1. Trang chủ
  2. » Giáo Dục - Đào Tạo

BAI GIANG TRONG TAM MU LOGA

90 598 9

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 90
Dung lượng 1,38 MB

Nội dung

Khóa học LTĐH môn Toán – Thầy Đặng Việt Hùng (0985.074.831) – Facebook: LyHung95 Học offline: Số 11 – ngách 98 – ngõ 72 Tôn Thất Tùng (Đối diện ĐH Y Hà Nội) Học online: www.moon.vn Trang 1 LUYỆN THI ĐẠI HỌC TRỰC TUYẾN §ÆNG VIÖT HïNG BÀI GIẢNG TRỌNG TÂM MŨ – LOGA Khóa học LTĐH môn Toán – Thầy Đặng Việt Hùng (0985.074.831) – Facebook: LyHung95 Học offline: Số 11 – ngách 98 – ngõ 72 Tôn Thất Tùng (Đối diện ĐH Y Hà Nội) Học online: www.moon.vn Trang 2 I. CÁC CÔNG THỨC CƠ BẢN VỀ LŨY THỪA 1) Khái niệm về Lũy thừa  Lũy thừa với số tự nhiên: . . , = n a a a a a với n là số tự nhiên.  Lũy thừa với số nguyên âm: 1 , − = n n a a với n là số tự nhiên.  Lũy thừa với số hữu tỉ: ( ) = = m m n m n n a a a với m, n là số tự nhiên. Đặt biệt, khi m = 1 ta có 1 . = n n a a 2) Các tính chất cơ bản của Lũy thừa    Tính chất 1: 0 1 1, ,  = ∀   = ∀   a a a a a    Tính chất 2 (tính đồ ng bi ế n, ngh ị ch bi ế n): 1: 0 1:  > > ⇔ >  < < > ⇔ <   m n m n a a a m n a a a m n    Tính chất 3 (so sánh l ũ y th ừ a khác c ơ s ố ): v ớ i a > b > 0 thì 0 0  > ⇔ >  < ⇔ <   m m m m a b m a b m Chú ý: + Khi xét lu ỹ th ừ a v ớ i s ố m ũ 0 và s ố m ũ nguyên âm thì c ơ s ố a ph ả i khác 0. + Khi xét lu ỹ th ừ a v ớ i s ố m ũ không nguyên thì c ơ s ố a ph ả i d ươ ng. 3) Các công thức cơ bản của Lũy thừa    Nhóm công thức 1: ( ) ( ) . + − = = = = m n m n m m n n n m m mn n a a a a a a a a a    Nhóm công thức 2: ( ) 1 1 1 3 3 2 ; ; . , , 0 , , 0 = = → = = = = ∀ ≥ = ∀ ≥ > m m n m n n n n n n n n n n a a a a a a a a a ab a b a b a a a b b b Ví dụ 1: Vi ế t các bi ể u th ứ c sau d ướ i d ạ ng l ũ y th ừ a v ớ i s ố m ũ h ữ u t ỉ , (coi các bi ể u th ứ c đ ã t ồ n t ạ i) a) 2 4 3 . = A x x b) 5 3 . = b a B a b c) 5 3 2 2 2 . =C d) 3 3 2 3 2 . 3 2 3 =D e) 4 3 8 . = D a f) 2 5 3 . = b b F b b Ví dụ 2: Có th ể k ế t lu ậ n gì v ề s ố a trong các tr ườ ng h ợ p sau? a) ( ) ( ) 2 1 3 3 1 1 . − − − < −a a b) ( ) ( ) 3 1 2 1 2 1 . − − + > +a a c) 0,2 2 1 . −   <     a a d) ( ) ( ) 1 1 3 2 1 1 . − − − > −a a e) ( ) ( ) 3 2 4 2 2 . − > − a a f) 1 1 2 2 1 1 . −     >         a a Ví dụ 3: Tính giá tr ị các bi ể u th ứ c sau: a) ( ) ( ) 1 1 1 2 2 3 2 3 2 3 2 3 2 −     = + − − + + −             A 01. ĐẠI CƯƠNG VỀ VÀ LOGARITH Khóa học LTĐH môn Toán – Thầy Đặng Việt Hùng (0985.074.831) – Facebook: LyHung95 Học offline: Số 11 – ngách 98 – ngõ 72 Tôn Thất Tùng (Đối diện ĐH Y Hà Nội) Học online: www.moon.vn Trang 3 b) 4 10 2 5 4 10 2 5 . = + + + − +B Ví dụ 4: Cho hàm số 4 ( ) . 