▼Ö❈ ▲Ö❈ ❚r❛♥❣ ▼Ö❈ ▲Ö❈ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✶ ▼Ð ✣❺❯ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✷ ❈❤÷ì♥❣ ✶✳ ▼ët sè số ỵ tt st ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✹ ✶✳✶✳ ❇✐➳♥ ♥❣➝✉ ♥❤✐➯♥ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✹ ✶✳✷✳ P❤➛♥ tû ♥❣➝✉ ♥❤✐➯♥ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✻ ✶✳✸✳ ❍➔♠ ♣❤➙♥ ♣❤è✐ ①→❝ s✉➜t ❝õ❛ ❜✐➳♥ ♥❣➝✉ ♥❤✐➯♥ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✼ ✶✳✹✳ ▼ët sè ❜✐➳♥ ♥❣➝✉ ♥❤✐➯♥ q✉❛♥ trå♥❣ t❤÷í♥❣ ❣➦♣ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✾ ❈❤÷ì♥❣ ✷✳ ❱➲ ❦❤♦↔♥❣ ❝→❝❤ ❣✐ú❛ ❝→❝ ♣❤➙♥ ♣❤è✐ ①→❝ s✉➜t ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✶✾ ✷✳✶✳ ▼ët sè ❦❤→✐ ♥✐➺♠ ❝ì ❜↔♥ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✶✾ ✷✳✷✳ ❳➜♣ ①➾ P♦✐ss♦♥ ❝õ❛ ♣❤➙♥ ♣❤è✐ ♥❤à t❤ù❝✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✷✵ ✷✳✸✳ ✣ë ❧➺❝❤ ❝õ❛ ♣❤➙♥ ♣❤è✐ F ✤è✐ ✈ỵ✐ ♣❤➙♥ ♣❤è✐ G ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✷✷ ✷✳✹✳ ✣ë ❧➺❝❤ ❝õ❛ ♣❤➙♥ ♣❤è✐ n N (à1, 1) ố ợ ố n✲❝❤✐➲✉ N (µ2 , Σ2 ) ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✷✻ ✷✳✺✳ ❳➜♣ ①➾ P♦✐ss♦♥ ❝õ❛ ♣❤➙♥ ♣❤è✐ ✤❛ t❤ù❝ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✷✼ ✷✳✻✳ ❳➜♣ ①➾ P♦✐ss♦♥ ❝õ❛ ♣❤➙♥ ♣❤è✐ s✐➯✉ ❜ë✐ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✷✽ ❑➌❚ ▲❯❾◆ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✸✵ ❚⑨■ ▲■➏❯ ❚❍❆▼ ❑❍❷❖ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✸✶ ✶ ▲❮■ ◆➶■ ✣❺❯ ✧❑❤♦↔♥❣ ❝→❝❤✧ ❣✐ú❛ ❝→❝ ❤➔♠ ♣❤➙♥ ♣❤è✐ F ✈➔ G ❤❛② ❣✐ú❛ ❝→❝ ❤➔♠ ♠➟t ✤ë f ✈➔ g ❝õ❛ ❝→❝ ❜✐➳♥ ♥❣➝✉ ♥❤✐➯♥ ❝â t❤➸ ✤à♥❤ ♥❣❤➽❛ õ t ữợ ữủ ✤÷đ❝ t❤ỉ♥❣ q✉❛ ❤➔♠ ✤➦❝ tr÷♥❣ ϕ(t), Φ(t) t÷ì♥❣ ù♥❣✳ ❈❤➥♥❣ ❤↕♥ +∞ sup F (x) − G(x) ≤ Π x ϕ(t) − Φ(t) dt t −∞ ❍❛② +∞ sup f (x) − g(x) ≤ x 2Π |ϕ(t) − Φ(t)|dt −∞ ✣è✐ ✈ỵ✐ ❝→❝ ❜✐➳♥ ♥❣➝✉ ♥❤✐➯♥ X, Y ❧➜② ❣✐→ trà ♥❣✉②➯♥ t❛ ❝â Π sup P (X = k) − P (Y = k) ≤ 2Π k |ϕ(t) − Φ(t)|dt −Π ▲✉➟♥ ✈➠♥ ❝❤ù♥❣ tä r➡♥❣ ✧❦❤♦↔♥❣ ❝→❝❤✧ ❣✐ú❛ ❝→❝ ❤➔♠ ♣❤➙♥ ♣❤è✐ ❝â t❤➸ ÷ỵ❝ ❧÷đ♥❣ ✤÷đ❝ t❤ỉ♥❣ q✉❛ ❧÷đ♥❣ t❤ỉ♥❣ t✐♥ tr✉♥❣ ❜➻♥❤ ❣✐ú❛ ❝→❝ ❤➔♠ ♣❤➙♥ ♣❤è✐✳ ❚ø ✤â t❛ ❝â t❤➸ ÷ỵ❝ ❧÷đ♥❣ ✤÷đ❝ ❦❤♦↔♥❣ ❝→❝❤ ❣✐ú❛ ❝→❝ ♣❤➙♥ ♣❤è✐ t❤÷í♥❣ ❣➦♣ ♥❤÷✿ ♣❤➙♥ ♣❤è✐ ♥❤à t❤ù❝✱ ♣❤➙♥ ♣❤è✐ P♦✐ss♦♥✱ ♣❤➙♥ ♣❤è✐ s✐➯✉ ❜ë✐✳✈✳✈✳✳✳ ▲✉➟♥ ✈➠♥ ✤÷đ❝ ❤♦➔♥ t❤➔♥❤ t↕✐ tr÷í♥❣ ữợ sỹ ữợ t t t P P ự ữớ ữợ ❞➝♥ t➟♥ t➻♥❤✱ ❝❤✉ ✤→♦ ✈➔ ❣✐ó♣ ✤ï t→❝ ❣✐↔ tr♦♥❣ s✉èt q✉→ tr➻♥❤ ❤♦➔♥ t❤➔♥❤ ❧✉➟♥ ✈➠♥ ❝❤♦ ✤➳♥ ữủ trữợ ỗ ❣✐↔ ①✐♥ ❜➔② tä ❧á♥❣ ❜✐➳t ì♥ s➙✉ s➢❝ ♥❤➜t ✤➳♥ t❤➛②✳ ◆❤➙♥ ❞à♣ ♥➔② t→❝ ❣✐↔ ①✐♥ ❝❤➙♥ t❤➔♥❤ ❝↔♠ ì♥ ❇❛♥ ❈❤õ ♥❤✐➺♠ ❑❤♦❛ ❚♦→♥✱ ❇❛♥ ❈❤õ ♥❤✐➺♠ qỵ ổ tr ổ ỵ tt st tố tr÷í♥❣ ✣↕✐ ❤å❝ ❱✐♥❤ ✤➣ ❝✉♥❣ ❝➜♣ t❤➯♠ t÷ ❧✐➺✉✱ ❣✐ó♣ ✤ï t→❝ ❣✐↔ tr♦♥❣ t❤í✐ ❣✐❛♥ ♥➔②✳ ❈✉è✐ ❝ị♥❣ ỡ ỗ t õ ỵ t❤✉②➳t ❳→❝ s✉➜t ✈➔ ❚❤è♥❣ ❦➯ ❚♦→♥ ❤å❝ t↕✐ ❚r÷í♥❣ ✣↕✐ ❤å❝ ❱✐♥❤ ✤➣ t↕♦ ✤✐➲✉ ❦✐➺♥ t❤✉➟♥ ❧đ✐ ❣✐ó♣ t→❝ ❣✐↔ ❤♦➔♥ t❤➔♥❤ ♥❤✐➺♠ ✈ö tr♦♥❣ s✉èt q✉→ tr➻♥❤ ❤å❝ t➟♣✳ ▼➦❝ ❞ò ❝â ♥❤✐➲✉ ❝è ❣➢♥❣✱ s♦♥❣ ❧✉➟♥ ✈➠♥ ❦❤æ♥❣ tr→♥❤ ❦❤ä✐ ♥❤ú♥❣ s❛✐ sât✳ ❚→❝ ❣✐↔ r➜t ữủ ỳ ỵ õ õ qỵ ❚❤➛② ❈ỉ ✈➔ ❜↕♥ ✤å❝ ✤➸ ❧✉➟♥ ✈➠♥ ✤÷đ❝ ❤♦➔♥ t❤✐➺♥✳ ❱✐♥❤✱ t❤→♥❣ ✶✷ ♥➠♠ ✷✵✶✶ ❚→❝ ❣✐↔ ✸ ❈❍×❒◆● ✶ ▼❐❚ ❙➮ ❨➌❯ ❚➮ ❈Õ❆ ▲Þ ❚❍❯❨➌❚ ❳⑩❈ ❙❯❻❚ ữỡ tr ởt số tố ỵ t❤✉②➳t ①→❝ s✉➜t ♥❤÷ ❜✐➳♥ ♥❣➝✉ ♥❤✐➯♥✱ ❤➔♠ ♣❤➙♥ ♣❤è✐ ❝õ❛ ❜✐➳♥ ♥❣➝✉ ♥❤✐➯♥ ✈➔ ♠ët sè ♣❤➙♥ ♣❤è✐ ①→❝ st tữớ tr ỵ tt st õ ♥❤✐➲✉ ù♥❣ ❞ö♥❣ tr♦♥❣ t❤ü❝ t➳✳ ✶✳✶✳ ❇■➌◆ ◆●❼❯ ◆❍■➊◆ ●✐↔ sû (Ω, F) ❧➔ ❦❤æ♥❣ ❣✐❛♥ ✤♦✱ R = [−∞; +∞] ✶✳✶✳✶✳ ✣à♥❤ ♥❣❤➽❛✳ ❍➔♠ t❤ü❝ X = X(ω) ①→❝ ✤à♥❤ tr➯♥ R ❣å✐ ❧➔ ❤➔♠ F ✲✤♦ ✤÷đ❝ ❤♦➦❝ ❜✐➳♥ ♥❣➝✉ ♥❤✐➯♥ s✉② rë♥❣ ♥➳✉ {ω : X(ω) ∈ B} = X −1 (B) ∈ F ✈ỵ✐ ♠é✐ B ∈ B(R)✱ ð ✤➙② B(R) ❧➔ σ✲✤↕✐ sè s✐♥❤ ❜ð✐ ❝→❝ t➟♣ ❇♦r❡❧ ❝õ❛ trö❝ t❤ü❝ R✳ ❚❤➯♠ ✈➔♦ ✤â ♥➳✉ X : Ω → R = (−∞, +∞) t❤➻ t❛ ❝â ❦❤→✐ ♥✐➺♠ ❜✐➳♥ ♥❣➝✉ ♥❤✐➯♥✳ ●✐↔ sû C ⊂ P(R) ✈➔ B(R) = σ(C)✳ ❑❤✐ ✤â →♥❤ ①↕ X : (Ω, F) → (R, B(R)) ❧➔ ❜✐➳♥ ♥❣➝✉ ♥❤✐➯♥ s✉② rë♥❣ ❦❤✐ ✈➔ ❝❤➾ ❦❤✐ X −1(C) ∈ F ✈ỵ✐ ♠é✐ C ∈ C ✳ ❚ø ✤â ❧➜② C ❧➔ ♠ët tr♦♥❣ ❝→❝ ❧ỵ♣ [−∞; x); [−∞; x]; [a; b) ✈ỵ✐ a < b ✈➔ x ∈ R õ s ỵ sû X : Ω → R✳ ❑❤✐ ✤â ❝→❝ ♠➺♥❤ ✤➲ s❛✉ ❧➔ t÷ì♥❣ ✤÷ì♥❣✿ ❛✮ ❳ ❧➔ ❜✐➳♥ ♥❣➝✉ ♥❤✐➯♥❀ ❜✮ {ω : X(ω) < x} ∈ F ✈ỵ✐ ♠é✐ x ∈ R❀ ✹ ❝✮ {ω : X(ω) ≤ x} ∈ F ✈ỵ✐ ♠é✐ x ∈ R❀ ❞✮ {ω : a ≤ X(ω) < b} ∈ F ✈ỵ✐ a < b ❜➜t ❦ý✳ ✶✳✶✳✸✳ ❱➼ ❞ư✳ ❈❤♦ ❦❤ỉ♥❣ ❣✐❛♥ ✤♦ (Ω, F), A ⊂ Ω✳ ❉➵ ❞➔♥❣ ❝❤ù♥❣ ♠✐♥❤ IA ❧➔ ❜✐➳♥ ♥❣➝✉ ♥❤✐➯♥ ❦❤✐ ✈➔ ❝❤➾ ❦❤✐ A ∈ F ✳ ❚ê♥❣ q✉→t ❤ì♥ ♥➳✉ Ai ∈ F, i ∈ I ✭I ❦❤ỉ♥❣ q✉→ ✤➳♠ ✤÷đ❝✮ Ai = Ω t❤➻ ✈ỵ✐ (xi)i∈I ⊂ R ✈➔ i∈I X(ω) = xi IAi (ω) i∈I ❝ô♥❣ ❧➔ ❜✐➳♥ ♥❣➝✉ ♥❤✐➯♥✳ ◆â ✤÷đ❝ ❣å✐ ❧➔ ❜✐➳♥ ♥❣➝✉ ♥❤✐➯♥ rí✐ r↕❝✳ ❑❤✐ I ❤ú✉ ❤↕♥✱ X ✤÷đ❝ ❣å✐ ❧➔ ❜✐➳♥ ♥❣➝✉ ♥❤✐➯♥ ✤ì♥ ❣✐↔♥✳ ❇✐➳♥ ♥❣➝✉ ♥❤✐➯♥ ❝á♥ ✤÷đ❝ ❣å✐ ❧➔ ✤↕✐ ❧÷đ♥❣ ♥❣➝✉ ♥❤✐➯♥✳ ✶✳✶✳✹✳ ❍➔♠ ❇♦r❡❧✳ ❍➔♠ ϕ : (Rn, B(Rn)) → (R, B(R)) ✤÷đ❝ ❣å✐ ❧➔ ❤➔♠ ❇♦r❡❧ ♥➳✉ ♥â B(Rn) ữủ 1(B) B(Rn) ợ ộ B ∈ B(R)✳ ❚ø ✤à♥❤ ♥❣❤➽❛ s✉② r❛ ♥➳✉ ϕ : Rn → R ❧➔ ❤➔♠ ❧✐➯♥ tư❝ t❤➻ ϕ ❝ơ♥❣ r ỵ sỷ X1, , Xn ❧➔ ❝→❝ ❜✐➳♥ ♥❣➝✉ ♥❤✐➯♥ ❝ò♥❣ ①→❝ ✤à♥❤ tr➯♥ (Ω, F) ✈➔ ϕ(t1, , tn) ❧➔ ❝→❝ ❤➔♠ ❇♦r❡❧ ♥❤➟♥ ❣✐→ trà t❤ü❝✳ ❑❤✐ ✤â Y ϕ(X1 , , Xn ) ❝ô♥❣ ❧➔ ❜✐➳♥ ♥❣➝✉ ♥❤✐➯♥✳ ✶✳✶✳✺✳✶✳ ❍➺ q✉↔✳ ●✐↔ sû X, Y ❧➔ ❝→❝ ❜✐➳♥ ♥❣➝✉ ♥❤✐➯♥✳ ❑❤✐ ✤â X ± Y, X.Y, X ∨ Y, X ∧ Y, X + + X − tr♦♥❣ ✤â X + = X ∨ 0, X − = (−X) ∨ ✈➔ |X| = X + + X − ❝ô♥❣ ❧➔ ❝→❝ ❜✐➳♥ ♥❣➝✉ ♥❤✐➯♥✳ ✣➦❝ ❜✐➺t ♥➳✉ Y ❦❤æ♥❣ tr✐➺t t✐➯✉ t❤➻ X/Y ❧➔ ❜✐➳♥ ♥❣➝✉ ♥❤✐➯♥✳ ✺ = ✶✳✶✳✻✳ ✣à♥❤ ỵ sỷ (Xn, n 1) ❜✐➳♥ ♥❣➝✉ ♥❤✐➯♥ ✈➔ sup Xn , inf Xn n n ❤ú✉ ❤↕♥ tr➯♥ Ω✳ ❑❤✐ ✤â sup Xn , inf Xn , lim sup Xn , lim inf Xn n n n n ❧➔ ❝→❝ ❜✐➳♥ ♥❣➝✉ ♥❤✐➯♥✳ ✣➦❝ t tỗ t lim Xn = X t X ❝ơ♥❣ ❧➔ ❜✐➳♥ ♥❣➝✉ ♥❤✐➯♥✳ ✤â ✶✳✶✳✼✳ ❈➜✉ tró❝ ❝õ❛ ỵ sỷ X ❜✐➳♥ ♥❣➝✉ ♥❤✐➯♥ ①→❝ ✤à♥❤ tr➯♥ (Ω, F)✳ ❑❤✐ ❛✮ ỗ t rớ r tử ✤➲✉ ✤➳♥ X ❀ ❜✮ ◆➳✉ X ≥ t❤➻ tỗ t ỡ (Xn ) s Xn X ỵ sỷ X ❧➔ ❜✐➳♥ ♥❣➝✉ ♥❤✐➯♥ tr➯♥ (Ω, F) ✈➔ Y ❧➔ →♥❤ ①↕ tø Ω ✈➔♦ R✳ ❑❤✐ ✤â Y F(X) ữủ tỗ t ❇♦r❡❧ ϕ : R → R s❛♦ ❝❤♦ Y = ϕ0 X ✶✳✷✳ P❍❺◆ ❚Û ◆●❼❯ ◆❍■➊◆ ✶✳✷✳✶✳ ✣à♥❤ ♥❣❤➽❛✳ ●✐↔ sû (Ω, F) ✈➔ (E, ε) ❧➔ ❤❛✐ ❦❤æ♥❣ ❣✐❛♥ ✤♦✳ ⑩♥❤ ①↕ X : Ω → E, F/ε✲✤♦ ✤÷đ❝ ❝á♥ ❣å✐ ❧➔ ♣❤➛♥ tû ♥❣➝✉ ♥❤✐➯♥✳ ❚❤ỉ♥❣ t❤÷í♥❣ E ❧➔ ❝→❝ ❦❤æ♥❣ ❣✐❛♥ ♠❡tr✐❝ ❤♦➦❝ ❦❤æ♥❣ ❣✐❛♥ t♦♣♦ ❝á♥ ε ❧➔ σ ✲✤↕✐ sè ❝→❝ t➟♣ ❇♦r❡❧ (ε = B(E))✳ ❑❤✐ E = R, E = C, E = Rd ợ số t r tữỡ ự t❤➻ ♣❤➛♥ tû ♥❣➝✉ ♥❤✐➯♥ t÷ì♥❣ ù♥❣ ✤÷đ❝ ❣å✐ ❧➔ ❜✐➳♥ ♥❣➝✉ ♥❤✐➯♥ t❤ü❝✱ ❜✐➳♥ ♥❣➝✉ ♥❤✐➯♥ ♣❤ù❝✱ ❤❛② ✈➨❝ tì ♥❣➝✉ ♥❤✐➯♥ d✲❝❤✐➲✉✳ ❱➨❝ tì ♥❣➝✉ ♥❤✐➯♥ d✲❝❤✐➲✉ ✤÷đ❝ t ữợ X = (X1, X2, , Xd) tr♦♥❣ ✤â Xk ❧➔ ❝→❝ ❜✐➳♥ ♥❣➝✉ ✻ ♥❤✐➯♥✳ ✶✳✷✳✷✳ P❤➙♥ ♣❤è✐ ❝õ❛ ♣❤➛♥ tû ♥❣➝✉ ♥❤✐➯♥ ●✐↔ sû X ❧➔ ♣❤➛♥ tû ♥❣➝✉ ♥❤✐➯♥ ①→❝ ✤à♥❤ tr➯♥ (Ω, F, P) ♥❤➟♥ ❣✐→ trà tr➯♥ (E, ε)✳ ❍➔♠ t➟♣ PX (B) = P(X −1 (B)) ợ B ữủ ố X tr➯♥ (E, ε)✳ ✣â ❧➔ ✤ë ✤♦ ①→❝ s✉➜t ỏ P q X ỵ ❧➔ X(P)✳ ❑❤✐ (E, ε) = (RT , B(RT ))✱ ♣❤➛♥ tû ♥❣➝✉ ♥❤✐➯♥ X ✤÷đ❝ ❣å✐ ❧➔ ❤➔♠ ♥❣➝✉ ♥❤✐➯♥✳ ❑❤✐ T ⊂ R t❤➻ X ✤÷đ❝ ❣å✐ ❧➔ q✉→ tr➻♥❤ ♥❣➝✉ ♥❤✐➯♥✳ ✶✳✷✳✷✳✶✳ ❚➼♥❤ ❝❤➜t✳ ✐✮ PX ❧➔ ✤ë ✤♦ ①→❝ s✉➜t tr➯♥ B(R)✳ ✐✐✮ ◆➳✉ Q ❧➔ ✤ë ✤♦ ①→❝ s✉➜t tr➯♥ B(R) t❤➻ Q ❧➔ ♣❤➙♥ ♣❤è✐ ①→❝ s✉➜t ❝õ❛ ❜✐➳♥ ♥❣➝✉ ♥❤✐➯♥ X ♥➔♦ ✤â✳ ✶✳✸✳ ❍⑨▼ P❍❹◆ P❍➮■ ❳⑩❈ ❙❯❻❚ ❈Õ❆ ❇■➌◆ ◆●❼❯ ◆❍■➊◆ ●✐↔ sû X ❧➔ ❜✐➳♥ ♥❣➝✉ ♥❤✐➯♥ ①→❝ ✤à♥❤ tr➯♥ (Ω, F, P)✱ ♥❤➟♥ ❣✐→ trà tr➯♥ R = (−∞; +∞) ✶✳✸✳✶✳ ✣à♥❤ ♥❣❤➽❛✳ ❍➔♠ sè FX (x) = P(X < x), x ∈ R ✤÷đ❝ ❣å✐ ❧➔ ❤➔♠ ♣❤➙♥ ♣❤è✐ ❝õ❛ ❜✐➳♥ ♥❣➝✉ ♥❤✐➯♥ X ✳ ✶✳✸✳✶✳✶✳ ◆❤➟♥ ①➨t✳ ❚❤❡♦ ✤à♥❤ ♥❣❤➽❛ ❤➔♠ ♣❤➙♥ ♣❤è✐ ❝õ❛ X ❧➔ t❤✉ ❤➭♣ ❝õ❛ ✤ë ✤♦ ①→❝ s✉➜t PX tr➯♥ ❧ỵ♣ ❝→❝ ❦❤♦↔♥❣ (−∞; x) ✈ỵ✐ x ∈ R✳ ❚ø ✤â ❤➔♠ ♣❤➙♥ ♣❤è✐ F (x) = FX (x) ❝â ❝→❝ t➼♥❤ ❝❤➜t s❛✉✿ ✐✮ ✣ì♥ ✤✐➺✉ x ≤ y ⇒ F (x) ≤ F (y)❀ ✐✐✮ ▲✐➯♥ tö❝ tr→✐ ✈➔ ❝â ❣✐ỵ✐ ❤↕♥ ♣❤↔✐ t↕✐ ♠å✐ ✤✐➸♠❀ ✐✐✐✮ F (−∞) := x→−∞ lim F (x) = 0; F (+∞) := lim F (x) = x→+∞ ✼ ◆❣÷đ❝ ❧↕✐ ♥➳✉ F (x) ❧➔ ❤➔♠ ❜➜t ❦ý ❝â ❜❛ t➼♥❤ ❝❤➜t tr➯♥ t tỗ t ởt ổ st tr (R, B(R)) s❛♦ ❝❤♦ F (x) = µ(−∞; x), x ∈ R ❚ø ✤â ❧➜② X : R → R ỗ t t X ♥❤✐➯♥ tr♦♥❣ ❦❤ỉ♥❣ ❣✐❛♥ ①→❝ s✉➜t (R, B(R), µ) s❛♦ ❝❤♦ F (x) = FX (x) ✣ë ✤♦ ①→❝ s✉➜t µ s✐♥❤ ❜ð✐ ❤➔♠ F (x) ❝á♥ ✤÷đ❝ ❣å✐ ❧➔ ✤ë ✤♦ ▲❡❜❡s❣✉❡✲❙t✐❡❧t❥❡s s✐♥❤ ❜ð✐ F ✳ ❚ø t➼♥❤ ❝❤➜t ❧✐➯♥ tö❝ ❝õ❛ ①→❝ s✉➜t✱ t❛ ❝â − FX (x) n→∞ n = lim P x ≤ X < x + =P n→∞ n FX (x + 0) − FX (x) = lim FX x + ∞ x≤X ln a ln a u ✷✳✷✳ ❳❻P ❳➓ P❖■❙❙❖◆ ❈Õ❆ P❍❹◆ P❍➮■ ◆❍➚ ❚❍Ù❈ ●å✐ B(n, p) ❧➔ ❤➔♠ ♣❤➙♥ ♣❤è✐ ❝õ❛ ♣❤➙♥ ♣❤è✐ ♥❤à t❤ù❝ ✤è✐ ✈ỵ✐ n ♣❤➨♣ t❤û ✈ỵ✐ ①→❝ s✉➜t t❤➔♥❤ ❝æ♥❣ ❜➡♥❣ p✳ ●å✐ F (λ) ❧➔ ❤➔♠ ♣❤➙♥ ♣❤è✐ ❝õ❛ ♣❤➙♥ ♣❤è✐ P♦✐ss♦♥ ✈ỵ✐ tr✉♥❣ ❜➻♥❤ λ ✈➔ µ ❧➔ ✤ë ✤♦ tr➯♥ ✤÷í♥❣ t❤➥♥❣✳ ✷✳✷✳✶✳ ❇ê ✤➲✳ ữủ tổ t tr ố ợ ố B(n, p) ✈➔ F (np) ✤÷đ❝ ①→❝ ✤à♥❤ ❜ð✐ I(B(n, p), F (np)) ≤ p2 2(1 − p) ✷✳✷✳✷✳ ❇ê ✤➲✳ ❑❤♦↔♥❣ ❝→❝❤ ρ ✈➔ ❧÷đ♥❣ t❤ỉ♥❣ t✐♥ tr✉♥❣ ❜➻♥❤ I ✤è✐ ✈ỵ✐ ❝→❝ ♣❤➙♥ ♣❤è✐ B(n, p) ✈➔ F (np) t❤ä❛ ♠➣♥ ❜➜t ✤➥♥❣ t❤ù❝ ρ(B(n, p), F (np)) ≤ [2I(B(np), F (np))] ✷✳✷✳✸✳ ỵ (B(n, p), F (np)) p 1p ✷✵ ✭✶✮ ❝â ❈❤ù♥❣ ♠✐♥❤✳ ❑➳t ❤đ♣ ✈ỵ✐ ữợ ữủ tr t❛ ρ(B(n, p), F (np)) ≤ 2.p 2(1 − p) 2 =p 1−p ú ỵ ỵ t ữợ ❧÷đ♥❣ tèt ❤ì♥ ❦➳t q✉↔ ❝õ❛ ❱❡r✈❛❛t ✭①❡♠ ❬✹❪ ✈➔ ❬✼❪✮✳ ❚❤➟t ✈➟② ρ(B(n, p), F (np)) ≤ p 1−p p 1−p 2 ≤p 1−p 2 ú ỵ ợ p ✤õ ♥❤ä✱ ✈➳ ♣❤↔✐ ❝õ❛ ✭✶✮ ❜➡♥❣ p(1+0(1)) ❦❤✐ n → +∞✳ ❱ỵ✐ ✤✐➲✉ ❦✐➺♥ ✤â Pr♦❦❤♦r♦✈ ✤➣ ❝❤ù♥❣ ♠✐♥❤ ✤÷đ❝ r➡♥❣ ρ(B(n, p), F (np) ≤ 0, 483p + p.0(min(1, (np)1/2 ) n + ú ỵ ❇➙② ❣✐í t❛ s➩ t❤✐➳t ❧➟♣ ❣✐ỵ✐ ❤↕♥ tr➯♥ ❝õ❛ ❦❤♦↔♥❣ ❝→❝❤ ρ ❣✐ú❛ ♣❤➙♥ ♣❤è✐ ♥❤à t❤ù❝ ✈➔ ♣❤➙♥ ♣❤è✐ P♦✐ss♦♥ F (λ) tr♦♥❣ ✤â λ ❧➔ sè ❞÷ì♥❣ tũ ỵ t tự t t õ ρ(B(n, p), F (λ)) ≤ ρ(B(n, p), F (np))+ρ(F (np), F (λ)) ≤ p 1−p ❚r♦♥❣ ✤â an = np − λ + λ log λ np , λ − np + np log np λ ✷✶ +(2an ) ❚❤➟t ✈➟② e−λ λx I(F (np), F (λ)) = F (λ) log −npx! x e (np) x=0 x! ∞ ∞ F (λ)(−λ + x log λ + np − x log(np)) = x=0 ∞ F (λ) np − λ + x log = x=0 λ np ⑩♣ ❞ö♥❣ ❇ê ✤➲ ✷✳✷✳✷ t❛ ❝â ✤✐➲✉ ♣❤↔✐ ❝❤ù♥❣ ♠✐♥❤✳ ✷✳✸✳ ✣❐ ▲➏❈❍ ❈Õ❆ P❍❹◆ P❍➮■ ❋ ✣➮■ ❱❰■ P❍❹◆ P❍➮■ ● ✷✳✸✳✶✳ ✣ë ❧➺❝❤ ❝õ❛ ♣❤➙♥ ♣❤è✐ ♠ët ❝❤✐➲✉ F (x) ✤è✐ ✈ỵ✐ ♣❤➙♥ ♣❤è✐ G(x) ✷✳✸✳✶✳✶✳ ✣à♥❤ ♥❣❤➽❛✳ ✣ë ❧➺❝❤ ❝õ❛ ♣❤➙♥ ♣❤è✐ F ố ợ ố G ữủ + (f (x) − g(x))dx ρ1 (F, G) = −∞ ●å✐ I(F, G) ❧➔ ❧÷đ♥❣ t❤ỉ♥❣ t✐♥ tr✉♥❣ ❜➻♥❤ ❝õ❛ ♣❤➙♥ ♣❤è✐ F ✤è✐ ✈ỵ✐ ♣❤➙♥ ♣❤è✐ G✳ ◆❤í ❜➜t ✤➥♥❣ t❤ù❝ log ❚❛ ❝â f (x) g(x) ≥1− g(x) f (x) +∞ I(F, G) = f (x) log f (x) dx g(x) −∞ +∞ ≥ (f (x) − g(x))dx = ρ1 (F, G) −∞ ✷✷ ❚ø ✤â t❛ ❝â t❤➸ ÷ỵ❝ ❧÷đ♥❣ ✤÷đ❝ ✤ë ❧➺❝❤ ρ1(F, G) ✷✳✸✳✶✳✷✳ ❱➼ ❞ư✳ ✣ë ❧➺❝❤ ❝õ❛ ♣❤➙♥ ♣❤è✐ P♦✐ss♦♥ P (λ1) ✤è✐ ✈ỵ✐ ♣❤➙♥ ♣❤è✐ P♦✐ss♦♥ P (λ2) ❧➔ ∞ ρ1 (P (λ1 ), P (λ2 )) ≤ x=0 e−λ1 λx e−λ1 x λ1 log −λ x1 x! e λ2 = λ1 log λ1 + (λ2 − λ1 ) λ2 ✷✳✸✳✶✳✸✳ ❱➼ ❞ö✳ ✣ë ❧➺❝❤ ❝õ❛ ♣❤➙♥ ♣❤è✐ ♥❤à t❤ù❝ B(n, p1) ✤è✐ ✈ỵ✐ ♣❤➙♥ ♣❤è✐ ♥❤à t❤ù❝ B(n, p2) ❧➔ n Cny1 py1 q1n−y ρ1 (B(n, p1 ), B(n, p2 )) ≤ log py1 q1n−y py2 q2n−y p1 q1 = n p1 log + q1 log p2 q2 y=0 ✷✳✸✳✶✳✹✳ ❱➼ ❞ö✳ ✣ë ❧➺❝❤ ❝õ❛ ♣❤➙♥ ♣❤è✐ ❝❤✉➞♥ N (a1, σ12) ✤è✐ ✈ỵ✐ ♣❤➙♥ ♣❤è✐ ♥❤à t❤ù❝ N (a2, σ22) ❧➔ 1) −(x−a +∞ 2σ1 e −(x−a1 )2 σ1 2 2σ1 √ log ρ1 (N (a1 , σ1 ), N (a2 , σ2 )) ≤ e 2) −(x−a 2πσ1 2σ2 e −∞ σ2 σ22 σ12 (a1 − a2 )2 n = log − + + σ1 σ2 σ22 ✣➦❝ ❜✐➺t ρ1 (N (0, σ12 ), N (0, σ22 )) σ22 σ12 n ≤ log − + σ1 σ2 ✷✸ ✷✳✸✳✷✳ ✣ë ❧➺❝❤ ❝õ❛ ♣❤➙♥ ♣❤è✐ ✷ ❝❤✐➲✉ F (x, y) ✤è✐ ✈ỵ✐ ♣❤➙♥ ♣❤è✐ ✷ ❝❤✐➲✉ G(x, y) ✷✳✸✳✷✳✶✳ ✣à♥❤ ♥❣❤➽❛✳ ✣ë ❧➺❝❤ ❝õ❛ ♣❤➙♥ ♣❤è✐ F (x, y) ✤è✐ ✈ỵ✐ ♣❤➙♥ ♣❤è✐ G(x, y) ❧➔ ✤↕✐ ❧÷đ♥❣ +∞ +∞ (f (x, y) − g(x, y))dxdy ρ2 (F, G) = −∞ −∞ ●å✐ I(F, G) ❧➔ ❧÷đ♥❣ t❤ỉ♥❣ t✐♥ tr✉♥❣ ❜➻♥❤ ❝õ❛ ♣❤➙♥ ♣❤è✐ F ✤è✐ ✈ỵ✐ ♣❤➙♥ ♣❤è✐ G✳ ◆❤í ❜➜t ✤➥♥❣ t❤ù❝ +∞ +∞ I(F, G) = f (x, y) log f (x, y) dxdy g(x, y) −∞ −∞ +∞ +∞ ≥ (f (x, y) − g(x, y))dxdy −∞ −∞ õ t ữợ ữủ ữủ 2(F, G) ✷✳✸✳✷✳✷✳ ❱➼ ❞ö✳ ●✐↔ sû X = (x, y) ❝â ♣❤➙♥ ♣❤è✐ ✷ ❝❤✐➲✉ ✈ỵ✐ ❤➔♠ ♠➟t ✤ë f (x, y) = 1 2πσx σy (1 − p2 ) ❡①♣ −1 x2 xy y2 − 2p + 2(1 − p2 ) σx2 σx σy σy2 ✈➔ Y = (x, y) ❝â ❝→❝ t❤➔♥❤ ♣❤➛♥ ❧➔ ❜✐➳♥ ♥❣➝✉ ♥❤✐➯♥ ✤ë❝ ❧➟♣ ❝â ♣❤➙♥ ♣❤è✐ ❝❤✉➞♥ ♠ët ❝❤✐➲✉ ✈ỵ✐ ❝→❝ ❤➔♠ ♠➟t ✤ë h1 (x) = h2 (x) = ❡①♣ x2 − 2σx ❡①♣ y2 − 2σy √ σx 2π √ σy 2π ✷✹ ❉♦ ✤â Y ❧➔ ❜✐➳♥ ♥❣➝✉ ♥❤✐➯♥ ✷ ❝❤✐➲✉ ❝â ❤➔♠ ♠➟t ✤ë g(x, y) = h1 (x).h2 (x) ✈➔ +∞ +∞ I(F, G) = f (x, y) −1 dxdy = log(1 − p2 ) h1 (x).h2 (x) f (x, y) log ứ õ t ữợ ữủ ✤ë ❧➺❝❤ ρ2 (F (x, y), G(x, y)) ≤ −1 log(1 − p2 ) ✣ë ❧➺❝❤ ❝õ❛ ♣❤➙♥ ♣❤è✐ ✷ ❝❤✐➲✉ z1 = (X, Y ) ✈ỵ✐ X, Y ♣❤ö t❤✉ë❝ ❝â ❤➔♠ ♠➟t ✤ë f (x, y) ✤è✐ ✈ỵ✐ ♣❤➙♥ ♣❤è✐ z2 = (X, Y ) ✈ỵ✐ X, Y ✤ë❝ ❧➟♣ ❝â ❤➔♠ ♠➟t ✤ë g(x).h(y) ✤÷đ❝ ①→❝ ✤à♥❤ ❜ð✐ +∞ +∞ ρ(z1 , z2 ) = f (x, y) log f (x, y) dxdy g(x).h(y) −∞ −∞ ✷✳✸✳✷✳✸✳ ❱➼ ❞ö✳ ●✐↔ sû z1 ❝â ♣❤➙♥ ♣❤è✐ ❝❤✉➞♥ ✷ ❝❤✐➲✉ ✈ỵ✐ ❣✐→ trà tr✉♥❣ ❜➻♥❤ ❜➡♥❣ ✈➔ ❤➺ sè t÷ì♥❣ q✉❛♥ p2 ✈➔ z2 ❝â ♣❤➙♥ ♣❤è✐ ❧➔ t➼❝❤ ❝õ❛ ❤❛✐ ♣❤➙♥ ♣❤è✐ ❝❤✉➞♥ N (0, σ12) ✈➔ N (0, σ22)✳ ❑❤✐ ✤â ρ(z1 , z2 ) = 0✱ −1 log(1 − p2 ) ✷✳✸✳✷✳✹✳ ❱➼ ❞ư✳ ●✐↔ sû z1 ❝â ♣❤➙♥ ♣❤è✐ ✷ ❝❤✐➲✉ ✈ỵ✐ ❣✐→ trà tr✉♥❣ ❜➻♥❤ ❜➡♥❣ ♣❤÷ì♥❣ s❛✐ ❜➡♥❣ ✈➔ ❤➺ sè t÷ì♥❣ q✉❛♥ p21✳ z2 ❝â ♣❤➙♥ ♣❤è✐ ❝❤✉➞♥ ợ tr tr ữỡ s❛✐ ❜➡♥❣ ✈➔ ❤➺ sè t÷ì♥❣ q✉❛♥ p22✳ ◆❤í ♣❤➨♣ ❜✐➳♥ ✤ê✐ ❦❤æ♥❣ s✉② ❜✐➳♥ u = x1 − x2; v = x1 + x2 ❤❛② x1 = u+v u−v ; x2 = 2 ✷✺ ▼➟t ✤ë ✷ ❝❤✐➲✉ ❝õ❛ z ❜✐➳♥ t❤➔♥❤ 2π(1 − p2 ) ❡①♣ −1 (x21 − 2px1 x2 + x22 ) 2(1 − p ) ❱➔ t➼❝❤ ❝õ❛ ❤❛✐ ♣❤➙♥ ♣❤è✐ ❝❤✉➞♥ ♠ët ❝❤✐➲✉ ✈ỵ✐ tr✉♥❣ ❜➻♥❤ ✈➔ ♣❤÷ì♥❣ s❛✐ 2(1 − p) ✈➔ 2(1 + p) ❧➔ √ 1 2π(2(1 − p)) ❡①♣ −1 u2 v2 − − √ ❡①♣ 4(1 − p) 4(1 + p) 2π(2(1 − p)) ❑❤✐ ✤â t❛ ❝â 1 − p2 − p1 log −1+ − p1 − p2 1 + p1 + p2 + −1+ log + p1 + p2 − p22 p22 − p1 p2 = log + − p21 − p22 ρ((z1 , z2 )|u) + ρ((z1 , z2 )|v) = ✷✳✹✳ ✣❐ ▲➏❈❍ ❈Õ❆ P❍❹◆ P❍➮■ ❈❍❯❽◆ n ❈❍■➋❯ N (µ1, Σ1) ✣➮■ ❱❰■ P❍❹◆ P❍➮■ ❈❍❯❽◆ n✲❈❍■➋❯ N (µ2, Σ2) Ð ✤➙② ❝→❝ Σ1, Σ2 ❧➔ ♠❛ tr➟♥ ❈♦✈❛r✐❛♥ Σi = (σirs) ✈➔ µi = (µi1 , , µin ) ❍➔♠ ♠➟t ✤ë t÷ì♥❣ ù♥❣ ❝õ❛ ❝→❝ ♣❤➙♥ ♣❤è✐ ❝❤✉➞♥ ❧➔ fi (x1 , x2 , , xn ) = 2πΣi log ❡①♣ −1 (x − µi ) Σ−1 i (x − µi ) f1 |Σ2 | 1 = log − trΣ1−1 (x − µ1 )(x − µ1 ) + trΣ−1 (x − µ2 )(x − µ2 ) f2 |Σ1 | 2 ❑❤✐ ✤â ✤ë ❧➺❝❤ ❝õ❛ N (à1, 1) ố ợ N (à2, 2) + +∞ ρ(N (µ1 , Σ1 ), N (µ2 Σ2 )) ≤ +∞ −∞ −∞ f1 log −∞ f1 dx1 dx2 dxn