+eeONYVF9c1XgwIrZu3bpnzx4TyEdC4AAAAJLU29v7yCOPRMTS+sOrGt8bZ2RWN/pH6kLd+DhdVONY1fje0vrDEfHII4/09vaaPS6fwAEAAKSnVCp961vfioiW3MDfzX17vJGj8XzfInXjyrioxvF3c99uyQ1ExLe+9S0HjnL5BA4AACA9GzduLBaLEbF23hu5morDzj1VVN24MibeOHI1sXbeGxFRLBYdOMrlEzgAAIDE7NixIztY9Gv518e5NkXdmCznNo69g/PHGdlYe/Zr+dcjoru7e8eOHaaOyyFwAAAAKent7X388ccjYsWs98e/NuWXp65XNybL6tWrOzs7I+KFE4sODs8ZZ2Rr3ckVs96PiMcff9xhHFwOgQMAAEhGqVR69NFHI6IlN3B7U2GckbtPXbN9oDUi1qxZo25Mim9+85sdHR0R8ePipwdGZowz8vamQnYYx6OPPuowDi6ZwAEAACRjy5YthUIhIlbn949z9MbB4Tmv9C+MiK6urtWrV5u3SZHL5R5++OF8Ph8RPzx2y/BoxcfPXE2szu+PiEKhsGXLFlPHpRE4AACANPT29m7bti0ivjL3rXm5oUrDBkZm/OTE4ojo6OhYt26deZtEDQ0NTz75ZET0j9Q9W1wyzsh5uaGvzH0rIrZt22ajCpdG4AAAABJw7uaUZQ1HKg4bjX89fnP/SF0+n3/44YdzuZypm1zNzc2bNm2KiANn8uNfqrKs4YiNKlwOgQMAAEjAK6+8Ut6cMs6wV/vbekuNEfHII480NDSYt2rQ3t5evlSl9+zscUaWN6q88sor5o2LJXAAAADVrq+vb/PmzRFxR9OBcTanHByes/v0tRHx0EMPtbW1mbfqsXr16uzA0WeK7eMcxjEvN3RH04GI2Lx5c19fn3njoggcAABAtXvqqacioiU3sHzWoUpjhkdrs6M3Ojs7V65cadKqTXbgaP9I3csnPjnOsOWzDmUbVbIvOkycwAEAAPo5vnMAACAASURBVFS1QqGwc+fOiPjbOQfGuTnl2eKS7OiN+++/36RVoYaGhgcffDAieoYW7B2cX2lYrib+ds6BiNi5c2e2KQkmSOAAAACq2ve+972IWFp/uLXuZKUxbw3lD5zJR8SGDRscvVG1li9f3tXVFREvnFg0zkaV1rqTS+sPl7/0MEECBwAAUL127NiRfRv/b5oOVhozPFr78sm/jIiurq729naTVs3WrVuXz+cjYvyNKtmXu1Ao7Nixw6QxQQIHAABQpUql0pYtWyJiVePBcc4WffnEJ7PNKWvXrjVpVS6Xy23YsCEieoYWvDWUrzRsXm5oVePBiNiyZYsrY5kggQMAAKhSu3btKhaLEfH52e9XGtN7dnbP0IKIePDBB21OSUJ7e3tnZ2dEvHzyL0ujFYdlX/Risbhr1y6TxkQIHAAAQDU69/WNupqRSsNe6LspIjo7O5cvX27SUpEdBNs/Urfn9DWVxtTVjHiJg4sicAAAANVoIq9v7B2c31tqjIh7773XjCWkoaHhoYceiohX+heOc9qolzi4KAIHAABQdSby+kZpNF7tb4uINWvWtLS0mLS03HbbbRc8bdRLHFwUgQMAAKg6b7755gVf3/jlqeuzs0XvvvtuM5acc08bPV6qrzSs/BLHm2++adIYn8ABAABUnR/96EcRsWLW+5Ve3xgerd0+0BoR69atc7Zootrb29va2iLiF/2tlcbU1YysmPV+eUnAOAQOAACguhQKhUKhEBG3zv5jpTG/OnVtROTz+dtuu82MpevrX/96XOgljmwZlFcFVCJwAAAA1eW5556LiKX 1h+ flhsYccO7rG7lczoylayIvcczLDS2tP1xeGFCJwAEAAFSRwcHBnTt3RsRfzzpUacxvT38ivL4xVUzkJY5sMezcuXNwcNCMUYnAAQAAVJHdu3dHRFPtcGvdyTEHlEbjl6euj 4h7 7rnH6xtTQPklju7BBZXGtNadbKodLi8PGJPAAQAAVJHnn38+IpZXfn3j98P5/pG6iPjSl75kuqaG7CWO7QOtw6MVH1GzJZEtDxiTwAEAAFSL8kGSn6scOH7Rf2NErFmzxuUpU8bixYvz+Xx8sPloTNmScNQo4xA4AACAavHrX/86IhbOLDbWnh1zQO/Z2b2lxoj44he/aLqmjFwud88990T8efPRmBprzy6cWSwvEvgwgQMAAKgWP/vZzyLi1tnvVxrwX0NXRURbW1tLS4vpmkqyDUf9I3UHh+dUGpMtjGyRwIcJHAAAQFUoFArFYjEi2upOjDmgNBrZ7bBr1641XVNMQ0NDZ2dnRPzn6WsqjckWRrFYtEuFMQkcAABAVSjvT6mrGRlzwO +H8 9mHz3zmM6Zr6rnzzjsjomdoQaWjRutqRuxSYRwCBwAAUBUuuD/l16eujYiuri63w05J7e3t2VGjheG5lcbYpcI4BA4AAGDy9fX1ZftTrpvZP+aA4dHaA2fyEXHbbbeZrqkqe4kjK1ljypZHsVjs6+szXZxH4AAAACbf7373u4hoyQ1Uuj8l+65+Pp9fvHix6Zqqbr311og4cCZfaZdKY+3ZltxAecHAuQQOAABg8v385z+PiE81HK00YO/ggoi488477U+Zwtra2i64SyVbJNmCgXMJHAAAwCQrlUrd3d0R8an6Y2MPGI2eoQURsWzZMtM1tWVbkMoHyn5Ytki6u7tLpZLp4lwCBwAAMMnefffd7MP83KkxBxwpzc4+2J8y5WWBY/fpisdwlBdJedlARuAAAAAm2TvvvBMRC2cWczVjD/ivoasioqOjw/6UKW/hwoXZh96zs8cckKuJ7LLYbNlA2QxTACm66667TML4Xn75ZZMAAKn4zW9+ExGLK+xPiYj/Grw6Ir70pS+ZqymvoaGho6Oju7u7MDy3ZcbYb/Qsrj924Ez+N7/5zcqVK80YZd7gAAAAJtnOnTsj4i9mDIz5s8Ojtb2lxohYsmSJuZoOVqxYERFvDl1VaUC2VLJlA2Xe4ICEbfzEr0zCGNPyp8+bBABISG9vb/bhmpljB47jpYbsQ0tLi+maDpYuXRoRB85UPGe0vFR6e3utCsq8wQEAAEymo0ePRkRT7XBdzciYA7IbQzs6OszVNHHNNddkH46X6sccUFcz0lQ7XF48kBE4AACAyXTgwIGIaJvZV2nAu2fmxAfbFpgOGhoa2trayl/6MWULJls8kBE4AACAybR///6IuGHmyUoDeoYWxDmXazAdZLtU/nCmqdKAbMFkiwcyAgcAADCZ9u7dGxHzcoNj/uzAyJ/PDbzuuuvM1fSxePHiiDhc4abY8oLJFg9kBA4AAGAyFYvFiFgw4/SYP9s/Upd9aG5uNlfTx4033hjjnjOaLZhs8UBG4AAAACZN+QqVubVDYw84OzucMDr9lM8ZLb/Cc57ygikvIRA4AACASXP69J9f3MjVjD0gO4XhhhtuMFfTSkPDn+8GHh7NjTmgvGDKSwgEDgAAYNK88847EbFwZsWNBgMjM+ODExmYVrLXdsa5SCVbNtkSghA4AACASXTy5MmImF17ptKAwpnmiGhsbDRX080FT13Jlk22hCAEDgAAYBJd8I7Y7JBRW1SmoSVLlkTEW0PzKg1wUyznETgAAIBJNqv27Jg/PjzqgWX6mjNnzqUtG6Ytf14AAABVKjuAIyJaWlrMxnST7Us6fHa2qWCCBA4AAGDS7N27NyLyFe6IZTrL9iX1lioev5Itm2wJQQgcAADAJCoWixExJzc85s9WuiIUyssmW0IQAgcAAFC1es/Ojg+uCwUYn8ABAABUtQteF8rU5qxZJshCAQAAoOqUT5YtnzUL4xM4AAAAgOQJHAAAACSsVCqZBELgAAAAIGm5nNt2iBA4AAAAgClA4AAAAACSJ3AAAABQdXp7e7MPc2uHzAYTIXAAAABVra+vzyRMZ7kac8CECBwAAECVumHmyYjo7u42FcAFCRwAAMCkyefzEXH47CxTwcXKlk22hCAEDgAAYBItW7YsIgZHZ5gKzrN///6IWDizWGlAtmyyJQQhcAAAAFWrfLpk+bxJppvZtWdMAhMkcAAAAJPsWKlhzB93uuR09sc//vHSlg3TlsABAABMms997nMRcaTyGRwtuYH4YLcC08p7770XEYvqj1cakC2bbAlBCBwAAMCkO3x2dqWfWjDjlPmZng4ePHjJy4bpSeAAAAAmzZIlSyKit9RYacD8Gacj4je/+Y25mm4KhUJ8cFXwmLJlky0hCIEDAACoBsOjYz+bXJUbjIi+vj5TNK2Uv+J1NaWLWjBMZ9YEAAAwaVpaWrIPAyMzxxyQfQO/u7vbXE0rx4//+eiNxtqzYw4oL5jyEgKBAwAAmExtbW0RcbjCOaONH9wS6qbYaeWdd96JiKX1hysNyBZMtnggI3AAAACTqbW1NSLeP9s05s/W1YxkH44ePWqupo/s1JXsBJYxZQsmWzyQETgAAIDJdMGbYrNv4+/du9dcTR/Zl/vaGf2VBrgjlg8TOAAAgMm0YMGCiOgZWlBpwKL64xHxxhtvmKtpYnBwsFgsRsSCym9wZAsmWzyQETgAAIDJdN1112UfBkZmjDmgZcapiOju7i6VSqZrOjhw4ED2YV5uaMwB5aVSXjwQAgcAADC5mpubsw9HK+xSmZ87lX04cuSI6ZoOsv0p45wwWl4q5cUDIXAAAACTrrOzMyIOnBn7YTVXEwtnFuODgyeZ8n71q1/FB1uTxpQtlWzZQJnAAQAATLLsqMj/Gry60oDF9cciYvfu3eZqyhscHCwUChFxw8yTlcZkS8UJo5xH4AAAACbZkiVLIqK31FgaHXtAW92JiOju 7h4 cHDRdU1tPT09ENNUOVzqAozQavaXG8rKBMoEDAACYZPPnz88+/OHMnDEHZOeMxjnHTzJVvfbaaxFxc33F81bKi6S8bCAjcAAAAJMsl8uNfwxHRKyY9X5E7Nq1y3RNYaVSadu2bRFxc/3RSmPKB3DkcjkzxrkEDgAAYPKtWrUqIvacvqbSgOyJd9u2bS6LncLefPPN7MN1lQ/gyBZJtmDgXAIHAAAw+W666aaI6B+pGxiZMeaA8hNv+RmYqSd7Q2fFrPdzNWMPGBiZ0T9SV14wcC6BAwAAmHzNzc1tbW0R0TM49sEKuRq7VKa4iexPyZZHW1tbc3OzGeM8AgcAAFAVPv/5z0fEa6dbKg0o71Jxl8qU9Nvf/jb7MM7+lGx5ZEsFziNwAAAAVeHWW2+NiN5S4zi7VJpqhyNi9+7dpmvqeemll+JC+1OyC2KzpQLnETgAAICq0NbWls/nY9xdKstnHYqI559/3nRNMX19fd3d3RHx2Vl/qjQmWxj5fD7bzQTnETgAAIBqcc8998S4u1Q+N+tQRBQKhUKhYLqmkldeeSUiWnIDLTNOVRqTLYxskcCHCRwAAEC1+MIXvhARvaXG46X6MQc01p5dOLMYEc8995zpmjJKpdLWrVsj4r81/qHSmOOl+mx/SrZI4MMEDgAAoFqU71LpHlxQacyqxncjYufOnX19fWZsaijfjHNz/ZFKY7Il4f4UxiFwAAAAVWTt2rURsX2gtTQ69oDWupMtuYH4YFMDU8CWLVsiYlXjwUrHi5ZGY/tAa3l5wJgEDgAAoIp85jOfyT78fjhfaUy2kWHr1q3ui50C9u3bVywWI+Lzs9+vNKa8GMrLAz5M4AAAAKpILpdbs2ZNRPyi/8ZKY26uP5LdF/viiy+asdT96Ec/iogVs96vqxmpNCZbDGvWrMnlcmaMSgQOAACgunzxi1+MiN5SY+/Z2WMOyNXE7U2F8BJH+vbs2ZNdiNPZ+F6lMb1nZ2fHi2YLAyoROAAAgOrS0tLS0dEREb8cuK7SGC9xTAGlUun73/9+RKxqPNhYe7bSsGwZdHR0tLS0mDTGIXAAAABV55/+6Z8iomdoQaX7Ys99icN1KonatWvXBU/fOF6q7xlaUF4SMA6BAwAAqDrt7e3ZfbG/PvUXlcaUX+J46qmnzFhyBgcHy5enjHP6RrYA 2tra2 tvbTRrjEzgAAIBq9PWvfz0idp++dpyXOO6Z+2ZE7Ny5MzvHgYS8+OKLxWKxqXZ4/Nc3dp++trwYYHwCBwAAUI3KL 3H8 