4 2 = + x x f x a) Chứng minh rằng nếu a + b = 1 thì f(a) + f(b) = 1. b) Tính tổng 1 2 2010 . 2011 2011 2011       = + + +             S f f f Ví dụ 5: So sánh các cặp số sau a) 5 2 π 2       và 10 3 π 2       b) 2 π 2       và 3 π 5       c) 10 4 3 5       và 5 2 4 7       d) 3 7 6       và 2 8 7       e) 5 π 6       và 2 π 5       Ví dụ 6: Tìm x thỏa mãn các phương trình sau? 1) 5 4 1024 = x 2) 1 5 2 8 2 5 125 +   =     x 3) 1 3 1 8 32 − = x 4) ( ) 2 2 1 3 3 9 −   =     x x 5) 2 8 27 . 9 27 64 −     =         x x 6) 2 5 6 3 1 2 − +   =     x x 7) 2 8 1 0,25 .32 0,125 8 − −   =     x x 8) 0,2 0,008 = x 9) 3 7 7 3 9 7 49 3 − −     =         x x 10) ( ) ( ) 1 12 . 3 6 = x x 11) 1 1 1 7 .4 28 − − = x x II. CÁC CÔNG THỨC CƠ BẢN VỀ LOGARITH 1) Khái niệm về Logarith Logarith c ơ s ố a c ủ a m ộ t s ố x > 0 đượ c ký hi ệ u là y và vi ế t d ạ ng log = ⇔ = y a y x x a Ví dụ: Tính giá tr ị các bi ể u th ứ c logarith sau ( ) 2 3 2 2 log 4; log 81; log 32; log 8 2 H ướ ng d ẫ n gi ả i: • 2 2 log 4 2 4 2 log 4 2 = ⇔ = ⇔ = → = y y y • y 4 3 3 log 81 y 3 81 3 y 4 log 81 4 = ⇔ = = ⇔ = → = • ( ) ( ) y 10 5 2 2 log 32 y 2 32 2 2 y 10 log 32 10 = ⇔ = = = ⇔ = → = • ( ) ( ) ( ) ( ) 7 3 2 2 log 8 2 2 8 2 2 . 2 2 7 log 8 2 7 = ⇔ = = = ⇔ = → = y y y Chú ý: Khi a = 10 thì ta g ọ i là logarith c ơ s ố th ậ p phân, ký hi ệ u là lgx ho ặ c logx Khi a = e, (v ớ i e ≈ 2,712818…) đượ c g ọ i là logarith c ơ s ố t ự nhiên, hay logarith Nepe, ký hi ệ u là lnx, ( đọ c là len- x) 2) Các tính chất cơ bản của Logarith • Bi ể u th ứ c logarith t ồ n t ạ i khi c ơ s ố a > 0 và a ≠ 1, bi ể u th ứ c d ướ i d ấ u logarith là x > 0. • log 1 0;log 1, = = ∀ a a a a • Tính đồ ng bi ế n, ngh ị ch bi ế n c ủ a hàm logarith: 1 log log 0 1 > ⇔ >  > ⇔  < ⇔ < <  a a b c a b c b c a 3) Các công thức tính của Logarith Công thức 1: log , = ∀ ∈ ℝ x a a x x , (1) Ch ứ ng minh: Theo đị nh ngh ĩ a thì hi ể n nhiên ta có log = ⇔ = x x x a a x a a Khóa học LTĐH môn Toán – Thầy Đặng Việt Hùng (0985.074.831) – Facebook: LyHung95 Học offline: Số 11 – ngách 98 – ngõ 72 Tôn Thất Tùng (Đối diện ĐH Y Hà Nội) Học online: www.moon.vn Trang 4 Ví dụ 1: ( ) 8 5 4 2 2 2 2 2 log 32 log 2 5;log 16 log 2 log 2 8 = = = = = Ví dụ 2: Tính giá tr ị các bi ể u th ứ c sau: a) 3 2 5 1 4 log . a a a a P a a = b) log . a Q a a a a = Hướng dẫn giải: a) Ta có 1 2 1 2 28 67 1 28 3 67 67 3 2 5 5 3 5 3 15 60 15 4 60 60 1 1 1 1 1 1 3 4 2 4 2 4 4 . . 1 67 log log . 60 . a a a a a a a a a a a a P a a a a a a a a + + − − +     = = = = = → = = =−       b) Ta có ( ) 15 7 15 15 1 3 8 8 16 16 2 4 15 . . . log log . 8 a a a a a a a a a a a a a a a a Q a a= = = = → = = = Ví dụ 3: Tính giá tr ị các bi ể u th ứ c sau: 1) 1 5 log 125 = 2) 2 log 64 = 3) 16 log 0,125 = 4) 0,125 log 2 2 = 5) 3 3 3 log 3 3 = 6) 7 8 7 7 log 7 343 = Ví dụ 4: Tính giá tr ị các bi ể u th ứ c sau: a) ( ) 3 5 log a P a a a= = b) ( ) 2 3 5 4 log = = a Q a a a a Công thức 2: log , 0 = ∀ > a x a x x , (2) Ch ứ ng minh: Đặ t ( ) log , 2 = ⇒ = ⇔ = t t t a x t x a a a Ví dụ 1: ( ) ( ) ( ) ( ) 3 3 3 5 2 log 4 1 1 1 log 4 log 4 log 6 log 3 2 2 2 2 3, 5 6, 3 3 3 4 2     = = = = = =       Ví dụ 3: Tính giá tr ị các bi ể u th ứ c sau: 1) 8 log 15 2 = 2) 2 2 log 64 2 = 3) 81 log 5 1 3     =       4) ( ) 3 log 4 3 9 = Công thức 3: ( ) log . log log = + a a a x y x y , (3) Ch ứ ng minh: Áp dụng công thức (2) ta có log log log log log log . . +  =  → = =  =   a a a a a a x x y x y y x a x y a a a y a Áp d ụ ng công th ứ c (1) ta đượ c : ( ) log log log . log log log + = = + ⇒ a a x y a a a a x y a x y dpcm Ví dụ 1: Tính giá trị các biểu thức sau: a) ( ) 3 2 2 2 2 2 2 2 log 24 log 8.3 log 8 log 3 log 2 log 3 3 log 3 = = + = + = + b) ( ) 3 3 3 3 3 3 3 log 81 log 27.3 log 27 log 3 log 3 log 3 3 1 4 = = + = + = + = Ví dụ 2: Tính giá trị các biểu thức sau: a) 4 2 3 3 3 2 2 2 2 2 4 10 log 4 16 log 4 log 16 log 2 log 2 2 . 3 3 = + = + = + = Khóa học LTĐH môn Toán – Thầy Đặng Việt Hùng (0985.074.831) – Facebook: LyHung95 Học offline: Số 11 – ngách 98 – ngõ 72 Tôn Thất Tùng (Đối diện ĐH Y Hà Nội) Học online: www.moon.vn Trang 5 b) 1 3 1 3 3 3 3 3 1 1 1 1 1 1 1 3 3 3 3 3 3 3 1 1 1 10 log 27 3 log 27 log 3 log 3 log 3 log log 3 . 3 3 3 3 − −         = + = + = + = − − =−             c) ( ) ( ) 6 2 3 5 5 2 2 2 2 2 2 2 log 8 32 log 8 log 32 log 2 log 2 log 2 log 2 6 2 8. = + = + = + = + = Công thức 4: log log log   = −     a a a x x y y , (4) Chứng minh: Áp d ụ ng công th ứ c (2) ta có log log log log log log −  =  → = =  =   a a a a a a x x x y y y x a x a a y a y a Áp d ụ ng công th ứ c (1) ta đượ c : log log log log log log −   = = − ⇒     a a x y a a a a x a x y dpcm y Ví dụ: 4 5 3 32 2 2 2 2 2 3 32 5 4 7 log log 32 log 16 log 2 log 2 . 