or+10pjWupMLZxYj4nvf+16pVDJpqejt7d26dWtE3N5UGPfylNbw+gYTJnAAAABVKvu+/TgncUTE/zX39xFRKBR27dplxlLxgx/8ICJacgM31x+pNKZ8+obXN5gggQMAAKhSE3mJY15uaFXjwYh4/PHHnTaahB07dnR3d0fEV5rfztVUHOb1DS6WwAEAAFSv8kscvWdnVxrzhdnvZaeNPvbYY2asyg0ODj7++OMRsWLW+y0zTlUa1nt2ttc3uFgCBwAAUL3a29s7Ojoi4oW+myqNydXEvfl9EdHd3b1jxw6TVs0effTRiGiqHc5u+a0k+3J3dHR4fYOJEzgAAICqdv/990dEb6lx7+D8SmNaZpxaMev9sFGlupU3p9yb3zfO5pS9g/N7S43lLz1MkMABAABUtZaWlq6uroh4tb9teLTiI8ztTYVso8q3v/1tN6pUod7e3olsThkerX21vy0iurq6WlpazBsTJ3AAAADVbu3atfl8vn+kbpzTRnM1sW7e6xFRKBR++tOfmrSqUiqVss0pLbmB8Ten/KK/tX+kLp/Pr1271rxxUQQOAACg2jU0NDz44IMRsfv0teOcNjovN3RH04GI2Lp16759+8xb9XjiiScKhUJErM7vH2dzSu/Z2btPXxsRDz74YENDg3njoggcAABAApYvX56dNvpMsb00WnHYitmHFs4sRsSGDRscxlElduzYsXPnzohY07xvXm6o0rDSaDxTbI+Ijo6O5cuXmzculsABAACkYf369RHRP1L3y1PXjzPsn/P7ssM4HnjgAYdxTLp9+/aVj95YVF8cZ+QvT13fP1JX/kLDxRI4AACANDQ3Nz/00EMRsX2gdZyNKrma+MZVv4uIYrG4ceNGjWMS9fX1bdq0KSIWziyOf/RG79nZ2wdaI+Khhx5qbm42dVwCgQMAAEjGypUryxtVxrlRpbH27Nfyr0dEd3f3li1bzNukGBwcfOCBB4rFYlPt8N83vzXO0RvDo7XlzSkrV640dVwagQMAAEjJ+vXrsxtVXj7xyXGGtdadzA4c3bZt27PPPmverrDs2pRisRgR37jqd421Z8cZ/PKJT2Y3p9icwuUQOAAAgJQ0NzdnN6r0DC3YOzh/nJErZh9a1XgwIrZu3apxXEmlUmnjxo3d3d0R8bX86+PXjb2D83uGFkTEgw8+aHMKl0PgAAAAErN8+fKurq6IeOHEonEO44iIVY3vZZequDj2ijmvbrTWnRxncO/Z2S+cWBQRXV1dbk7hMgkcAABAetatW1c+jGNgZMY4I/85v698cazG8XE7t258Ze5b49eNgZEZ5aM31q1bZ/a4TAIHAACQnlwuVz6M4/m+RaXRyiNr/o/GsWfPHrP3MTm3bqxqPLis4ch4g0fj+b5F5aM3crmcCeQyCRwAAECSmpubN2zYEBEHzuT/14mbxhl5buN45JFHnMfxcTivbqxqfG/88f/rxE0HzuQjYsOGDY7e4CMhcAAAAKlqb29/6KGHIqJnaMH2gev/f/buPDrys77z/SPVvlepJJW61YtsAl6w6UBs7IHYJscJOTAOhgmX6dsDvsd4zBnugHMck3NJSEhPcpMwZ3A4YDKZgwc41zA9hGQuceKBC4lPvASCx47BeAMDptVqqVVaSlWl2tf7x4d+8ktJKpW2bpX0fv3VrS7V8vx+VV3P5/d9vk+XWzozDnqObjtnuvGW8MvrphuPFA+pseg999xz5ZVXMoDYFgQcAAAAAPrYTTfddOLECWPMI8UjL1XjXW7ZkXF85jOfaTabDODW5XK522+/3XYVvS442/32L1XjjxSPGGNOnDhx0003MYDYLm6GAAD61Nve9ra+fv4nTpw4fvw4xxEAsHXHjx9//vnnn3nmmVO5K7tv2+EaMLclXnikeOiR4pGHHnpoamrq5MmTdH/YinQ6/Ru/8RvZbNb0sGeKMeZMLXIq99PGonwTwPaiggMA+s+bQmf2wKs4deoUhxIAsF1OnjypTVU+l736TC2y3v+kZ98SftkY88wzz9x+++25XI4B3JynnnrqzjvvzGaz4cHaryX/sZd043PZq40xx44dO3nyJAOI7UUFBwD0nzeFzq67tHW3fw2dewPHEUBfY0q827hcrpMnT6oNxOeyV69bSnBdcPaAu/i57NXZbPY973nPRz/60WuuuYZh7F2z2fzsZz/70EMPGWNSruJtiedDg43uv9KRblA4g21HBQcAAMCOiA9WjTGPPfYYQ7Enqd1Ayl1iKHYPl8v1kY98JB6PG2O+nL8s3Qh2v/0R7/JvDP+v8GDNnN9ahZYcPcrlcidPnlS6cZVv/n1Dz6ybbqQbwS/nLzPGxOPxj3zkI6Qb2AkEHAAAADsi4qoxCHued4D58O7i9/vvu+++eDxeaHn/NPOz665VCQ027k4+ZduO3n333dTmrOupp556z3veYzdMeWfsh66BdX7lTC3yp5mfLbS88Xj8vvvu8/v9DCN2AgEHAADAjggN1vUH5kt7Tzqd7jjK2D1isZgyDtNbPw61HVVLjtOnT7/nPe959NFHGcZVNZvNj3/847/3e79njAkP1t4/9N11N0wxjpUpSjdisRgjiR1CwAEAALAjvAOtlKtojHn88ccZjT3mySefNMakXEXvQIvR2IWUcUxMTJjeMg5jzHXB2V9L/qOWq9x7772/8zu/QzTZ4amnnrr99tu17O4q3/zdyad6WaJl042JiQnSDew0Ag4AAICd8rpA2hjzjW98g6HYY3RMdXyxO8VisU984hN2X5UnSmPr/krCVb07+dR1gRljzDPPPKNSDrpyGGMqlYoKN7RbyonYC70sSzHGPFEas11FP/GJT5BuYKcRcAAAAOyUCW/eGHP69OlKpcJo7Bm5XO706dPGmFf5lhiN3Uz7qijj+Frh0keKh5rt9X5lwLwlcvr9Q9+1pRx33323Dvf+1Gw 2H3 300Xe96122cOOu5NOv8mXX/8W2eaR46GuFSw17puACIuAAAADYKSl3SatUHnjgAUZjz7j//vuNMSlXMeGqrnWbWpuv2buCMo4TJ04YYx4pHvlv2SvXzTj0zr07+ZTtynHXXXd9/OMf34crVl544YW777773nvvNcbYwo1elmU12+a/Za98pHjEGHPixAnSDVwwboYAF8vJuTcwCIwhAPSvUChkjJlfbx/Km8OTp3JXPvTQQ7feemsqlWLc+l06ndal 7H8 ZebnLzYotz0+nyhz0i83lch0/ftwYc+rUqZfr8U8sXvP+oe+uu6epa8BcF5x9lW/p4cKR56ojjz322GOPPXbixIm3v/3t+2EHkHQ6/Qd/8Ae2dOVNoTM3BM/2sibFGFNsubVhijHmxIkTGnzgwiDgAIDdiwwL2M0OHz5sjEk3Q91v9ipfNuUqppuhL3zhCx/60IcYt373hS98wRiTchWPeJcZjT5y/Pjx17zmNR/+8IcLLe9/Wnj9idgLvayzSLiq74z98PW12f+5fGm6GTp16tSpU6f2dsyRTqe/8IUvKMUzxlzlm39L5Cfr5kHWS9X4qdyV+vPHPvaxK6+8knMPF9JAu91mFABgt/nSl7506tSpvf0aL/pVnbe97W2cad391V/9FYPQfRpw5513GmNOjn6r+y3tJgL33HPPTTfdxND1r4ceeugzn/mMMea98We7Bxzfqwz/v/lXTUxMfOpTn2Lcdo9cLvfBD34wm80aY64LzLw5fLrHqoRm2zxfHf5GYUKFCfpf7Bd+4Rf2UoXOCy+88N//+39/5pln9NerfPM 3h8 90WYe1coi+UZh4onzQsB0sLh4CDgDAPkXAsS4CjnW+zTeb73jHO4wxv5b8x3XnAF9b/un3fi5p9vX078Mf/rAmxm+JnO5+YwUcN954I2U7u/Cde/LkSU3jU67i8fj3NzSH74g5brzxxre+9a19/aZuNpvf+c53HnjgAbsgJeUq/svIyxuqUVpq+r6UvVwVbbQUxUXEEhUAwL627rX3fTosLI/qgf36Pt8IrDtBenP49Hwj+HI9/rGPfYwLm/0ol8t97GMfM8Zc6sm+OXx63dt/tzxqjDl06BBDtwvfub//+7//6KOP3nvvvelm6JOLP/evoi+9xr/Q0+8OmNf4F17tW/hxLf5w4Wi6GVJvjng8/q53vesXf/EX+2vdSjqd/ru/+ztnxehVvvkbQtMpd2lD96M4T3+mTg0XFxUcAIB9ShUcBByrUsBBBce6PvOZzzz00EO9XM83jsZ78Xj8wx/+MHUcfcTWboQHa3cln153F4lm2/z+/BsMBTu7fnpv+2he6sn+auyl3jtNyJla5JHi4ZfrcfuTY8eO3XrrrVddddVuTjpyudzjjz/+jW98w7n97ZtCZ64NzG50BIot9//IvUojMDEx8ZGPfISuuri4CDgAAPsUAUcXBBwbnff+zsi3elnJ79xc 4H3 ve98tt9zCGO5+tu9GeLDWy+4bxtF15Stf+QqF+rtZs9n87Gc/+9BDD+mvbwm/fE1gtseuHFatPfid8ujjpUN23Yo5n3S88pWv3D3lWul0+sknn+zINVKu4s3hyVd4sxt91c22eao89rXCpfrrLbfccscdd3C246Ij4AAA7FMEHF0QcPQ+O1IbjnVbTjrnQl/KXq4LnseOHfvABz7ABc9dq+MK/ /H4 99et3RC1XLnlllve9773MYy73+nTp//4j/9YB3qjXTmcztQiz1eT6rZjTUxMvOENb7j++uvHxsYufFlHLpf74Q9/+PTTT//93/+9WqtKylV8XSB9lX9hoyUb4uy4MTEx8eu//usTExOcSNgNCDgAAPsUAUcXBBy9+/jHP/7YY49d5Zt/Z+yHPf6Kc68BY8yNN974zne+k+nBbpvx/sVf/IXdKfNNoTM3BM/2eIm7 1h7 8w/nrjTEf/ehHr7nmGgazLzSbza997Wsq1THGXOWbf1v0xz3mWSvf4NP1yPPV5PPVYWdNhzkfdhw4cODyyy8fHh7eiXqHSqUyOzs7OTn55JNPfu9733OGGmbLuYZO77/Kv+K56oj++r73ve8tb3kLhRvYPQg4AAD7FAFHFwQcG5oJ33XXXWYjRRzivARqjInH429961uvv/76RCJBC9KLIpfLLS0tffvb3/7qV79qp4WXerK/Ev3xhq7nq3wjHo9//vOfZ+LXX9Lp9Kc//Wm7T+rmVqx0vM2n6pGXqgmbCDjF4/HXvOY1hw4dOnDgwMjISDKZNMb0GHxUKpVcLmeMmZqaKhaLP/jBD/L5vI3knMKDtVf7Fl7hzU5485uLbKRjTQoFaCDgAACAgIOAYw9SEUfKVXx/8pmN/u6ZWuR/Ll9qYw6nY8eOkXRcmFzDTmidNrFTpia0n1z8OUP5Rj974YUXPvaxjynkCg/W3hw+/WrfwlZiDntuTNUj0/Xw6Vps1bf8qm688cbuJ+qqLvVkj3jzl3pySXd508UaVsfmuLRJxm5GwAEA2KcIOLog4NiQdDp95513GmNOxF54lS+7iXsottzT9fC3Swed2zHgorjUk70+OLPpa91/kXvlc9WRiYmJT33qUwxm/2o2m3//939/77336q/bGHNYS03ffCNQabtfqiaMMauWePQi5SqOuEvD7vKQqxIfrG5LovFP4/DPow1jzD333PPzP//zlCZh1yLgAADsUwQcXRBwbJT2izXG/FryHzfXntCqtQeLLU+t7Uo3ggzshXHYs2yMCQ3Wt1LAb4x5pHjokeIRY8ynPvUpmqrsAZVK5S//8i9PnTqlv4YHazcEz742MLfF86R7oJBv+RyfBv/sc0AnqngHmtsYZKz6QdSxNcyJEyfe/va37+btbwFDwAEA2LcIOLog4NjwtKTZvP3227PZbHiwdlfy6Z2bi6jsOgAAIABJREFU/2DXslvDnjhx4vjx4wzIntERcxhj3hQ6c21gdkfzhYuo2HI/WR5TVCdEG+gjBBwAgH2KgKMLAo5NyOVyH/zgB7PZ7KWe7L+Jv7CNpezoiznhf1p4vTHm2LFjJ0+epIB/76lUKn/7t3/75S9/2dmA9vrgzCu82b3xZm+2zY9rcedCuXg8/q53vesXf/EXiTbQRwg4AAD7FAFHFwQcm/PCCy98+MMf1sznV2Mv7dULvOhwphb5cv6yQsvLzil7XrPZ/M53vvPAAw+cPn3a/vBNoTNX+DIpd6lPX1S6EXyxOuQs2ZiYmLjtttte+9rXcjKj7xBwAAD2KQKOLgg4Ns1mHOHB 2h2 JZ7fYjwO73xOln26cGY /H7 7vvPja+2SdOnz79jW98Q513JDxYuyYw20dJh3KNp8pjtsuGMeaWW25585vfTAcZ9C8CDgDAPkXA0QUBx1Y495j8V9GXtnfnBewetfbgw4UjT5QPGmOOHTv2kY98hEr+/UYFHQ8++KBzA9fwYO3VvoVX+xbHPMXd1o6n 1h6 crYeeryafrw47c41jx47deuutlGxgDyDgAADsUwQcXRBwbJHtx2GMSbmK/zLy8hHvMsOyd6a1bfNU+aeFG8aYW2655Y477mBmuJ9VKpXnnnuuI+kwxlzqyR7x5i/15C5i2KFQ4+V67Ewt2rERtXKNq666imwOewYBBwBgnyLg6IKAYxvmwM3mn//5n9udF1Ku4s3hyQlvng1W+lqx5X6uMmz3zozH43fcccdNN93EyECUdDz99NPO1SsSHqxNeHKv8i2l3KXwYG3nevQUW+5Cy5tuBF+qJk7XY85KDbnlllte97rXkWtgTyLgAADsUwQcXRBwbJdcLnf//fc/9thj9ifaeWHEXTbG0KFj92u2Tb7lq7VdL1aHXqwk082Q/ad77rnn53/+5yncwFpOnz49OTn55JNPOj8BnC71ZIOD9cOe5cBgI+UueQeaxpjQYL2XGLTWHiy2PMaYWtuVbgTLLfdUPVJqeTpqNKwbb7zx2muvPXr0KP01sLcRcAAA9ikFHOiCgGO7pNPpBx98cOUVXUm5iiN9u//CXp6drnbp2xgzMTHxhje84e1vfztXv7GhD4Gpqakf/ehHZ8+eXSvvWEt4sGaMWfVs7OLGG288dOjQz/zMzxw+fDiVSnEIsE8QcAAA9ikCjnURcGz/nPn06W9/+9tf/epX1Z4DfeTYsWPXXXfdDTfcwD4p2LpcLlepVL7//e8bY5588kljzEZTD6cbb7zRGHPttdcaYy6//HK/389Zin2LgAMAAOAiqFQquVzOGKNJDnabUCh0+PBhYwxXv3EhKftw/mRxcdEYk0wmnT8kxQBWRcABAAAAAAD63iBDAAAAAAAA +h0 BBwAAAAAA6HsEHAAAAAAAoO8RcAAAAAAAgL5HwAEAAAAAAPoeAQcAAAAAAOh7BBwAAAAAAKDvEXAAAAAAAIC+R8ABAAAAAAD6HgEHAAAAAADoewQcAAAAAACg7xFwAAAAAACAvkfAAQAAAAAA +h4 