2 3 6 16 = − = − = − = Công thức 5: log .log = m a a b m b , (5) Ch ứ ng minh: Theo công th ứ c (2) ta có ( ) log log .log = ⇒ = = a a a m b b m b m b a b a a Khi đ ó .log log log .log = = ⇒ a m b m a a a b a m b dpcm Ví dụ 1: ( ) 3 2 2 2 2 5 5 5 1 4 4 2 2 2 log 27 log 3 3log 3; log 36 log 6 2log 6 1 5 log 32 log 32 log 32 4 4 = = = = = = = Ví dụ 2: 4 2 2 3 1 1 1 1 1 1 1 1 1 3 3 3 3 3 3 3 3 3 1 6 .45 1 2log 6 log 400 3log 45 log 6 log 400 log 45 log log 81 log 4. 2 20 3 −   − + = − + = = = = −     Ví dụ 3: 5 5 5 5 5 5 5 5 1 50 3 log 3 log 12 log 50 log 3 log 12 log 50 log log 25 2. 2 2 3 − + = − + = = = Công thức 6: 1 log log = n a a b b n , (6) Chứng minh: Đặt ( ) log = ⇒ = ⇔ = n y n ny a b y a b a b Lấy logarith cơ số a cả hai vế ta được : 1 log log log log = ⇔ = ⇒ = ny a a a a a b ny b y b n hay 1 log log= ⇒ n a a b b dpcm n Ví dụ 1 : 1 2 5 1 5 2 2 2 2 2 2 1 log 16 log 16 log 16 2.4 8. 1 2 1 log 64 log 64 log 64 5.6 30. 1 5 = = = = = = = = Hệ quả: T ừ các công th ứ c (5) và (6) ta có : log log = n m a a m b b n Ví dụ 2: ( ) ( ) ( ) ( ) 3 1 3 3 1 11 3 4 4 5 2 2 2 5 2 5 3 9 11 11 4 log 125 log 5 log 5 ; log 32 2 log 2 log 2 . 1 4 3 3 3 = = = = = = Khóa học LTĐH môn Toán – Thầy Đặng Việt Hùng (0985.074.831) – Facebook: LyHung95 Học offline: Số 11 – ngách 98 – ngõ 72 Tôn Thất Tùng (Đối diện ĐH Y Hà Nội) Học online: www.moon.vn Trang 6 Ví dụ 3: Tính giá trị biểu thức 1 3 3 5 3 4 1 3 3 27 log 27 log 9 . 1 1 log log 81 3   +     =   +     A Hướng dẫn giải:  ( ) 2 3 3 3 3 log 27 log 3 3 2 = =  1 2 13 3 5 1 3 2 5 3 3 5 27 3 1 13 26 log log log 3 2. . 1 5 5 9 3 2 −       = = = − = −       −    1 2 1 3 3 5 4 3 3 4 3 3 1 3 3 27 26 log 27 log 2 9 1 4 5 log log 3 4.2log 3 8 . 81 8 4 5 1 1 log log 81 3 −   +   −   = = − = − → = = = − +   +     A Công thức 7: (Công thức đổi cơ số) log log log = c a c b b a , (7) Chứng minh: Theo công thức (2) ta có ( ) log log log log log log .log log log = ⇒ = = ⇒ = ⇒ a a b b c c c a c a c b b a b a b a b dpcm a Nhận xét : + Để cho dễ nhớ thì đôi khi (7) còn được gọi là công thức “chồng” cơ số viết theo dạng dễ nhận biết như sau log log .log = a a c b c b + Khi cho b = c thì (7) có dạng log 1 log . log log = = b a b b b b a a Ví dụ 1: Tính các biểu thức sau theo ẩn số đã cho: a) Cho 2 2 log 14 log 49 ? = → = = a A b) Cho 15 25 log 3 log 15 ? = → = = a B H ướ ng d ẫ n gi ả i: a) Ta có ( ) 2 2 2 2 log 14 log 2.7 1 log 7 log 7 1. = ⇔ = = + ⇒ = − a a a Khi đ ó ( ) 2 2 log 49 2log 7 2 1 . = = = − A a b) Ta có 3 15 3 3 5 1 1 log 5 1 1 1 log 3 log 15 1 log 5 log 3 1 −  = − =   = ⇔ = = →  +  =  −  a a a a a a a ( ) ( ) 3 25 3 3 1 1 log 15 1 1 log 15 . 1 log 25 2log 5 2 1 2 1 2 = = = = = → = − − − a a B B a a a a Ví dụ 2: Cho log 3. a b = Tính a) log . = b a b A a b) log . = ab b B a H ướ ng d ẫ n gi ả i: T ừ gi ả thi ế t ta có 1 log 3 log . 3 = ⇒ = a b b a a) 1 1 1 1 log log log log log log log log log = = − = − = − =     − −             b b b b b a a a a a b a b A b a a b a b a b b a a Khóa học LTĐH môn Toán – Thầy Đặng Việt Hùng (0985.074.831) – Facebook: LyHung95 Học offline: Số 11 – ngách 98 – ngõ 72 Tôn Thất Tùng (Đối diện ĐH Y Hà Nội) Học online: www.moon.vn Trang 7 1 1 1 1 3 1 3 1 . 2 1 2log log 2 3 2 3 2 3 2 1 3 − − = − = − = → = − − − − − − b a A a b Cách khác: Ta có được 2 2 2 2 log log 1 3 1 log log log log 2 3 2 log a a b b b a a a a a b b b b b a A b a b a a a           − − = = = = = =     − −   b) 1 1 1 1 log . log log log log log log log log = = − = − = − = + + ab ab ab b b b a a a b B b a a ab ab a b a b 1 1 1 1 2 3 1 2 3 1 . 1 1 1 1 1 log 1 3 3 1 3 1 log 2 2 2 2 3 − − = − = − = → = + + + + + + a b B b a Cách khác: Ta có ( ) 2 2 2 2 log 2log 1 2 3 1 log log log . log 1 log 1 3 a a ab ab ab a a b b b b b a B a ab b a a −   − = = = = = =   + +   Ví dụ 3: Tính giá trị các biểu thức sau: a) 3 6 log 3.log 36 = b) 4 3 log 8.log 81 = c) 3 2 25 1 log .log 2 5 = Ví dụ 4: Cho log 7. a b = Tính a) 3 log . = a b a A b b) 3 2 log . = b a B ab Ví dụ 5: Tính các biểu thức sau theo ẩn số đã cho: a) Cho 3 25 2 5 49 log 7 ; log 5 log ? 8 = = → = = a b P b) Cho log 2 log ? = → = = ab ab b a Q a Công thức 8: log log = b b c a a c , (8) Chứng minh: Theo công th ứ c (7): ( ) log log log .log log log log log log .log= ⇒ = ⇔ = = ⇒ b b b a b a b a c a c c c a b b a c a c a a a a c dpcm Ví dụ 1: ( ) 2 7 7 2 1 log 27 log 2 log 49 log 2 2 2 49 2 2 4; 2 27 27 3 3 = = = = = = Ví dụ 2: Tính giá trị các biểu thức sau: a) 3 6 9 log 4 log 5 log 36 36 3 3 = + − =A b) 2 3 3 log 3 2 log 2 log 4 3 .4 27 − = =B c) 3 9 9 log 5 log 36 4log 7 81 27 3 C = + + = BÀI TẬP LUYỆN TẬP : Bài 1. Tính giá tr ị các bi ể u th ứ c sau 1) 1 4 25 log 5 5 − 2) 3 3 log 729 3) 9 3 log 27 4) 9 3 log 3 5) ( ) 3 3 log 3 3 6) 4log 2 1 3 9 1       7) 27 log 81 1 3           8) 10 3 2log 3 10 + 9) 8 16 3log 3 2log 5 4 + Khóa học LTĐH môn Toán – Thầy Đặng Việt Hùng (0985.074.831) – Facebook: LyHung95 Học offline: Số 11 – ngách 98 – ngõ 72 Tôn Thất Tùng (Đối diện ĐH Y Hà Nội) Học online: www.moon.vn Trang 8 10) 3 27 1 log 2 2log 3 2 9 − 11) 2 2 log 3 4 + 12) 9 1 3 log 2 log 5 3 − 13) 5 7 log 6 log 8 25 49 + 14) 8log3 10 10 15) 7 7 7 log 16 log 15 log 30 − 16) 9 125 2 1 log 4 log 27 2 log 3 3 4 5 + − + + 17) 7log 1 5log 1 68 4925 + Bài 2. Quy đổi các biểu thức sau theo các ẩn đã cho a) Cho log 2 3 = a ; log 2 5 = b. Tính 3 2 2 2 log 3; log 135; log 180 theo a , b . b) Cho log 5 3 = a , tính log 25 15. c) Cho log 9 6 = a , tính log 18 32. d) Cho lg5 = a ; lg3 = b . Tính log 30 8. Bài 3. Ch ứ ng minh các đẳ ng th ứ c sau (với giả thiết các biểu thức đều có nghĩa) a) ( ) 1 lg lg lg 3 2 + = + a b a b , với a 2 + b 2 = 7ab. b) ( ) ( ) 1 lg 2 2lg2 lg lg 2 + − = + a b a b , với a 2 + 4b 2 = 12ab c) log log 2 3 log 4 2 + + = c c c a b a b , với 4a 2 + 9b 2 = 4ab d) Cho log 12 18 = a, log 24 54 = b, chứng minh rằng: ab + 5(a – b) = 1. e) log 1 log log = + a a ab c b c f) ax log log log 1 log + = + a a a b x bx x g) log log log log log log − = − a b a b c c N N N N N N , với b 2 = ac. h) 2 1 1 1 ( 1) log log log 2log + + + + = k a a a a k k x x x x Khóa học LTĐH môn Toán – Thầy Đặng Việt Hùng (0985.074.831) – Facebook: LyHung95 Học offline: Số 11 – ngách 98 – ngõ 72 Tôn Thất Tùng (Đối diện ĐH Y Hà Nội) Học online: www.moon.vn Trang 9 1. Hàm số y = a x (với a > 0, a ≠ 1). • Tập xác định: D = R. • Tập giá trị: T = (0; +∞). • Khi a > 1 hàm số đồng biến, khi 0 < a < 1 hàm số nghịch biến. • Nhận trục hoành làm tiệm cận ngang. 2. Hàm số logarit = log a y x (với a > 0, a ≠ 1) • Tập xác định: D = (0; + ∞ ). • Tập giá trị: T = R. • Khi a > 1 hàm số đồng biến, khi 0 < a < 1 hàm số nghịch biến. • Nhận trục tung làm tiệm cận đứng. 3. Gi ớ i h ạ n đặ c bi ệ t • 1 0 1 lim(1 ) lim 1 x x x x x e x → →±∞   + = + =     • 0 0 ln(1 ) ln(1 ) lim 1 lim 1 → → + + = → = x u x u x u • 0 0 1 1 lim 1 lim 1 → → − − = → = x u x u e e x u • 0 0 sin sin ( ) lim 1 lim 1 ( ) x x x u x x u x → → = → = Ví d ụ 1. Tính các giới hạn sau: 1) 2 0 1 lim → − x x e x 2) 3 0 1 lim − → − x x e x 3) 3 2 0 lim → − x x x e e x 4) 0 ln(1 3 ) lim → + x x x 5) 0 ln(1 4 ) lim 2 → + x x x 6) 4 0 1 lim 3 − → − x x e x H ướ ng d ẫ n gi ả i: 1) 2 2 0 0 1 1 lim lim .2 2 2 → →   − − = =     x x x x e e x x 2) 3 3 0 0 1 1 1 1 lim lim . 3 3 3 − − → →     − − −   = = −     −       x x x x e e x x 3) ( ) ( ) 3 2 3 2 3 2 0 0 0 0 1 1 1 1 lim lim lim lim 3 2 1. → → → → − − − − − − = = − = − = x x x x x x x x x x e e e e e e x x x x 4) 0 0 ln(1 3 ) ln(1 3 ) lim lim .3 3 3 → → + +   = =     x x x x x x 5) 0 0 ln(1 4 ) ln(1 4 ) lim lim .2 2 2 4 → → + +   = =     x x x x x x 6) 4 4 0 0 1 1 4 4 lim lim . 