BBwAAAAAA6HsEHAAAAAAAoO8RcAAAAAAAgL5HwAEAAAAAAPoeAQcAAAAAAOh7BBwAAAAAAKDvEXAAAAAAAIC+R8ABAAAAAAD6HgEHAAAAAADoewQcAAAAAACg7xFwAAAAAACAvkfAAQAAAAAA +h4 BBwAAAAAA6HsEHAAAAAAAoO8RcAAAAAAAgL5HwAEAAAAAAPoeAQcAAAAAAOh7BBwAAAAAAKDvEXAAAAAAAIC+R8ABAAAAAAD6HgEHAAAAAADoewQcAAAAAACg7xFwAAAAAACAvkfAAQAAAAAA +h4 BBwAAAAAA6HsEHAAAAAAAoO8RcAAAAAAAgL5HwAEAAAAAAPoeAQcAAAAAAOh7BBwAAAAAAKDvEXAAAAAAAIC+R8ABAAAAAAD6HgEHAAAAAADoewQcAAAAAACg7xFwAAAAAACAvkfAAQAAAAAA +h4 BBwAAAAAA6HsEHAAAAAAAoO8RcAAAAAAAgL5HwAEAAAAAAPoeAQcAAAAAAOh7BBwAAAAAAKDvEXAAAAAAAIC+R8ABAAAAAAD6HgEHAAAAAADoewQcAAAAAACg7xFwAAAAAACAvkfAAQAAAAAA +h4 BBwAAAAAA6HsEHAAAAAAAoO8RcAAAAAAAgL5HwAEAAAAAAPoeAQcAAAAAAOh7BBwAAAAAAKDvEXAAAAAAAIC+R8ABAAAAAAD6HgEHAAAAAADoewQcAAAAAACg7xFwAAAAAACAvkfAAQAAAAAA +h4 BBwAAAAAA6HsEHAAAAAAAoO8RcAAAAAAAgL5HwAEAAAAAAPoeAQcAAAAAAOh7BBwAAAAAAKDvEXAAAAAAAIC+R8ABAAAAAAD6HgEHAAAAAADoewQcAAAAAACg7xFwAAAAAACAvkfAAQAAAAAA +h4 BBwAAAAAA6HsEHAAAAAAAoO8RcAAAAAAAgL5HwAEAAAAAAPoeAQcAAAAAAOh7BBwAAAAAAKDvEXAAAAAAAIC+R8ABAAAAAAD6HgEHAAAAAADoewQcAAAAAACg7xFwAAAAAACAvkfAAQAAAAAA +h4 BBwAAAAAA6HsEHAAAAAAAoO8RcAAAAAAAgL5HwAEAAAAAAPoeAQcAAAAAAOh7BBwAAAAAAKDvEXAAAAAAAIC+R8ABAAAAAAD6HgEHAAAAAADoe26GAACAvWdxvloqNnu55VPfyuyZV33NG4Z6uVkw5EqO+DhJAADYYwg4AAC4cErFxuJ8reOHheXG95/Nr7zxT35U/NH3C6vez0vPL7+42q9gW1xxdfRVr46s+k8/c3n4kp8Jrfz55VdHw5HOr1XJEW8wxHctAAAukIF2u80oAACwrqnTJedfZ6fLZyfLzp/8zUPpjl958EvTjBs63Hp8vOMnv3RLyvnXQ0cDY+MB508OTwQZNwAA1kXAAQDYX5xrNzpCiqefWHKWVxBPYHdyRiTJEe/rrkvYvzrDEVbiAAD2GwIOAEB/s4UVzoUe2UztyW8t2dsQVXTRZTlGf2HZTnfOWOTaNyTiQ1792bm4hlIRAEBfI+AAAOw6jUbr3NnKT2etLyzns3XzzzOLb/3dwny6ulcnn1bHxXmnaNzzqiu7pRJ0f+hi1U4oTvasW6mjzMfaYyHaSMr3hl8Y1p9tGuI86w4c8rvdbMYHANhdCDgAABeOM7mwm3fY1hX9FVs4Z4Cysv3kymYKhovk+0lH3xazWuuWla1k+/eNYJuJ2O1syEEAABcSAQcAYJunc3apiK25yMxXH394YXc+Z2fpREdC0RFPUBOBi6Kj3qQjIunIR3ZtIckNNw8PjfiMox7ELo 0h8 gMAbBcCDgBArzryC1urv3suONtJlFm7ywA5BfYJZzKyVoea3RM+2koQuzKLBAQAsFEEHACAn7LrR9SAwM6CLm7vRmcLTFsA7+wFQGABbAtnIOLsQmIXke2SjwJll/ZDgFUwAACLgAMA9hdtkmqr3DV1uSglGLbawi4MccYWXLMFdjPbXsRGIXaxzEWpCrEFIIpBtb6MjXIBYL 8h4 ACAPUgphiYemnVc4ClHl/X2XG4F9glbFHbR+/LoE0lZqoJUsg8A2JMIOACgX6meXDMHO224MC0G1ZjTLpW3zThZLQJgE59jxtE81Tb3uZCfZopilcPyOQYA/YuAAwD6YwKgb/8qx9jplfC22LtjrTvf+wFclA9As6I30E4vrFPLDxV9KMPlAxAAdj8CDgDYLVTOfcGCDF23dNZsG9aPAOjDj01zPv6wfUB2rvpjZfDBxyYA7B4EHABwEahHxlPfyhhj/uah9A4tR+/ouqfqa1aeA9hXn7S2A8iO9lRWmw992F7zhiE+aQHgoiDgAIAL8Q37qW9lVFm9E0UZ+mKt5SSUUgPAupxL//ThvBNBs8o99OFM6gEAFwABBwBsm53OMrSoxF4hNOylCgDbTTvg2go7s90LXkg9AGDnEHAAwGY4+2Vs+xoTggwA2G12NPiwK1zo6wEAW0HAAQDrUzGzLc3YriXczmZ1apDBl1oA6CMKu9XmY3ubQ6uJki30YOEhAPSCgAMAOtk4Q99Wt+UaHTXJALB/7NCKxVuPjysTJ/IAgFURcADY73T9bRvjDLIMAMBKO5F6OCMPagABgIADwL4zdbo0O11+7ju5bVlsYr9cao0JzTIAABv6L8m5wmWLIbtd2HLVa2Nj4wH+SwKw3xBwANjjbIHG008s/fCF5a20ArVfHI9cGnrVlRHKgwEA207LJF96YfnMy8WtB/E33Dz8yisjr7suQYkHgP2AgAPAHvxqOPly6fvP5v/mofRWvhdqpQk97QEAF1fHvl1bWduipP6XbkldfnX06KVBYnoAewwBB4C+tzhfffmlgpacbLq4l7JeAEAf2a7llrceH9f/fZe+KkzHKAD9joADQP9Rjca 3H1 3YSqKh3hnHrom/6soI1RkAgL6mKo+XXlh+5qnsVnp5KO+4/qZh6jsA9CMCDgB9873tqW9lNr3qxK43ufzq6OiYj4tUAIC9bXG+Ojdb1YLNza1qsetZ6N8BoF8QcADYvd/Mvvtk9pmnsl/ 9H+ c28bWMtmoAAFhbb7l9xdXRt/7qgWPXxH/22jjXCQDsTgQcAHbRd68fvljQtaZN1NbecPPw629IaskJHTQAAOhu6nRJS1r+1+OLm8g7bj0+rrrIV14R5ioCgF2CgAPAxVQqNp7/bu7xhxc2UaZBogEAwHbZSt 6h4 o4bbh5+9c/G6NwB4CIi4ABwoWntySNfn/vrL89sqJvGFVdH/8Wbklp1QqIBAMDOmTpd0nqWf3hkcUNXIEZSvl9518E3/fIoK1kAXHgEHAAuhE2HGrYClnbuAABcFNq8bBNrSAk7AFxgBBwAdsrmQg16mAEAsPv/f99oF3DCDgAXAAEHgO1ke2o88Kenew81brh5+JdvHbv+pmHKNAAA6K//9ydfLn370YWvPzjbe+eOkZTvtvdP0LMDwLYj4ACwVdr95NuPLvy3+8/0fiVHa0/opgEAwJ6hzh0bWslyxdXRf3PnketvGmY3FgBbR8ABYJNUofo/vni29y8xhBoAAOwTmwg7bj0+/qvvPsQaFgCbRsABYGNefDb/ta+c633ZLaEGAAD73EbDDjXkess7DlxxdZTRA9A7Ag4A61Nnjb/68szn7vtJL7e3PTX4XgIAAJxefDa/oZ4d7/3gJW9710G6dQDoBQEHgDVpEcr9n/hxL19BdLHlhpuHX3tdgjW0AACgu0aj9Z0nlh5/eKHHstAbbh6+8+5XsIAFQBcEHAA6Lc5X/+rPpnvsGMpyWQAAsPXvHr039lJf0rf963G+ewDoQMAB4J++W/SYa9iVsTQ8BwAA20hbs/XY7YukA0AHAg5gv+s917jh5uF/ffuRG39phK8RAADgAnxFeexv5v/s82fWXSpL0gFACDiAfapUbHz9wdk/+Y8/WjfXoLkXAAC4uF9aemx2fsXV0X//f/3ML986xpcWYH8i4AD2FzX0uvfkD9a9GKJcg46hAABgV32N6SXpuOHm4XtOXsbXGGC/IeAA9osXn81/7Svn7j35gy63GUn5bnv/BNvOAwCAvvhi88Cfnp5PV7vc7J6Tl/HFBtg/CDiAPa7HpSjUawAAgL7TY00HS1eAfYKAA9izXnw2f+q/Tnb//55cAwAA7AE9Jh3v/eAlJ/7tUQo6gL2KgAPYg//B//WXZ7qXbNxw8/Cdd7/iX9yU5DoGAADYS0rFxj88unj/J37cpd2YCjp+5V0HucAD7DEEHMCe +h/ 9v9z74y5dNtRi4/94/wSbqAEAgL1tcb76//zp6e5NOu45edm/u+cVXO8B9gwCDmAvmDpd+qPfevHBL02vdYNbj4/f/u8nrn1jkrECAAD7ypPfXPz8n5zu/jXpN//wisMTQcYK6HcEHEDf/5/dZc/XkZTv1z7yyn99+xEuTQAAgP2sVGz82efPfPIPfrhWQYd2luVqENDXCDiAfvXkNxd/8/98dq1GG/wnDQAAsOo3qC4Xh664OvpH//lqvkEBfYqAA+jL/5i7RBv3nLzsf7vtMGWWAAAAa5k6XfrzB6bW6lxGzAH0KQIOoJ+8+Gz+g+9+etVoQw1EaZQFAADQIzVoX6sR6RVXR+/74uvYUxboIwQcQH/o0kZ0JOX73XtfzVZnAAAAm9BotP76yzP/4Z7nV405aEEK9BECDmC367L5K9EGAADAtugec7ChLNAXCDiAXe0rp86u +h8 t0QYAAMC26xJz6NvXO04cYpSAXYuAA9ilpk6Xbr/1f61st0G0AQAAsKO6xBxXXB39/IOvZ8UKsDsRcAC78f/UL/yX079913Mr/4nySAAAgAujyzLh//tTV73n301wtQnYbQg4gN1lrcINGlwBAABclO9mqzZ6p5QD2IUIOIBd5Cunzn7g3U93/HAk5bv/L65hJ/Z9xX4yDwwMbOXXu99Jq9Vqt9sdNx4cHBwYGNjc4+7cK7owA747n9uGXsXK/9MHBwf34fnfbrdbrVbHu2BgYODCj8buP7V2+Xtzl7+/duLTErvWk99cvPOdT61csfLpL76OrhzA7kHAAewKjUbrrtu+s/LiwHs/eMnv3vtqCiD3iVar1Ww2G41Gs9nUV+fBwUGPx+NyuXr5Dt1ut+2vOyctbrfb7XYrubC3rNfr5XK5Xq/X63V7y8HBQZ/PFwgEdPttmRI0m816va4wZWBgwOVyeTwe55O5iOxwaTLscrncbrfL5erHUKDRaOiA1mo1HX2Xy+X1egOBgNfr7Ys52MoT2J66vR8RvYnK5XKlUtH7SDwej8fjCQQCHo/nAoxGq9Wyp1a73R4cHNTZtUvO/N3/3tyFH8u1Wq3jmOrjwuv16lO6Hz83sIlva//hnuc/d99POn5+6/HxTz3wWr6tAQQcAIwxZnG+evNrHum4JjCS8v31P9xA3eO++hpdqVSKxWI2m61UKu122+Vy+f3+RCIRiUTcbnf3WUe73a5Wq8vLy7lcrlKpaMaufCQcDsdisWAwqO/furidz+cXFxeLxWKtVrM39nq98Xh8aGjI7/d7PJ5tmePl83nnKwqFQvF4/ILNMzWL0/ytY57carWKxeLS0lK5XK7VasYYv98fjUZDoZAdq37RbDZzudzs7GwulyuXyzqgPp8vHo+PjY3F4/F1z59dMt/W2VIul5vN5uDgYCAQSCQSwWDQ5/P1+PwbjUalUslkMtlstlarKePQuR0MBoeHhyORSI+J4Rbfy9lstlQq6cz3eDyRSCQUCoXDYbfbvRtGu9FoLC8vLy0t6eNicHBQ781d8gx3yTnZaDRKpdLy8nK5XM7n8+Vy2QZwyoO8Xm84HI5Go5FIJBgMEnPsE1OnS7/yLx5f+bXt4e+9KTniY3yAi4v/w4CL7MlvLr79hm92/JDCjX1Ic9R0Oj0zM6NJ0eDgYDAYPHTokMfj0VfnLr9bq9Xm5ubOnj27tLSk6boxxuVy+Xy+0dFRn8/n9/v1zbvVapXL5XPnzp05c0bf1zXZGxwc9Pv9zWYzHA57vV6FAluc5pXL5ZmZmZmZmXK5rFcUjUYnJiaSyeROT7mbzWaz2SyVSsVisdVqBYPBYDDo9/vtgzYajcXFxcnJyeXlZY2Yz+cbGxtLpVIej8fn65svqcq20un06dOnS6WSDlyr1XK5XM1mMx6P98WVDL2Kubm5M2fOFItFvYpgMHj48OHR0VFdIe/xrKvVaouLi+fOnbNJX7vddrvdfr+/VqsdPXo0EAj0eG+bPvPz+fyZM2cU1ujRh4aGdGrtdLzSewRz7ty5s2fPlkolnS3hcPjo0aO75BledBqipaWldDq9sLBQqVRsbdTAwEBHiZyys9HRUcVYJER73uGJ4FNTv9RRyjGfrr4m9fW/fPyNrCkGCDiA/evhr6Zvu+WJjh/yv+O+DTgKhUImkykWi6pu0AXtpaWlsbExv9+/1pSs1WqVSqVsNjs5OTk3N2eM0a+rploXIZ2LU2q12vLy8uzs7PLysopE9Fi1Wk3LVVTpsPUZTrPZrFarmUxGDzQ4ONhsNrPZbC6XC4fDoVBohy516iUXCoVCobCwsLC0tDQ4ODg6OjoyMuLxeDT30G3y+Xwmk2k0GhqxUqmUyWQCgcDQ0NDW850LfObMz88Xi0VN43WUG42G2+3WooO+mE/WarWlpaV8Pq/i/2azuby8nMlkdIW8x0hCSy10/jebTa/X63K5tCarUCjMzs4mEgl72u/Q6adnvri4WCqVXC6Xy+WqVqtLS0s+n294eDgQCOyGgMOOttbOKGDNZrO75Ble9PdUpVJR3La4uKgKFy1FsU03VArXarXq9XoulysUCvl8PplMjo+P63QlJNrjMyj34O9/8uq3vetgxzWqt9/wzQceuu7mt6YYIuBi4fowcNH88e/9oCPduOLq6PfSv0y6sT/ZBgTGGDXCUBGBXSS/1m/VarVcLjc/P7+0tGSM8fv9fr9f0/iBgQGfz6eKDFu+USqVFhYWcrmc2+3WowwODrZarYGBgXg8PjIy0r1aZEOvSKtU9DS07EU/6WgAub3DaF/jzMzMuXPnlpaWcrnc8vJytVp1DqMyjmazqToXLYKo1+u2JcdFPBNa/1z3EgxbqDIwMKDL7zqXPB5PNBoNBAJ90VVBHRzr9boWdPj9fpUR2ZY0Pc863IFAYHh4OJFIKLlzdpbJ5/MLCwsq6tnpI6gz3+v16v3YaDQajcYuqabRM1Sg6fV6fT6ffW+yctmmwOl0OpPJKCYLBAJaWKfkQkveNHT6FG21Wir3WFxc7Oj/gj3s2jcmv5f+5Suujjp/eNstT/zx7/2AwQEuFio4gIvj859+uWNb9RtuHv7i165nWcp+/lat2axqnrW+wKzRul90GXZ+fn5ycnJxcbFWq4VCIY/Ho9qNZrOZSCRGRkZSqZRmucYYXbZdXFxsNBq6cb1e19fxoaGhI0eOJJPJbexJaTezUJNFzb3XnbFvfXIyNzf38ssvFwoF1d7XarVKpaLJc8eNzfkic3O+8vziphsqjHc+W7XG9Hq9q9a9t9vtcrmcyWRKpZL6aKoJRbvdtofeBgcqS7HtSHZb6mFPdXuqdD//V6WUJ5lMqoOmZpvBYNDtdvt8vkKhsLi4GAgEQqHQzhVxmPNbFJnzfVJ1am30tVyY0Va9jF3LQ8ChJU6zs7Pnzp1rtVr6nDTGNBoNxc22CbT7PMVn5XJZKbNWJEUiEfpx7AfJEd//9483vvst33784QX7w3tP/iAx5Ln9A5cyPgABB7AvPPnNxd++6znnT+45edldv/VK0g3YSZrVZQZVLpdzudzk5GQ6nW61WpoGa3sUNV+YmJgYGhqy5f2a/BcKBV3tV+GGahb8fr8ueu/QjhsXbDPFVqtl18UMDAyEQiFjTKlUcu4ss3KO51xUfxFpUU86nU6n05VKpdFoqPVjKpVKJBLhcLijssauhshkMq1Wy+PxqJOFMSYejx88eDAWixlj8vm8QpNGo6FyFc3wd/PuKs5FVZv4Xa/XG4vFRkZGSqVSuVyuVqvK+AYHB0ulUqFQqNVqvTcu3a4Xsguzg46PGtIN9R5Op9Ozs7ONRsM2JKrVamqnonfQ4OCgdiyq1WqKIPXDarWazWbPnTs3MDDg9/v7qJUPtjSbcg9+8WvXf+oPf+i8cPXbdz131Wtj1OQCBBzAvkg3OlZs3nPysl//6GWMDHqna/L5fF4rU9rtttfr1RdxG1iMjIwMDQ2FQiG7GrzdblcqFfXUHBgY0P4p9Xo9Go2mUqnx8fE9sIGCSjDUfEQVDTtaMLIT6czS0tL8/Lzd3UY9Wfx+v8KalZmIwgt7VmhWlkwmo9Go2+1Wo0R1W9B6nFAoFIvFtMPOXm0ToJaZ4+PjrVZrbm4um82qlkenvTbFCIfDfJJg5XtQwXGlUrEte1QC1m63o9Go7R9ULpe1UU6tVtMGwEoYa7VaPp+PRCLbWw 2H3 Z9x6IucM+N4+w3fpKsaQMAB7HGlYuPOdz5FuoGtpxvaAUTt/VW7odUKtVotGo2Ojo6u7HWnqb4qqyuVSrVaHRwcjMfjR44cGR4e1ny4l0d3/nXrX9+dd7gtkwHnuhhVqaz15C/K01s3mtHkSo0wdUzz+XwikVi5dkYVHOqkYIwplUrGGL/ff/DgwVQqFQ 6H1 Tn13Llzi4uLquwwxmSz2WKxqC1L16qs2fajvI2j1OMTc7vd0Wj08OHDwWBwcnIyl8upwY360Wy0nmJHT/sLMMI7kfGtvM/tev9u1x1u4q7q9Xo2m83n8zpVtMBNtRujo6OHDx+ORCKq/VGQkc1mp6amyuWyWr1o49hisZjJZEZHR7ernxH6xcqM4853PvWtH90cDDHhAgg4gD3qQ3c+49w4/b0fvIR0A5tIN5aWlqamplREbduRKt2IxWLah3VlJ3+V7kejUS1n0Df4kZGRZDLZ/Yu4ZoPqvmnbXtpWDtohZUOrzXVvaiFpKyx0J2pYsIkOEXqSauW4VhagNRrrrpex3Rb1km3rCvWG6PJibZ8FPQHb8GKth+u4ff08HZpAIKBFK2v1p9Rz8/l80WhUUY7aT4yMjOgis0pCisVitVpVI1Vdiy4Wi9pC1XnQ7TOxr1odYfT87Wu/KKe9XUtllxrpidlnteoIu1yuYDCoZTvaysQYEwwGI5FIx6V12xrG2abEONqF6rS3j6sTdXNnqc5DO8jm/M4vso2LuewJvPI0ti9nE2+xjva39rS0nwbdX4VzqPVburE993SI7SdM90O81v07P6w6nps9o3Rje4Zrc+VKpZLP5+v1utvtVmqs5sSxWOzw4cMHDhyw2xIFg8FQKBSNRhuNxuTkZLVaVSDidrtrtVqxWLT77/Lf1n7LOJYWa3b72Pl09UN3PvOfT/0cIwMQcAB70MNfTT/4pWn71xtuHv7de1/NsGBD07xGo5HJZM6cOTMzM9NqtbTMW9NgpRtHjhwZGxv3psenAAAgAElEQVRT07uOKcHg4KDf79d1RU323G53MBjUBq7aCnHVOVK1Wi2Xy4VCoVqtqv+lOd+b0OfzqV9jMBjUKvR15yG2TYZm2nYthmoWwuGwvc8NTSC1mUgul8vn8+Vy2U6x9Ad14lRXDp/Pp3nvWnPCYrGovhVq39But/Vi1boiEAgEg0G7MY3zd9XgU/GBXa4fDodtk9eO29u4QWtqtIZo1eayK2fj1WpVDSYKhYIxRotxdMFZG4XoUrONezT1WrWXpD3Kmpjp+egp6YXrPAmHw70f5e1N9HK5XLVaLRQKymU0tjoi4XDYjvDKI6JbxuNxtV+1yZGzw6j2SC4UCuVy2W4IqveFBkRnvjIml8vl8Xh0WPW4K99oXV5LuVyu1+saZE3mlTjYOwwGg9qqY+sfFOo24jyNNcMPBoN+v79ara7amKZLVlKr1XTWlUqlarXq3HLIfhroPLF7x3SMjM5wPSu1mPH7/dqVViutOoZaB8K+77oPtZ6k7kRtVnRXOvn1qRIOhz0ej26mzrtatKVOosrRtOBL+aB+EggEtOLP+a5XXjwwMJBMJrVJs46mbqBOzxe3YzEult+999U/fGHZ9hx98EvTv/ruQ2wcCxBwAHtNqdi4547vOn/yJ6d+jq6i2NCkRe0Dzp49OzMz02w2Nc1uNBrlcrnRaKh2Y2xsrPvSg3q9rqv6mkjncjlNS0ZGRiKRiHNmpS/3y8vLi4uLCwsLurCpi8+6c81qgsGgfj2ZTNpme93neNrbIp/Pa5b1T/8nOe5NG9auzBHWuttKpTI7OzszM6Nrp3b3Cq2NL5fLMzMzi4uLoVBIDThX7f+nFoNTU1MKOLQZjQ1KNN0Kh8Ojo6Mqe3Eu6tHvZjKZmZmZ5eVlzZ0ikcihQ4dSqZS98OtMZDS2586dUw28nrMmRdqywZnROOMhjaGCjFKppM0ddINsNqv7iUQiajKqf1prrmU3xVxcXFTJvZrU2uOi4MDv90ej0R6P8nbRxr3ZbDabzeZyuVKppPmqvfDu8Xgikcjw8PDo6KjmwPZZ6ZRQu9lisahUTjsWt9ttTfJ1s2q1msvlzp49u7S0pG1lQ6GQdpktFovqs6Bf1+MqWwmFQslkcnR0NJFIrBtJqEJBp2ipVFIfHOcRUViTSCRGR0fV6GFzHVKU6Wg7j7m5OcWIzsfSaazWPJVKpZeCEfvJo8HUGWK377VFKBoZv98fi8XU4TUWizlfhRJArenIZrMqpwqHw4lEot1uLy0tKbBT7qDfUjDh9/uTyWQqlYrFYmudePqwyuVyCwsL9sPKWe/jcrkCgUAsFlNhlN7gGvnh4WGtPdHaJd2/3XjIGBOLxRKJhCLXjsOqu9UGPbq94r9eNnjGnp1cuQf/5NTPvSb1dfuTe+74LgtVAAIOYK/5o9960bk45dNffF1yhP7q2MC8pdlsFgqFTCazsLBQr9f9fr+toG40Gj6fb 3h4 WJPPtSYtmoFrnq9+DbYlRzgcHhwcDAQCzhJuXb7WhgL5fF5zS4Uadiqly/72umsikYjH46vuT2E3a1BbPl1B1QxB/6rLzrlcThUEAwMDiUSiY47UfQ6mmXC9XtdFeGfAoXUB9rKqJqUdT29wcLDRaCwvL6sLhq1fsPXzalxSKBT0EB3LVTSDzWazmUzGNrxQD9dkMrmyv4lKTtQBVGOryadmy3qqepJ26BRG5HK5bDY7OzurWWLH89Q0UjFWqVTy+/02MXGuc7F9Z3Ve6SiXSiXN+uxxsXeoCeG6R3l70w1jjA5rtVrVkGrM9Sp0RGyxSTKZ1HxYv9hqtQqFwvT09Kpnu67bazNancCZTEadF4wxKnmwR9w4VlJo4qqf27IIFct0T3x0eujMV4zSceYr72s0GmqO05E2 9h6 DagnbzMzM/Py8Xrh9LFslpDU7ehrdD6LtZzw7O6s7tGeIHRPnebK8vKwaCgV2kUjEeebbTX90Aw21BqRYLDYaDeeSLltOpU8M53ne8Zz19i+VSjqNl5eXbTGFDooWrei56WNTpUD2zaVPTr37VD6mEhVjjKI952fjqqGS88k4x4f/vPan5Ijv01983Qfe/bT+Op+u/tFvvfj7n7yakQEIOIA9olRs2AWZxpgbbh5+x4lDDAs2lG7k8/mpqan5+fnl5WX1U7D7FMZiMV2EVKPQLqvfK5WKEgRtEDAwMKC1Cfl8vlAo6IKnvdo8Pz8/Pz9/7tw59bzUV3zn7MJ2KGg0GqomiMfjR48eHR0d9Xq9Kx9d8w1braA7dE4DND1rNBqLi4u1Wm1kZOTo0aOJRGLdmZ6mYbpQr1J5rYfXPft8Pk3nNGJaQrJyEw21adAeuhof3YPtSal7aDQas7OzusA7NjZma0xUW6GsR4+oLXttsczKuagWmCifGhgYUFoUDof9fr8uQev5qyJDB2Vubk4XwMvlsmr4VzaDsE9VWwJr2LV8Rk/VznibzWYmk5mamtJRVoGDUhVncGNDk46jvLIsZXsDDh2RarVqn5jzldp1E1rAonhiZGREz7/Hs10vrVQqFYtFO861Wi2TyTgjJztfdZ4JxWJxcnKy0WikUqmRkRGVhKz+Zcvt1smgF6WWN85VVDZ9m5mZyeVyzWbz8OHDaqSyoXRDJSenT5+en59XfxbbFMMOmu1To+yve72VDvrU1FQ6na7VamqlaVMGe7c2BNR5srS0pPTn0KFDahBjPy401IogFUwsLi5qiGy6p9PP3qGyCSUOin6cLVR0vBYWFubm5qanpyuVigrBOl61PYdLpZI+f+y2U8ViUVVLg4ODwWBwfHw8EAgojWq325FIZHR0dNW8yda4qcmoTda0hVOP1WfYq95x4tCfff6MXajyuft+8pt/eAVFHAABB7BH/Nnnzzj/+rm/fD1jgt7TDV1BPXfu3NmzZ9XKLhAIaHrcbDaj0ajtKtrLGnUVC7jdbrUhsLMdW87t3KUlk8k0Gg31BbCXmm1puiaE2hxR7TnS6bTK1OPx+MrJqrIGta7UU9UMwZwvDLH3pjJ+PbQW4W/lWmjbYa0bKBaxhfGamdjER7NE3UZXlRcXF30+n8rabZpjV3Zoqmb3bV21WN0ejoGBAc2NNbbqX2DnV5rbu91ulfdPTk7Ozc212221X 1H/ FP2i86lqftVsNrWawD49PQ1N+PWv09PTZ8+e7TjKCgLsyOiY+ny+jqMcjUZ3aCNMBQp+v9+W+eiVanht+YymqWozMTc3p5Yctsqjl7PdnL+8r0lpIBDQ+NTrdXsa6K7saawT1ev1Kiw7d+5co9Hw+/1rLVTRGaLpuo6ObbJr+ 2h6 z1PmNTMzo2n8qgupusSXc3Nzs7Ozc3NzmqvrXabOtXrf2VUV9rnZVVErKSObnp4+d+5cq9UKhUIqx7CNV50NX+2wKHXSqRUKhex5ZRzdhTXUOru0VkVDZz8Q7FArrlI50uzsbCgUGhgYiMfjdqibzaaWvWhLKa1rU5jV8b7Qm0IHQrGgbaarZiJ6rw0PD8diMftD/dbKj1YFmvl8fm5uTnvK6impt4g+tQg49rnP/eXrXxn5qvOr4O0fuJRhAQg4gL3gk3/wQ/vn937wEiJ89D5p0df3arU6PT1t0w315Gs2m6FQ6PDhw2t1FV3rPjWH1xVOu9zdTnJ0vXR6eloXgbXCXNf/bfM/u1xCs1CPx6MJZLVanZ+fj8Vi+uHKmZ7f79e0oVarORfbq75D6+01edb0e2FhYXR0VBeiu8+HvV5vLBZTAUWpVGo2m8oFNPHTkpOBgQGtw1cLyc7/Ec/PebSOwG48YSeimuRrtqx2G9ls1l7hdw6v7VHS+3zeODo1KEfQhFyLKTweT6FQOHv27MLCggZKF8B1Y12N153YpRw6BMFg0B44vTpd3/Z4PKVSaWFhYWZmRm0U1ZxCd2jLbXSUNbx+v7/jKGsKukP7RCgX0JYfOls0BTWOxSZaqKXUrFqtLi4uplKpjk4c3c/2lUfBPq4u+NvHtUfW4/Fo0qu0q1KpLC4u2n2LVn0t9pTW+8jO4W0bVNVk6RUZY/L5/OLiYiwW6z0/0gfF9PS0baarjrOqWtIM3+5gouffvXWI6kHm5+fn5ubU8UeZnV22Y0sk7N3q00kvp9FoaOHP8PCwc/uSjq1q9Ko1jDZlsIdYOYhupkh3bm5O7UJtIFIul9PpdDqdtqex4jkdOD1JnR56CyumXOu9aau37LNddcWfHldlI/Pz87a3i0ZbjUVW/ZDBvhIMud/7wUtsAe8n/+CHBBwAAQewFzz5zUVn940T//YoY4Ie0w1NJtUcoVaraQ8LTb2azabH44nH48PDwx312D3euZ1i2b+a8+Ub6vRhjNGU3laL+Hy+oaEhlYqormRhYUF7T+iWarGxsLCgm3XMHPRwKsXXlCkajWpioA1QVMOvOY8eVx0i1+1HoEumBw8edLvdela1Ws3uG6I /h8 NhtW8Mh8PqvtlxD+b8hhq6Hqs9F3Shfnl5WR0QVdWv3q5aARGJRLpvstt7xqEjuLy8rEYPWlYTiUQ0c15YWJifn2+1WupAqeay9XpdByUSiajVSKFQ0AIWDaZeiE4YLayIxWLxeNztdi8tLc3OzpbLZe0qoklgpVLRXjbxeFwFFPl8Pp/Pa+VOx1HW9hY7F3DY/WJqtZrf79dQ602RzWZVuGH379CEfHl5eWWDlbXO9i4HQrtpNJtN24JhcHBQbSxVW2RHQ2tPcrlcrVZbuTLL/PN2J2pgEYvFdBB1huvU 0h3 qh8ViUW8HNQzuJd3QmrJMJqN3ljYr1XtTXWBUtaE4Jp/PqyalSyqqhhp6g6s/hR7FTuDD4bB+XW+ZhYUFbeijn3u9Xh2OSqWyakBpF3/p46XVaqkkSjUaWnmkVh02xqpWq2qRMzw8rPNQZU1KNxSP6jXWajW9LxTD6WaZTKZcLiv1Wzcw7fjDynRjbm5ucnIym81qwLUkTavA1CN5i3Vn2BtO/Nujzi1jn/zm4rVvTDIsAAEH0N+e+07O/vmKq6NXXB1lTNDjBE9f9FVXr3m1bUyo2ZrdpnEbaT5frVY1SzHGaJ2Fto0YGxvTugzNvVut1tzcnNph2gvCahwYDoc7ZpK2aUKj0QiHwwcOHNAs2hhTKBQ8Ho96W6hiXwsE1Cxz3deo6/nRaFQ1GppZ2Y0MVF2fTCa1M4u2+azVah3PTeXxtVpNGysoCNBqhUwms7i4uLi4aFcuaG5mN5vc+rDrJehYG2N0vX1wcDAajSp90OaaWghgzm+z4na7R0ZGDhw4YPeAKBaLgUAgk8loBw1b56/ZoFoYRCKRdrut3TQVgugo67WPjo4ODQ3ptesoB4PBqamplUdZ25rs0CoVHRHVIPj9/lQqlUwmQ6GQZrA+n29hYUFZg+s8zbSdvVQ3R4+rRG9kZEQ7K2uIAoGA3bdIhTN6L+isthUiq2YQWnM0NDSUSqWi0aiGV003deZrKYSOr2KdVTdvXusJazTsPaiEIRAIjI2NpVIpJYlKYdR2RKHAWvevEqpyuWzPRtWz+P3+sbExvZWUq6oxqmb42rvEpnXOrUy6HOJms6m3m+Jafe4Fg8GzZ8/qLaZeIYoqFDzpPm0LDK1A0S/qMA0NDR04cCAWi+kAKSqam5vTk+x9c9+Vz1nhSzqdVntglVOpbKTRaEQikUQisXPBH/qLvvW9+GzefiEk4AAIOIC+9+S3luyf/82dRxgQ9B5weDweTXK0QEC11po8aOvTpaWl+fl5bZC5cp+OzU3tSqVSNpvV4nPNKKrVqsfjOXTokDbFtBt2BINBu8umrsFqgqe5d0cqYXddUVZy9OjRAwcO2EupKuXQQ2tOvnI+031ColUASoXsSnt70d7r9UYikWQyqQu/ukTf8fT0WO12O5VKXXLJJdpMQcs6tKuotndR7mNnob3kL72kGzqmmkYqmjHGKLzw+XzanlMvRP0FtB+E+rAODQ1pdtdut1Wioh4o2o5XW+QoE /H7 /eqYqJNHF7QVrGhliu5QzTWUmASDwVAoVC6XtZ2t8yhrVr9D57+mvhrw8fHxI0eOqDTAvhC9BTRjVzmA1uxs/Skp6wkGg6lU6vDhw7FYzPae8Pv9tVpNHTf1ltTEXif2qmepPbXq9XoikbjkkkvsbkfqYRkKhdQcVPGZXovdHWbdM99u9JvP53Xy2114QqHQ2NiYOn3aNR1a3KStkZSqrHqfqvdRoYcGRP1QRkdHbT9j5wtstVr5fH5+fl45mg0odT6vmnHYei59IKgQyQ51MBisVqtTU1O6B92nch+7W3C5XM5kMrVaLRAIKDBS1HLw4EHt5axzQ6ex1sIo+HOuQ9nQOVmv1+fn5ycnJ9PptDlf46YwSMHK+Pi4YhrWp8B+8fvtu56zXwhv/wBDAhBwAH0uM/9P61PiQ14GBD3SjF1TfTt5M8bogrxdan7u3LlIJDI0NGTnsZum+YbdekNzA01ykslkKpWKxWLOroc+ny+ZTKqMPJfL2X1kNdlYef+aMqmN39jYmLNngUoVotGoSr7t0ndnW9NeIiFdye8YB9tl0DaMWHW6pXmUSksUGdj7CYfD6nii+bPSBE3yt6uIxrbhULrh8XiGh4ePHDkyNDSk6+2lUkmXqe1T1TXqoaEh546tGgGfz6cNXKrVarPZ1FId2yXB7XYXi0UdOOdR1pS+YwtYXeQ/cOCA1k04j/K6e6Nu8WxU8 4h4 PK5iHzsj1c6s2nNEi6f0NrEjs5UKDp1yxhidpVrwYkdD1+e1pasamuhM0AqgtR5X3Tc8Hk8qlRodHXV2CdEfYrGYNk+x3U/0Zunl1NIqHlVdqcRG42CM0dtWy5fsw0UikVQqpeIR5UerBijqWBEOh22/W4/HE41GR0dH1clVGaIo3LEbSDtP5u4VHHqeQ0NDulvn50YoFIrH48qSdIjtGjfdp12UpFhHR6Fer8fj8VQqlUgklEDp3vx+fzKZVOnN0tKS7nATJ2Q+nz979mw6nR4YGLChidKNRCIxOjo6Pj6+9Y9i7CXOL37OL4QACDiAfmU3CTPGXM76FGxkxmv3g1DtgyYDNvLQcn118lOJx6oXYzc6u9O1aNuUUXUQKmHomBKoX0YikdD0WJs4BgIBLSVY+RVf9+b1ekOhUMfcWAs07C4ezt5+XSZI20jzNPVBUATgfHoKRzS8zudm2ytuy3xeY6gqjEgkolm9moAop7AdE7WlpS7+r5ygKpyKRCLa7VI3tnvZ2k1S1EjC9kHQ6p6Vd6jzUPUvHUfZOXPeoYOilqhqPdvxlDSZ166fNiHalsNhz3m7NbJzbO1eP87yiu5JhE2X1C925ZlvCw06TsheXotiAptk2TNE7Wn1ElYmp6FQSAsr1O1l5YeP2+2ORCJab1IqlVS9oga9SnMUNKiyQ71a1IOjY+/YtXYv0s9VmqEeHyufp8ZKNzMrOmLow0onpP5JyZRetTOWMuf7EOudpaUlGz11FTHncjkVuNmiObsoJpVKDQ8P66OP7htY9Yuf8wshAAIOYC8IR3jTYQMBh93UQ9NRtQnUwnhNCYwx2qhS24smEomtLPx2LolXpYaul3o8nkgk0jHJtHOGoaEhv9+vmMPOnYLBoN0QoWPC5vP57AaWHS/WOZm0IcJ2JQjdh1pJiqbTWp3RERmo+mPltHZbyjdsBxA1AZ2YmFA9i+39qbUhttpCnS8UYaw6O3W5XMFgMBwO27mcc+GDWpBoDqwJpG4TDodX3qHuLRqNHjlypOMoK1PbobmcxlaZy8pH6TgizrNli0dESZPdoqXjTNDM3/m4zl/scodKA1cuJbN7rOrN7owGdOb3uESlXC6rhsLWPan+YmWVjUoz9I7O5/OrBhzGGI/Ho14SQ0NDKuLQq9AOL/qJghX9k1JOLf3QSdXjUNtStY6XaYfaGYjYcdb4qKLKfm7YWGflh5USk2AwqI7Fm4hN1Yvn3LlzhUJBu97YHZeCweDhw4fHx8dXPVfBFz/nXxuNlttNgQ9AwAEA+5XdzSGRSBw8eNAYMzU1lc/nXS6X3ROxVCrNzs7qQvdW1n7babadMWpSoRUxq16W1NVXXdq1K 0H0 u9pLsmPKqolTR32E8946rmN3uQK8vfQouji/au26JqKrdljYrqenlTixWGx0dFSX+s351Q1aI2DX12gNy8qamo7sSUshbHGK5nXKR3SHzt1ttSVnx3XvjiRr5VHeubmcRtXZ8aTjKemIdCQL21K+oXUiHaUWKx99Q6eWXstax2vlqdX7eaV8SuVdKtXRghHtPLLqChS7MW2XR1FTGK140j 5H2 WxWG77YjqrOJ6/7VFmNc8OaLrmP3cR3rQ+ELuNsP6z0XtB5rrew0o1VT2O9a7QJ0YZOFTUnWlhYyGazSojM+RY8fr//yJEjanRC7QbWn3qRbgAEHMBeMjtdPjwRZBzQ47ylWq2WSiVjTCKROHr06OjoqIrPddnQ2YyjUqnMzMyEQqFUKqVCj809ol0lYVc0aF7dZbKnn3evHHHOJTSZ2W3TAHup/GI9NztEGm3nhWtbleBcDaGL212erZ2id6ypsYsLdJTtmiC7ec1a013NdS/kaNiGFFtPGTZxFFY2c9nK3XY/tezR2dyd62PBeZR1QNfaPdoutDFdK6S0lGl+fv7cuXOq2lC 5h9 ZA6WSwoaTtu 9H7 C9Ev2tKtjR5Nu3TF5lwKO7p/WDnX/fX+iAo48vm8mtraDZ7UnmZ8fHzdrayxn7/4MQjAhUSICOy4W4+P2z+fneT/OfRKQUar1RodHdWeI1pAPjY2Njo6OjAwoH0ZVMrh9XpzudzMzIzaQG56pmTbMTgnS10mmR2/28sF2x297L9FO1GV0P1SfI+V/Cs33N3ESDr7hjjnw/Yor3uH6x7l7R23AYcLmTRtaOp7EU+tlXmQ+ectMNZ6RLsupuN3Oz5/CoXC3Nzcyy+/PD09rV17IpGItulRHYTL5bKbK6sPrsrNzIp+Gd2HeitFZx3Hq/sg25hpQ+ew3jJaG2jXAanfRzQaVRvXbdnECnuS84uf8wshAAIOoF8lR/6p7+PTTywxIOiRFtJraYB2BNDlx2AwODQ0FAgE7EID2/Uwm83mcjnFIpueg3VMvNedDNi6D/V36GVjEaq4Vw7yRo9UL9GJbde6Mhax92AvvK+bXGz0KG/j+OyNA32BT/u1kose34yNRmN5eXl+fj6XyxljtBJNc3tbRKY5v23DoZ4U2jJ2cx87m/jI6jhV1n1TOJPWjX4aKxZUHKPevX6/f9V +H8 CqX/ycXwgB7BDyZmDHve66xOfu+4n+/Ln7fvKbf3hFMMRbDz19pdbOBfF4PBQK2Wpzv98/MjKyvLw8OTlZrVbVos/r9TYajWKxOD09bROQTVwX1UoEO2HQ1U4talhrKwQ1OMzlctrFVq0f9u1GiStnTbZV5Mqfa07YfaLlXBui+7Hzq+4bcCr/0v3beZ0yMtvyoOMod9mXVPsHdxzlQCAQDAZ3dCMV9Pie7dj2yJzv3tK99elaCYh2YJ2dnZ2bm9P+wV6vV/mFIgzbFVi9PLQwpFAoaJvnC1DOYItQnPsuqRNHl9NYOYW2btlQFxXjWMujodNyGFXPkdhiLaViw34D1BdCxgQg4AD63i/fOub869cfnH3HiUMMC3r8Yq3pqHMtvcvlCofDBw4cKBaLCwsL1WpVteLacWNpaWlmZqbdbo+Ojvp8vo0uYVADCDtn0A81VbbblK6cCM3Pz589e7ZYLBpjtOXK+Ph4IpHY6Sv8uz/dMGv0ONAcye5MYda+ntyxga4530jS7q2z6noKbR2qLVTVdEBTMq/Xq56ddl/SjqO8 6h2 22+1KpZJOpzuO8tDQ0MGDB9VbkXfrRTzrbA2XwgWdISq3UQrWcUBtMY4+T1bWUGh9SiaTKZfLfr9f7UjVU9PlciUSCW1R7DvP7XZXq9XJyclsNquHuwDVN7YViO1Qowar2lplZbtcvSn0r5totaNAR28TBYLaroXFKeji6w/OdvlCCGBH/ndgCICdFgy5nasu/+Q//ogxQe9Tl1W/hbtcrlgsdvDgwZGREbtXouql2+12Op2enp7O5XIb3QpRV0S1FsZ5UbRerxeLxVWvizYajVwuNzc3t7S0pO05lHdod9I9s8Sg9+Nlm7MaR0/QlQfCVr7owHU/KNpeVHMqVWG43e56vb68vFwul3UdvoMmqIVCwZbkqCBIAYf2ktBs0Fbd1+v1QqFQrVZXHmXFWCuP8sLCQqVS6VgdcMGadMCedSqosWeIDnq1Wi0UCuoMunKer/1QVu1/oaCkWCzqBurZqUDN5XIdPHjwsssue+UrX3nJJZccPnx4bGwsmUwq5LKJyYV51Vqv5/P5dBrroZvNZi6XK5VKapbs/BW9ZdSlaNXNZbo/VigUikajejjttaygZ0N3hf3G+ZXv1uPjFPACBBzAHnH7v5+wf37x2fzDX00zJtjil3stVFH3fl1ZNcaoZLparc7Nzc3OzhaLxVVnv13oe7xzzuB2u5vNZjabLRQKHXMGNd5bWlrK5XIDAwOhUCgcDns8Hq2euIiD4/yDs7PmWqtFtnHGtXKBj7PUwo5brVbL5/PLy8u65K6dONe6W4/HEwqFtArJnN9mpdFoLC4uZjKZlTPYRqNRLpczmUypVLLlP3oC2kvY5/PpKGsliz3Kmv51JFmq+c/lciuPsu5T8+FqtVoul4vFYqFQKJVK1Wp15QwTO/JNbnDQ5/PpoDQaDUVmHo+nXq8vLi5ms1l16nGeHrY6Y639WXWK2vBLh7jdbodCoQMHDoyOjiYSCdUvqBSo0WjofNa7wO7dY3askYqeWDAYDIVCdrmNsphcLjc/P5/P53UGitKNubm5xcVF1bxsqOxocHBQdXMHDx5MpVJjY2Pj4+Ojo6NsnoIuHv5q+sVn86t+FQRAwAH0t2vfmBxJ+exf77nju6Vig2HBFmc1fr8/FovF43FdO63X65oMu93uWq2WyWR0Qb73CYYmJ2qbZ7cm1UxA/fJ8lJUAACAASURBVBdKpZJWsCsv0Ewpn89ru0RdyVSJgXZSvFgXNjtmVrbBhKoPNlrYsumAQ3MwbTCh3SVUzVGtVovFYjabrVartsKiy9263W6fz6cmCPZKtcvl0jR1eXlZkYTNGiqViqKKZrOpQn39fGBgIBAI2AVNfr9fI2OPcqVSyWazuvrtPMraIHPVo6z6/FqtlsvlFhYW0um0GjcsLS0VCoV9WMVzUc52VXB4vV6bLeowLS8vLy0tFYtFvW11/ugoZ7NZFTKsNc9fuZuMzme7p5Iz29IDVatVe4fO9+AOnQM6A0Oh0MDAQL1e1xo6t9tdqVQWFhbsB6D2cy0UCjYQVOq3oceykaV25rZnPqc31lIqNu6547v2ryMp37VvTDIswAVAoRRwgdz/F9e8/YZv6s/z6eqH7nzmP5/6OYYFW+HxeMLh8MGDB4vF4tLSUrlc1rzX7/dXKpVMJjM9Pd1qtfST3ucMoVAoHo87p99er7dcLk9OThaLxZGREc0otAhiZmYmk8m0Wi1bId9oNEKhUCQS8Xg8akh5gSd7WipvJx6aj5VKpfn5+Xa7HQ6HfT5fJBLZ9pmJnWdqgY8aGWoQtMtmMplUFUY+n8/n87Ozs41GQw0auydBquCIxWJKGTSH9Pl8pVJpdnbWGFOpVFQqr0YJS0tLmsvZ1gyNRqNerweDwXg8rq4BOsrlcrlSqfh8Ph3larV67tw5l8sVj8d1hzrKuVxudnZ25VGORqO288vk5KSenk65aDSaTCYPHToUjUYp4N/pc14fBfF4vFgs6gxR+89SqTQ9Pd1ut1OplI6dos/p6elCoaCDvmq/DL2JVIhhl6q12+1isbi4uOj1etXfR+nG0tLS0tLS3Nxcu91WUwzn5iar9qDZrhceCASSyeTc3FypVFJdm9/vbzabc3Nzy8vL2WxW+a92hFlYWCgWi/o83FD5ht5B2Wz27Nmziv8UIWnhnt4+nOTo8KE7n5lPV51fAhkTgIAD2FOufWPy1uPjD35pWn998EvTv/ruQze/NcXIYIsTm0QiMT4+PjAwoIajtqt/oVBIp9PtdlsT 2h4 74WnOMDw8vLCwkM/n9VdNYnO5XLFYzGQyoVBIc4Zisbi8vGyMsVePtVImkUhEo9GL8qV/1b0VvF5vpVKZm5vL5XKBQCASiRw+fDgYDG7vQ9vryVodoH0ltNhncXFRO25qEYFWcBhjtAXJunMtleInk8lMJlMsFj0ej9frVb+VWq2mfivhcNjr9bbb7XK5vLy8rGqLQCDgcrl0BXtgYGB4eDiRSGhwdJSr1erMzIxOG836SqXS5OTk3NycXRRTLBY1qVt5lBOJhH6SzWbn5+fVo2FwcLBarS4sLLRareHh4Ugkwlt1p6kbxcjIiJaSVSoVrR8xxtRqtampqWw2GwgE9FedHvoVhWsdC8r0JtLhtk1edD7XarUzZ84sLy8rLtHJrDvUSeX1ep33Y3dX3aEX7vF44vH46OjomTNn9KK0/Er7105NTc3OztqtVYwxKr5YN1JcGXDU6/VMJqMwV5+l5XJ5YWHB5XIlk0mNBuchrIe/mrbf94wxtx4fp3wDIOAA9qCP33/sW3+3YBP922554m+fedMVV0cZGWxlPh8IBEZGRowxpVKpVCrp+qR6hZbL5XQ6HQgEtER/Q3OGVCpVLpc1b9F1UfWh1NVae9VXD6TefuVyuV6vR6PR0dFRVXlclAFxPqVms2mvNjcaDTUrKZfLquPY9odWbUgkElH3TV0GDwaDWp+ytLRkAwvVVmgDCK0U6B5weDyeZDK5vLx85swZzTl9Pp8OtBYIKGnSlNI2i9W/6tETicTY2FgwGFSeoqOsvhtKstRPwRijen71U9BRdrlcNt1wHuVYLKaHUIWIghi3263CEC2boob/AlC4NjQ0NDY2Njs7WygUVOOjN4KKLDKZjN6SWt2m0HOto6OtmqLRqDrIqGhIeZnKfNT/2O49bO9NN9b5rE8MLRJZdzvkTSc7oVAolUopey2VSjq3g8GgVqXZNrq2tERhx4Z6cKgORZsu686VIGvV237bKwrrevHZ/G23PGH/OpLyffz+YwwLQMAB7EHBkPvez/6s87+9//3N//Dw996UHPExOHDSZKDH0m6XyxWJRPSF+8yZM3aFuS6/azaiBSMrl53bxg3O7Vq0SuXAgQPVanV+fr5cLrfbbW3k4fP51EjCOBbkm/PdRhuNRiAQGB8fHx4e9nq9umRqHMvUbWeK7jGBnpJzn9qNBhyRSCQQCGgFvlIG1TvU63WlNva6tB7OOfvq8nDOf1p1VqOHHh0d1VX0crkcCAS0HsS2adQhU9G7tiCxa4g6DkTHDDYcDh86dKher8/MzCizsNNUHRS9Cr1evS6lG8aYWCx25MgRrZFxHuWBgQGV2eso2z1WbEPW7kfZxiV2NPTozkYkm+Pcv/b/b+/eg+y8y/uAv5L2fjl735VXBgssAwIENrW5uKPijEKYMBCVaQoupXSgdSdpQzIZt3/Qy4RM2vJH68kAbZOpG5i6lAGaDnHigaHgiakHE2IXTIwx8VXCkqXVanVZ7V1nd/vHw/7m5ezqeFfX89v9fP5ghHx09uz7vuec9/2+z/P8Ltfj1zzaVz/DOo/SotR/caHftLygzIX27OoL6frLBtfJOLq7u0dHR5uamg4fPhw7NEKr2KFpQeLYO1GJE0MrVv/W8WwjIyOLi4sTExOxWGx8sMR82fQhEEdIXP/HwNqoMIrSpOhqicM1flBKRjZ0hJQ3cs2Wiewvur2OHTs2MzMTmWZNghNv/wgpUn3Kmm/tlz3AYrpQ6kQT4VE2MT7/937pu+W/ueePbrZ4Cgg4YNM68J6RcqPK+Nj8gTc9JOOgnBekK+G4Al/PqM64wd7X1xeLJszPzzc3N6d/GyMn+/v7Y6hkXJHGLff4w+oLsLicHhoaWl5ePn78eKzC0NraWr58TReN1RWdnZ39/f0DAwOpxb3849KcyzpXevGC4+I/SjDWc1m4emt0dHTE4jILCwtxCVcz+DCtt1r+v/E3F/px6XeJO8PxD2OXlbdbS0tL9G6cOnUqWjmiRT/ij5TdxEqTsYsXFxfTrq9zJdzU1NTV1TU8PDw3N3f27Nl48qgESRlEsri4uLCwEMt29vb2Dg4O9vf3xx4sb+22trbBwcHp6enYy1EYEpur5gnTiNbVezntuKUVF/0WiA2V9n79XOBlH7/Ooz1dssaeLU+dqHOUxuO3b9++5vs0bcC45o+L6vpHfjxVPFs8fkNzIlLWGZnCsWPH0gydCCbSs8UIlRg7Gklo/OjyezNKHnp7excWFmK92PgEiOdJx2oczHFgVKvVNPAlRYdx5ESsUN7s8a8iHVjnmy5e8JofifFSi6KI2UPx4+KTKv3z2LnxDGnl5jRFtf7nUvHzK0BXq9U42tOR4/uLlG4ceNND5dEbB+/cpRkZBBywyX3mvltOjc8//OBJGQc1VzhtbW2dnZ3nzp2bmppK17TrGdMQ19UDAwNxgz0GDRalu7JxczV6KDo7O6NTIy0eGX0ucTc+FbG3t7ePjIx0dHS0tLSMjY1NT08vLCyk6/lU+JCWbBgYGLjuuuvi2j5a3KOxoqura3JycnZ2Nv5JW1tb6vxf/VvEyzh37lyUmhdFEY9f5wCRdB1SqVR27drV3Nw8NjYWT1Ve9yEGWDQ1NbW3t7e3t8/OzsYGj6KGqMNf81o6BlVEB0d6fPk6P+pH+vr6brjhhu7u7mPHjk1NTZW3Wwo4lpaWWltbK5XK8vLy1NTU7Ozsmjti9REyPDzc3Nx8+vTpsbGxc+fORTNIOWcppwwxaGPnzp2VSiWGhtY8YXNzc39/f1zNjo2Nzc3NTU9PpxvUaS /H/ 665l1O+1tbWFk1SHR0d6Wq2WHclQmrnaW5uTsseR6ZTk8u87ONjyEj0aLzs0R6DbOJIiGKWtGfXXAkotlW8L+bm5qJAJho60gaJH93R0RHr9cY/7OrqiiN5zT0bjz99+nS0GsXjY2Dt+q+f4wiJ+qB08EeCkGpqUs4YtRjRRhT/PF5DeoVNTU29vb0RlR4/fjw+l8o5bAoH47CPEG12dnZ8fDw9baonSq+wo6Ojvb09jepMm3r1rxmburOzc25uLnbi8vJy7Lv0+DRAd8eOHVGm1NHREb0qNSv4pB0X44TiEE0ZRzkAWvNTJT6KW1tboyMs7aOYuSPjYM10Y/+Bwc/cd4stAwIO2Ozvuqbtn/uTt96+5 8H0 LRgZx71/fKsZVFv7wGiqVCpx43F6ejo6Fzo7O3fu3LnmBd7qa5vOzs7R0dEdO3acPHky3TKN1KCnpydSkq6uruuuuy7aN1IVQ0yO6O/vL18Apyrutra2qA2JqoG4Cxp3L+N6sru7u6ura2BgoKenJ1ZPLF/3joyMFEURF1pxERIz+Vb/Rk1NTT09PaOjo3HdHlfU8fgYorH+jKOtrW1kZCReW7raKVbGZMSrbWtr6+/vj7QiLo9jmkn50r3m5Q0MDMSMxrg26+zsHB4erlQq5e0WPz3+vlKpRE1NdMSUp5Z0dHTEKNZqtXr69OnJycmlpaWWlpaurq6aHVGzl+OSvre3N4pEpqam4vWX729HY0KlUunv7+/v749r/jXXxYyrvtgafX19k5OTZ86ciVVFow 0h9 nLs6L6+vtV7OXZ0b2/vzp0745eNspF0cbuhvTY8PBzrtkRxRFSsdHV1rT5a6jw+pmlu27ZtPUd7HBIxqTdWTo0EJJ5n9Y6I98XQ0NDi4mIsxBs7NJYpiTwijvPR0dGurq6ZmZkIs/r6+qKIZs3sLB4f6x9F1tDX1xcjTjaak7a0tAwODra1tfX29sa6ISlNKFaGVnR3d3d2dsY6INPT07HAak9Pz9DQUHqFcWxEiVBvb+/4+HhUh8WCrEWpHSx9AnR0dMzOznZ0dESLVgSUg4ODXV1dEXM0NTX19/dHCVIa2jI8PJx6nVYf7dddd11bW9vk5GRs6p6enr6+vtTSdf78+cnJydOnT8ez7dixIybpRidavC/Smy7m3Z46dSqGzqS0sabCZc2t2tzcPDQ0FPFxlPm0trb29PSsuU/Zgh79zsRdv/pYOd0YGmn93J+8talpu40DAg7Y/Do6mx78qzvKSf/42Pzf3v+d+x54m1LGLWvbtm0xuy7uSEccEBdj67xDGJcucbWQVi5IVRtRXt7e3j46OjowMFCejRfXMB0dHTWXo3G11tnZGUMienp6Yq5EnN/HM0czSHt7++o73qlfI24UR3YTi5isecM2MpqRkZGenp64354efxGXeamhpqura3Z2Nq664zVH4tPS0hL1/HHNFleVUcGx5uV01P8XRdHX1xdXTZGVrF5AIXZiXDLFZVVcFKVhh3ETu1KptLS0xNqrfX19caEVz1m/aL/85FF+MjMzkxpeYgBB/Nz4derPU4zLztjL3d3dlUolqk7iCWOLxbaKJ1xd1xAXon19fXG1GVlDbLH1dxjFy+jp6dm+fXuMbEhbL1qr1v/4eL9ETvGyR3taYzXqXNI+qlM5EqU327Zt6+3tjaM6niEd1em6PYZ0xp5N+2LNIz8e39XVFQdqPD6WK9podUBKHuNtG0fI3Nxciqs6Ojpifd8dO3ZEEUoaSxHvtZrmnUgfmpubu7u7o5gitmdsyXidUVgR0zdiGZ14C0cJRvysYqX3befOnT09PammrM7E3wh62tvb+/v7oxEp3jtpddsYe3zs2LEUDFUqlb6+vnhrR+NM2unNzc1RfJHmsKTlnNfcLzWfrrHTIzSJGpl4MS/7b9n0HvzaWHm8WqQbD/7VHUZvwLU5ozYbCa6VifH5D/7id596YrL8lx/7+Kt+5543iPy3ptS8UO5Xr39rcc1nSMUC5YvzdKW05kzE+heiUYieZm2k6CQijHT/c81nqGl3376izg8qjxet/ /h1 bo30nGlTxDX/ 6h8 X1+QX+nHl36VYmZtQ5xI0Hh8l9OUJo83NzWmjpZ2ets86l9dNv13N88e16OrJC+t8wvRs8YRp2d14zWv+srE27fHjx1966aXjx4/HEMpt27YNDw/v3bu3r69v/Zd/q7dw/ZRkzceXf+V1Hu3pfVc+Ei60Z1OjR533aXm3rvPIL79zN3Qk1N+YMXsiVXDE4ZFGDpeHpK7eehf6BIihG/F7Na+IZUqKoqj/nqp508U2qVPpkx6cUolyx82ZM2eee+65F198MeKSiFR27dq1e/fu9vb2mAlSrPRJzczMHD169OjRo5OTk9FSFKvJ9vb27tu3r6+vr34tRs3BdomfTmwO1erS79795Oc++0L5L/fuq3z5W+/QdwwCDtiiX40f/uW/SPM4wv4Dg//5i3/DVyONGcEUP7/gQka3LtNAwWu13coX2I28X8oLT6xncZnFxcVTp049//zzJ06ciAG3CwsL3d3d119//e7du6/VgsGsPjwuy7ERbRrRypRqfKIKac1Okyv6e50+ffrpp58+cuRIrNuyuLg4NzfX3t5+4403Rh1HynHm5+dPnjx5+PDhM2fORCFJURRTU1PVanXXrl179+69iEoxtriJ8fl/9qH/t/oU7gtff7vbVHAN+SiHa/oObNr+ha+/vSb+f/jBk28a+cZ/+sJb3v +h6 