3 4 3 3 − − → →   − − −   = = −    −     x x x x e e x x BÀI TẬP LUYỆN TẬP Tính các giới hạn sau: 1) ( ) 0 ln 1 4 lim sin 2 x x x → + 2) 2 2 0 cos lim x x e x x → − 3) 0 lim ax bx x e e x → − 02. HÀM SỐ VÀ LOGARITH Khóa học LTĐH môn Toán – Thầy Đặng Việt Hùng (0985.074.831) – Facebook: LyHung95 Học offline: Số 11 – ngách 98 – ngõ 72 Tôn Thất Tùng (Đối diện ĐH Y Hà Nội) Học online: www.moon.vn Trang 10 4) sin2 sin 0 lim x x x e e x → − 5) lim 1 x x x x →+∞     +   6) 1 1 lim 1 x x x x + →+∞   +     7) 2 1 1 lim 2 x x x x − →+∞ +     −   8) 1 3 3 4 lim 3 2 x x x x + →+∞ −     +   9) 2 1 lim 1 x x x x →+∞ +     −   4. Đạo hàm của hàm và logarith  Hàm mũ: .ln . .ln x x u u y a y a a y a y u a a  ′ = → =   ′ ′ = → =  Đặ c bi ệ t, khi a = e thì ta có . x x u u y e y e y e y u e  ′ = → =   ′ ′ = → =   Hàm logarith: 1 log .ln log .ln a a y x y x a u y u y u a  ′ = → =   ′  ′ = → =   Đặ c bi ệ t, khi a = e thì ta có 1 ln ln y x y x u y u y u  ′ = → =   ′  ′ = → =   Chú ý: B ả ng đạ o hàm c ủ a m ộ t s ố hàm c ơ b ả n th ườ ng g ặ p: Hàm sơ cấp Hàm hợp  0 ′ = → = y k y  2 1 1 1 . 1 2 − ′ = → = − ′ = → = ⇒ ′ = → = n n y y x x y x y n x y x y x  sin cos cos sin ′  = → =   ′ = → = −   y x y x y x y x  2 2 1 tan cos 1 cot sin  ′ = → =    −  ′ = → =   y x y x y x y x  . ′ ′ = → = y ku y k u  2 1 1 . . 2 − ′ ′ = → = − ′ ′ = → = ⇒ ′ ′ = → = n n u y y u u y u y nu u u y u y u  sin .cos cos .sin ′ ′  = → =   ′ ′ = → = −   y u y u u y u y u u  2 2 tan cos cot sin ′  ′ = → =    ′ −  ′ = → =   u y u y u u y u y u  2 . ′ ′ −  ′ = → =    ′ ′ ′ = → = +  u uv u v y y v v y u v y uv u v Ví dụ 2. Tính đạ o hàm c ủ a các hàm s ố sau: 1) 4 3 3 2 = − + y x x 2) 2 3 1 3 − + = + x x y x 4 3 3 2 = − + y x x 3) ( ) 2 3 sin 2 1 = − y x Hướng dẫn giải: 1) ( ) ( )( ) 1 3 4 3 3 2 3 4 4 1 3 2 3 2 . 3 3 3 2 4 − ′ = − + = − + → = − − +y x x x x y x x x 2) 1 3 2 2 2 2 3 3 3 1 1 1 1 1 . . 3 3 3 3 3 − ′       − + − + − + − + ′ = = → = =       + + + +       x x x x x x x x y y x x x x 3 3 2 2 2 2 3 3 2 2 1 1 (2 1)( 3) 1 1 1 5 4 . . . . 3 3 3 3 ( 3) ( 3) − − ′       − + − + − + − − + + − = =       + + + +       x x x x x x x x x x x x x x [...]