20iGkp2ocYVjRUa50df3v2ynlCjbGlpKVbqiWU7zp8/39TUNDw8vNHhKTT+4bFt27ZqtXrq1KlDhw6ldqTU7bWeaUGXV/SJRCVURC1LS0szMzMvvPDCyZMnowusKIrz58/PzMzEzJrUvzY3N1etVmMFlvKoYFiPr37xyG98+Ps1f6kIFwQcQNHUtP33Pr3vLW/rq/mm/I0Pf/+bD4z9x3vfrIcTaPDr59R3U61WI90YHR2tGb/KJrC8vLywsHD27NkzZ84sLy83NTVFoFCtVgcHB2PvX7VIK6alVCqVWAEnWldixOz09PTU1NSJEyfSAsZpQk101VWr1bm5uZgc3N/fv+ZUIFjTzHT1n9/1w/u/dLTm792XggYhYoSG8P4PXf+tH94xNPJzbSn3f+noTd1f++oXj9g+QOOeSWzfHmt29PT0xGoasYSNi8ZNKQa1LC0tNTc3xzjb7du3x4SOq9/1HGNHY/pvTAaJOo7W1tbm5ualpaXz58/HuNwo3Ij1oWO08NLSUnd3d+qscayyHl/94pGbur9Wk24MjbR+64d3SDegQZjBAQ2kWl36zY/8YPVtgb37Kp+//62v2N1hEwENaGFhYXJycmZmZnFxMRaIUfO/KcVcz2eeeebw4cPt7e3REjI1NVUUxZ49e2666abViwpd6dczNzd39OjRF1544dy5c7Eib1SRxMzRtHZyGrG8uLg4Pz+/uLhYqVR27949ODh4EcvxsgW9eGjmowf/smYwfFEUB+/c9Zn7btGWAo1DwAEN58Gvjd39jx4vr6YePvbxV33i3+/VsQI0oLSqSP2VZcja8vLy2bNnn3322UOHDsXaOjG/c8eOHXv27NmzZ8+aa/peUUtLS9PT0ydOnDh58uT4+Pjs7GyshhsHYaRsaVGbKDNpamrq7+8fHR3duXNnW1tbc3OzPUsdM9PVT/3Lp2qWSimKYmik9Z4/uvnAe0ZsImgoAg5o0G/TNTs8i6L4t5954z/4td3uFQBwlS0vL8/MzBw5cuS5556bmZmJNVObmpq6urpuvPHG66+/vv5Kq1dILJ4yOzs7MTExMTExOTk5NzdXs6RrURRNTU3RpdLf3z84ONjb29ve3q7OiDqq1aX/8YeH/vVv/mj1fzp45y5T0qAxCTigcT36nYm7fvWx1aUcQyOtv3PPG973gVExBwBXUwwZPXHixNmzZ2OZ2La2tq6uruHh4Z6enliW9eqLGo1YLWV6enpmZmZhYWF+fj5KNmIIbltbW2dnZ1tbW0dHR+pksUNZU7W69Gdfeel3735yzXOwe//41tv+5oCtBI1JwAGN/hV7obsHYg4ArrLoSZmenp6dnY3FWaMyIlKDaxsZxGopMVg08o6o49ixY0dkHC0tLTt27EgNLPYma553XSjaKFTRQg4EHJCBifH5f/NbP1qzY0XMAcDVlEZaRMARGioyiNcWL/Vn57sl9iBrqh9tHLxz1+99+o0DQ602FDQ4AQdk48VDM//irscffvDk6v8UMce7D+7UDgoAsH4z09Vv 3H/ 8QtHG/gOD/+Hem61kB7kQcEBmHv3OxCf+6ROrFyoLd3/ytb92941iDgCA+mamq394z3P3fPKv1/yve/dVPvVf9hm3AXkRcECW6sccB+/c9fFP3LR3X8WGAgCo8dQTk5/91DNrNv8Wog3ImYADMlY/5ti7r/KJT+195y8NGc8BAFCtLn37/4x/6hNP1Tl3Em1A1gQckL36dyGKorj7k6/9ux95hfZRAGBrevHQzP+678ULdaMUql9hsxBwwOb55v6vv//c5z77woUeEAUd73jngAkdAMBWMDNd/e63J+qUbBRF8bGPv+qf/PaN7gPB5iDggM32Rf7lz//00//umTUngacv8g/94xvcowAANqunnpj84n87XOfGz9BI62/9q5s++NFXuvEDm4mAAzahanXpB987fc8n/3rNNWXT9/pHfn33P/z13RZ1BwA 2h4 nx+f/+B4fu+4NDde707D8wePcnX3vL2/oMKYPNR8ABW/1rfu++yt+/65W/8sFdkg4AINMTnj/98tH/ee9P67SiuLUDW4GAAza/9RR0FIZ0AABZWc+IjULJBmwlAg7YWucBLzuhI84D7vrtG2++rdctDgCg0UyMzz/+6Jl7f/+5+nduTNmALUjAAVvRU09Mfv2rx+q3rhS6VwCAhrGePpRipRXll99/nXnqsAUJOGDritaVP/3KS3VmjIe9+yrv+TvXOVcAAK6yuCvztf99rH6uURTFxz7+ql/5wKhWFNjKBBzABpKOdPbwhpt7FHwCAFfCzHT1ycfPbujMRK4BFAIOoGxDScf+A4Mf/Ogr/9a7hjSwAACXbmJ8/v9+c/zLn/9p/eEaQa4BrCbgANawoaRjaKT1fR8YVdYBAGxUKtb4s6+8VH80WJBrAHUIOICXsf7e16Io 9h8 YfPfBnW9/5+BNe7uceQAAq1WrS888NfUX3z75jfuPr6dYwywwYJ0EHMB6xfTydZ6LFEVx8M5d73rvyK23979id4etBwBb3IuHZh575NQ3Hxi7/0tH1/P4uGtiNTdg/QQcwIZttJq0EHYAwJa00VBD3ytwKQQcwKWeuHzrgePrL+sohB0AsNnPDTYUahQrxRq/+N6dzg2ASyHgAC6PmEv68IMn1zmtI0TY8bp9FTM7ACDfc4Bnnpr6yROTGwo1YrLG/gODJoYCl4uAA7j8Zqar3/32xEPfOLH+HpaiKPYfGHzr/oH9BwZVpQJA43/XP/n42YcfPPmXD0+sv4ozOlDuePfwO9454LseuOwEHMCVNTE+//ijZzYadsQJ0Fve1qeTBQAaRPSefP97py/iO/2Odw/ffFuvcaHAFSXgAK6eiws7ipXW3Dfe0vPq13Q5NwKAq/bF/fzTUz/6wdkNDdsqhBrANSLgAK7ZOdPjj5754WNnNjSzI6TJHTe8ukOBKwBcLjPT1cPPz2x0mkaImRpvvrVXqAFcKwIOoCFOp558/OxF3CAqimJopPX2XxiUdwDAxX0Fp0TjkT8/uaH6yqJUYml+FtAIBBxAw0nLy13EmZa8AwDquMREI33PGpIFNCABB9Do52EXXdwRDt6567bb+954S8/OXe1OxQDYal48NHP86OyPfnD20UdOb7TrJCjTAHIh4AAyO0t7+sfnfvjYmQ0tSldzlnbT67tjfZaBoRYnagBsJjPT1YnxhVjr5Jkfn7vo78q3 7h9 48629r3l9t3sDQEYEHECuqtWlY0fm4hzuuw9NbHRSaYhS29tu73vlqztf8/ru665va2rabtsCkNFX4dM/PvfT56cffeT0RbSchL37Ku+4YyDSf1+FQL4EHMCmOsl77JFTLzw7fdH1HXGS95o3dL/rvSPX39CuqwWAhhL9JkcOz37zgbGnnzx3ceF+sVKj8ao9nRINYDMRcACb+Sww3dS6uK7jkCKPSm+zKg8Aro5UnTF55vwlxhnFykSqKFeU3QOblYAD2ComxudPHJ+PufGXeJoYjS17XtcV977M8gDgEqXZGS88O/3sT6YuutkkpGj+dfsqwztbB4ZabWFgKxBwAFtUTd/ypZR4hP0HBvuHWlNvi0IPAOp8AaVOk1Pj8xfdVpmUCzR8AQFbloAD4Gdq7p5deuQRZ5wDQy1veVuf1ANgCypnGd//3umJ8YXL9eWiihBgNQEHwAVdicijWJV6ODcF2DRfGZc9yyjEGQDrJuAA2ICaxpZLnOVRFh0ut93e19vfcuvt/UVRGAIH0JhePDRTFMVjj5w6c2rh0UdOX5YekxCzMzSbAFwcAQfAZTjTnTpX/ckTk5f3ll04eOeuoije9d6RoigEHwBX+eO9KIrHHjlVFMU3HxgriuKyf8JHQd/r9lW6upt8vANcIgEHwOV3hZqua06Li5XgI86M3egDuOhP7MipiysTZBRGMgFcFQIOgKt6Dn1FU49ipbw5urUrvc2veX13oegDYKUc4+kfn5s8cz4mK13GNsMyWQbAtSLgALj259xx5zB6ua/QCXexMuYjTruLlYYXZ97AphE5crHSVBJR8mUckFEjzcvo7W/RYwLQCAQcAI2oPI3/it5pDEMjrbf/wmBRFHGmnko/xB9AQ0kRRhRiRC5cFMUjf35yfGz+Cv3QcmWc1a8AGpmAAyAnq4OPK3dzMknxR5zfFyvVHx2dOwaGWu0U4DKaGJ+fmV4sVqow4oOuuMIRRogyN0EGQL4EHACbwZqF2VfheiDE7c2ilIBEtXahBgRY65MqTfRM+cUVLVIri8RWsx7ApiTgANjkougjXU5E9nHVriWSuDVarHTBFKUQxD1S2DQfNUUpvEj9I1eh0KxGpK4pxYhPR+kMJQAAB6VJREFUGx81AJuegANgSysvK3B1utnrSL0wxcoKuEVRRKF4/NkAP7hWnxJFUURzXPw51lJthI+LmslBPiUAtjIBBwBrS8Xk6aomLmmu/s3YOtc2RakvpihVhRRqzuHl3tpFqdqiKHWLFNcutihLZV8Rd6as01sbgAsRcABwkdIswCgAKRopAbnQlVLx84FIsdKBH1Swk53UGBJiCk8oBxaN/K6M/CKVYJheDMBFE3AAcKWsHiiYumCKorj/S0cb/PWn4amhJhlJ12OJfISLUJNQFKXEMJRziuIqDuO8FAfv3BV/WD1zR/0FAFeOgAOAayx1+KfrunIO0gil8hetJiIJabxIWbmQJHEruwGlwqUa5dKJJA2qSLKIJy6k3BqWkoty0mf+BQDXloADgDyUBweUb3Gna8gGLMK/Opeaa6qpN6mjPLgka+VxEvXV1ESslnWstlHlBq6UvpVjCzUXAORCwAHAJlROQ4qfv7seC+XGn7O+nQ6rlYuG0iKpoVwlJLMAYFMScADAz9R 0H9 Q0HdS0GwhHuEJWdzbVtDWVowp9TACQCDgA4PJIw0SS1XMZ1myO2FLNNZtVudEjWbNRaPW8FaMrAOCyEHAAQINavb5Gcvzo7JHDs3X+bbkTp77GX85m/dLiHfXV9G6sdv0N7Tt3tV/o31orBwAak4ADALiyqtWloigMfQAArigBBwAAAJA991IAAACA7Ak4AAAAgOwJOAAAAIDsCTgAAACA7Ak4AAAAgOwJOAAAAIDsCTgAAACA7Ak4AAAAgOwJOAAAAIDsCTgAAACA7Ak4AAAAgOwJOAAAAIDsCTgAAACA7Ak4AAAAgOwJOAAAAIDsCTgAAACA7Ak4AAAAgOwJOAAAAIDsCTgAAACA7Ak4AAAAgOwJOAAAAIDsCTgAAACA7Ak4AAAAgOwJOAAAAIDsCTgAAACA7Ak4AAAAgOwJOAAAAIDsCTgAAACA7Ak4AAAAgOwJOAAAAIDsCTgAAACA7Ak4AAAAgOwJOAAAAIDsCTgAAACA7Ak4AAAAgOwJOAAAAIDsCTgAAACA7Ak4AAAAgOwJOAAAAIDsCTgAAACA7Ak4AAAAgOwJOAAAAIDsCTgAAACA7Ak4AAAAgOwJOAAAAIDsCTgAAACA7Ak4AAAAgOwJOAAAAIDsCTgAAACA7Ak4AAAAgOwJOAAAAIDsCTgAAACA7Ak4AAAAgOwJOAAAAIDsCTgAAACA7Ak4AAAAgOwJOAAAAIDsCTgAAACA7Ak4AAAAgOwJOAAAAIDsCTgAAACA7Ak4AAAAgOwJOAAAAIDsCTgAAACA7Ak4AAAAgOwJOAAAAIDsCTgAAACA7Ak4AAAAgOwJOAAAAIDsCTgAAACA7Ak4AAAAgOwJOAAAAIDsCTgAAACA7Ak4AAAAgOwJOAAAAIDsCTgAAACA7Ak4AAAAgOwJOAAAAIDsCTgAAACA7Ak4AAAAgOwJOAAAAIDsCTgAAACA7Ak4AAAAgOwJOAAAAIDsCTgAAACA7Ak4AAAAgOwJOAAAAIDsCTgAAACA7Ak4AAAAgOwJOAAAAIDsCTgAAACA7Ak4AAAAgOwJOAAAAIDsCTgAAACA7Ak4AAAAgOwJOAAAAIDsCTgAAACA7Ak4AAAAgOwJOAAAAIDsCTgAAACA7Ak4AAAAgOwJOAAAAIDsCTgAAACA7Ak4AAAAgOwJOAAAAIDsCTgAAACA7Ak4AAAAgOwJOAAAAIDsCTgAAACA7Ak4AAAAgOwJOAAAAIDsCTgAAACA7Ak4AAAAgOwJOAAAAIDsCTgAAACA7Ak4AAAAgOwJOAAAAIDsCTgAAACA7Ak4AAAAgOwJOAAAAIDsCTgAAACA7Ak4AAAAgOwJOAAAAIDsCTgAAACA7Ak4AAAAgOwJOAAAAIDsCTgAAACA7Ak4AAAAgOwJOAAAAIDsCTgAAACA7Ak4AAAAgOwJOAAAAIDsCTgAAACA7Ak4AAAAgOwJOAAAAIDsCTgAAACA7Ak4AAAAgOwJOAAAAIDsCTgAAACA7Ak4AAAAgOwJOAAAAIDsCTgAAACA7Ak4AAAAgOwJOAAAAIDsCTgAAACA7DWNjY3ZCgAAAEDWtr3vfe+zFQAAAICsaVEBAAAAsrftoYceshUAAACArG1bXl62FQAAAICsaVEBAAAAsifgAAAAALIn4AAAAACyJ+AAAAAAsifgAAAAALIn4AAAAACyJ+AAAAAAsifgAAAAALIn4AAAAACyJ+AAAAAAsifgAAAAALIn4AAAAACyJ+AAAAAAsifgAAAAALIn4AAAAACyJ+AAAAAAsifgAAAAALIn4AAAAACyJ+AAAAAAsifgAAAAALIn4AAAAACyJ+AAAAAAsifgAAAAALIn4AAAAACyJ+AAAAAAsifgAAAAALIn4AAAAACyJ+AAAAAAsifgAAAAALIn4AAAAACyJ+AAAAAAsifgAAAAALIn Chương 4. Đặc trưng h nh h c của mặt cắt ngang 4.1. Khái niệm chung 4.2. Mômen tĩnh và các mô men quán tính 4.3. Mô men quán tính một số h nh đơn giản 4.4. Công thức chuyển trục song...

Ngày tải lên: 01/04/2014, 23:17

26 2,1K 2
Đặc trưng hình học của mặt cắt ngang docx

Đặc trưng hình học của mặt cắt ngang docx

... ?X=: "=/')$. 5.=: ;Q'X H # ay ax C C 4 5,1 = = ,, E5F%GH0 4 111 4325,64 2513,221,10 1 11 1 cm xx FbaJJ F yx F XY = += += 4 222 6,206 38,9)68,525,3(45,33 2 22 2 cm x FbaJJ F yx F XY = += += (, E5F%GHI  ?X= : a F yF y i i i ii c 3 5 3 1 3 1 == ∑ ∑ = = ... Z 3,45#;6 78< =  6>? 12 hb J 3 y = 12 bh J 3 x = L 3,45  3,451+- ∫ = F xy xydFJ (M E5F%GH0 fd]2 7T6/R A M 6MA'MA'E8  O ( @M  g ( @(.[Z  + ( @Z.,M(  D '( @D $( @CL B  D 'A @D ' @ZA.B B  D $A @D  @(,.C B ... E 3,45  F6 %8 ∫ ρ= F 2 P dFJ ) $ ' ' $ + *+ ρ45G&! H I6'.$8J=. ρ ( @' ( K$ (  ( ) ∫ +=+= F yx 22 p JJdFyxJ (( E5F%GHI ?X  :  B[ E5F%GHJ  SX / :45\ (...

Ngày tải lên: 27/06/2014, 14:20

41 1,3K 4
ĐẶC TRƯNG HÌNH HỌC CỦA MẶT CẮT NGANG pptx

ĐẶC TRƯNG HÌNH HỌC CỦA MẶT CẮT NGANG pptx

... tính của 1 số h nh đơn giản : a) H nh chữ nhật: (H nh 5.5a) ∫ ∫ + − === F /h /h x bh bdyydFyJ 2 2 3 22 12 Tương tự : 12 hb J 3 y = b) H nh tam giác : (H nh 5.5b) 12 3 bh J x = c) H nh ... 4 R 2 J JJ 4 p yx π === H nh 5.5 x y b dy h/ 2 y h a) b) b y dy y h H nh 5.6 b) D d y x dρ ρ y x R D a) - 50 - Chương 5 ĐẶC TRƯNG H NH H C CỦA MẶT CẮT NGANG 5.1. Khái niệm chung : Xét ... một thanh không những chỉ tuỳ thuộc vào loại vật liệu mà còn tuỳ thuộc vào h nh dạng của mặt cắt ngang và sự phân bố của vật liệu trên mặt cắt. Những yếu tố đó được thể hiện trong những đặc trưng...

Ngày tải lên: 09/07/2014, 21:20

6 1,2K 15
Luận văn điều tra đặc điểm sinh học của cây chè shan núi cao tự nhiên ở tỉnh lào cai

Luận văn điều tra đặc điểm sinh học của cây chè shan núi cao tự nhiên ở tỉnh lào cai

... * Chỉ tiêu về sinh trưởng sinh thực của cây chè Shan - ðặc ñiểm của hoa chè; theo dõi thời gian từ phân hoá ñến nở hoa - ðặc ñiểm về bầu, nhuỵ hoa chè (kích thước nụ hoa, kích thước hoa chè ... tuyết của cánh hoa, nhị và bầu nhuỵ - Thời gian h nh thành quả (ngày); số lượng quả trên cây, trọng lượng h t. - Các ñặc ñiểm về h nh thái, kích thước của quả chè; h t chè. * Chỉ tiêu về chất ... kinh doanh chè Shan tự nhiên ở Lào Cai năm 2007 63 4.7 Đặc điểm h nh thái thân cành của các cây chè Shan tự nhiên 71 4.8 Kích thớc lá của các dòng chè Shan tự nhiên 73 4.9 Đặc điểm búp của...

Ngày tải lên: 28/11/2013, 10:42

135 952 2
Chương 4: ĐẶC TRƯNG HÌNH HỌC MẶT CẮT NGANG ppt

Chương 4: ĐẶC TRƯNG HÌNH HỌC MẶT CẮT NGANG ppt

... bindng ph thucvo dintớchmtct ngang ã Thanh titdinch nht kh nng chulc theo hai phng x, y khỏc nhau ã Kh nng chulcca thanh ph thucvodin tớch, h nh dỏng, cỏch spxp, camtct ngang ã Cỏc ilng ph thuc ... 2010 Tran Minh Tu - University of Civil Engineering Ví dụ 4.6.2 V í dụ 4.6.2. Cho h nh phẳng có h nh dạng và kích thước như h nh vẽ. Xác định các mô men quántính chính trung tâm của h nh phẳng Giải: Chọn ... thuc vào h nh dạng, kích thướccủamặtcắt ngang - đặctrưng h nh h ccủamặtcắt ngang F y x z y x z F (5)25 Jul y 2010 Tran Minh Tu - University of Civil Engineering 4.1. Khái niệm chung H nh dạng...

Ngày tải lên: 16/03/2014, 16:20

27 2K 17
Đặc trưng mỹ học của thơ đường

Đặc trưng mỹ học của thơ đường

... Đặc trưng mỹ h c của thơ Đường Đặc trưng mỹ h c của thơ Đường trước h t biểu hiện ở tính h m súc, ít lời nhiều ý, ý ở ngoài lời. Kết cấu thơ Đường luật h t sức chặt chẽ, mỗi bài thơ giống như ... cao, h i h a càng lớn. Do đó câu số chữ của một bài thơ được h n định, nên các nhà thơ phải tìm tòi những tinh hoa của dân gian, kết h p với điển cố lịch sử và từ hoa lệ của văn h c thành văn. ... vấn đề xã h i bằng h nh tượng nghệ thuật. Thơ Đường luật đúc kết những kinh nghiệm quá khứ nâng lên thành luật bằng trắc đối xứng. Đối xứng chính là mâu thuẫn thống nhất trong âm thanh, đối xứng...

Ngày tải lên: 13/05/2014, 13:55

2 2,9K 35
Tài liệu CHƯƠNG 4 :Hằng số đặc trưng điều kiện của các cân bằng hóa học trong nước ppt

Tài liệu CHƯƠNG 4 :Hằng số đặc trưng điều kiện của các cân bằng hóa học trong nước ppt

... CN - . 1.2. Ảnh h ởng của cân bằng nhiễutạophức 18 GV: Trần T Phương Thảo ĐHBK 1.2. Ảnh h ởng của cân bằng nhiễutạophức 40 GV: Trần T Phương Thảo ĐHBK 2. H ng sốđặctrưng điềukiệncủa cân bằng trao ... TIỂU PHÂN 26 GV: Trần T Phương Thảo ĐHBK 1.2. Ảnh h ởng của cân bằng nhiễutạophức 33 GV: Trần T Phương Thảo ĐHBK 2. H ng sốđặctrưng điềukiệncủa cân bằng trao đổi điệntử H ng sốđặctrưng của ... [Kh][Z 2 ] 15 GV: Trần T Phương Thảo ĐHBK Thế oxy h a chuẩn điềukiệncủa cân bằng oxy h a khử nhiễubởiH + : mo0 ]Hlg[ n 059,0 E'E + += 1.1. Ảnh h ởng củapH 43 GV: Trần T Phương Thảo ĐHBK 1....

Ngày tải lên: 15/12/2013, 13:15

97 558 1

Bạn có muốn tìm thêm với từ khóa:

w