... ĐH Y Hà Nội) Học online: www.moon.vn Khóa học LTĐH môn Toán – Thầy Đặng Việt Hùng (0985.074.831) – Facebook: LyHung95 Trang 19 04 PHƯƠNG TRÌNH LOGARITH DẠNG 1 PHƯƠNG TRÌNH LOGARITH CƠ BẢN Khái niệm: Là phương trình có dạng log a f ( x) = log a g ( x), (1) trong đó f(x) và g(x) là các hàm số chứa ẩn x cần giải Cách giải: a > 0; a ≠ 1  - Đặt điều kiện cho phương trình có nghĩa  f ( x) > 0  g ( x)... ( x ) với b = min {a, b, c, d } hay b b b gọi một cách dân rã, ta chia cả hai vế của phương trình cho biểu thức lũy thừa mà có cơ số nhỏ nhất Ví dụ 1 Giải phương trình: 3.9 x + 7.6 x − 6.4 x = 0 trong đó Hướng dẫn giải:  3  x 2   = ⇒ x = −1 x 2x 3 2 3 3 Phương trình đã cho tương đương: 3   + 7   − 6 = 0 ⇔  x  2 2 3   = −3 < 0   2  Vậy phương trình đã cho có 1 nghiệm... www.moon.vn Khóa học LTĐH môn Toán – Thầy Đặng Việt Hùng (0985.074.831) – Facebook: LyHung95 Trang 12 03 PHƯƠNG TRÌNH - PHẦN 1 DẠNG 1 PHƯƠNG TRÌNH CƠ BẢN Khái niệm: Là phương trình có dạng a x = b , trong đó 0 < a ≠ 1 Cách giải: + Nếu b ≤ 0 thì phương trình vô nghiệm + Nếu b ≤ 0 thì a x = b ⇔ x = log a b Ví dụ mẫu: Giải phương trình 2 x + 2 x +1 + 2 x + 2 = 5 x + 2.5 x −1 Hướng dẫn giải: Ta có 2... log a x , nếu x > 0 thì n log a x = log a x n - Với phương trình sau khi biến đổi được về dạng  g ( x) ≥ 0  f ( x) = g ( x) ⇔  2  f ( x) = [ g ( x)]  log a a x = x; a log a x = x - Các công thức Logarith thường sử dụng:  x log a ( xy ) = log a x + log a y; log a   = log a x − log a y  y 1 m log an x m = log a x; log a b = n log b a Ví dụ mẫu: Ví dụ 1 Giải các phương trình sau: ( ) 1 2) lg... 2 x − 2 x + 65 > 0 x − 1) + 64 > 0, ∀x ∈ R  (  Khi đó ( 4 ) ⇔ x 2 − 2 x + 65 = ( 5 − x ) ⇔ 8 x + 40 = 0  x = −5 → 2 Nghiệm x = –5 thỏa mãn điều kiện, vậy phương trình có nghiệm x = –5 Bình luận: Trong các ví dụ 3 và 4 chúng ta cần phải tách riêng điều kiện ra giải trước rồi sau đó mới giải phương trình Ở ví dụ 1 và 2 do các phương trình tương đối đơn giản nên ta mới gộp điều kiện vào việc giải... + 2lg 2 x − 1 = 2 16) log 4 ( x + 3) − log 4 ( x − 1) = 2 − log 4 8 17) 2log 2 x + log 2 18) log9 ( x + 1) − log9 (1 − x ) = log9 ( 2 x + 3) x + log 1 x = 9 2 DẠNG 2 PHƯƠNG PHÁP ĐẶT ẨN PHỤ GIẢI TRÌNH LOGARITH Chúng ta thường đặt ẩn phụ khi phương trình có chứa biểu thức phức tạp khi thực hiện các phép biến đổi Đặt t = log a x thì ta không cần điều kiện gì của t log a [ f ( x) ] 2n Một số biểu thức . 11) 1 1 1 7 .4 28 − − = x x II. CÁC CÔNG THỨC CƠ BẢN VỀ LOGARITH 1) Khái niệm về Logarith Logarith c ơ s ố a c ủ a m ộ t s ố x > 0 đượ c. là logarith c ơ s ố th ậ p phân, ký hi ệ u là lgx ho ặ c logx Khi a = e, (v ớ i e ≈ 2,712818…) đượ c g ọ i là logarith c ơ s ố t ự nhiên, hay logarith

Ngày đăng: 20/01/2014, 21:12

TỪ KHÓA LIÊN QUAN

w