f2 |Σ2 | 1 log + trΣ1 Σ−1 − Σ−1 2 |Σ1 | + trΣ−1 (µ1 − µ2 )(µ1 − µ2 ) = ✣➦❝ ❜✐➺t ♥➳✉ Σ1 = Σ2 = Σ t❤➻ 1 ρ(N1 , N2 ) ≤ trΣ−1 (µ1 − µ2 )(µ1 − µ2 ) = (µ1 − µ2 )Σ−1 (µ1 − µ2 ) 2 ◆➳✉ µ1 = µ2 t❤➻ ρ(N1 , N2 ) ≤ |Σ2 | n log − + trΣ1 Σ−1 |Σ1 | 2 ❚r♦♥❣ tr÷í♥❣ ❤đ♣ n = t❛ ❝â (µ1 − µ2 )2 ρ(N1 , N2 ) ≤ σ2 ✷✳✺✳ ❳❻P ❳➓ P❖■❙❙❖◆ ❈Õ❆ P❍❹◆ P❍➮■ ✣❆ ❚❍Ù❈ ●å✐ W (n, k) ❧➔ ♣❤➙♥ ♣❤è✐ ✤❛ t❤ù❝ ✈ỵ✐ ❝→❝ ①→❝ s✉➜t ✤÷đ❝ ①→❝ ✤à♥❤ ❜ð✐ Wn,k = n! k pm , pm k m1 !m2 ! mk ! ❚r♦♥❣ ✤â n = 0, 1, 2, , m1 + m2 + · · · + mk = n; p1 + p2 + pk = 1; < pk < 1, i = 1, 2, , k ●å✐ P (k, i) ❧➔ ♣❤➙♥ ♣❤è✐ P♦✐ss♦♥ ợ st ữủ Pk,i mi −1 mi +1 mk am ai−1 ai+1 ak = ❡①♣✦(−(a1 +a2 +· · ·+ai−1 +ai+1 +· · ·+ak )) m1 ! mi−1 !mi+1 ! mk ! ✷✼ ❇➙② ❣✐í t❛ s➩ ①➜♣ ①➾ ♣❤➙♥ ♣❤è✐ ✤❛ t❤ù❝ P (k, i) ✤è✐ ✈ỵ✐ i = 1, 2, , k tũ ỵ W (n, k) ố Pss ỵ (Wn,k , Pk,i) ≤ −1/2pi (i = k) pi t ỵ q ỵ nmi i Wn,k = Cnmi pm i (1 − pi ) ✈ỵ✐ mi ❝è ✤à♥❤✳ ❚❛ ❦❤æ♥❣ ❝❤ù♥❣ ♠✐♥❤ ♠➔ t❤ø❛ ♥❤➟♥ ❦➳t q✉↔ s❛✉ ✤➙② ρ(Wn,k , Pk,i ) ≤ − pi 1/2 m − pi r=n+1 (n(1 − Pi )r ❡①♣(−n(1 − pi )) r! ✈ỵ✐ i ❜➜t ❦ý✱ i = 1, , k ✈➔ m = n + 1, n + 2, ❉ò♥❣ ✤à♥❤ ỵ Prr t ữủ t q s n → +∞ ρ(Wn,k , Pk,k ≤ 0, 483(1 − Pk ) + (1 − Pk ).0(min(1, (n(1 − Pk ))−1/2 ) ❦❤✐ n → +∞✳ ✷✳✻✳ ❳❻P ❳➓ P❖■❙❙❖◆ ❈Õ❆ P❍❹◆ P❍➮■ ❙■➊❯ ❇❐■ ●å✐ Q(n, r, m) ❧➔ ♣❤➙♥ ố s ợ st õ ữủ ❝❤♦ ❜ð✐ ❝æ♥❣ t❤ù❝ m−k Crk Cn−r Cnm ♥➳✉ n = 0, 1, 2, , n − r − m = 0, 1, 2, k = 0, 1, 2, , min(m, k) ỵ r(r 1) < n t❤➻ rm ρ Q(n, r, m), P n (r − 1)r 2m2 r + r(r − 1) n2 n− ≤ ✷✽ ❇➡♥❣ ✈✐➺❝ ❝❤ù♥❣ ♠✐♥❤ t÷ì♥❣ tỹ ữ ỵ t ũ t tự tr t ữợ ữủ tr ố ợ ữủ tổ t ố tr ❜➔②✳ ❈❤❡♥ ✤÷❛ r❛ ✤→♥❤ ❣✐→ s❛✉ ρ Q(n, r, m), P rm n ≤ 45, 25 − m+r n ❱ỵ✐ n ✤õ ❧ỵ♥ ❦➳t q✉↔ ❝õ❛ ❈❤❡♥ ❧➔ tèt ❤ì♥✳ ❚❛ ❝â t❤➸ ❦✐➸♠ tr❛ ❜➡♥❣ sè ✤✐➲✉ õ r tữỡ ố ọ s ợ n ✈➔ m✳ ✭❈❤➥♥❣ ❤↕♥ ✈ỵ✐ n = 100, r ≤ 10, m ≤ 40, n = 1000, r ≤ 35, m 100 tr tr ỵ tèt✳ ✷✾ ❑➌❚ ▲❯❾◆ ▲✉➟♥ ✈➠♥ ✤➣ t❤✉ ✤÷đ❝ ❝→❝ ❦➳t q✉↔ ❝❤➼♥❤ s❛✉ ✤➙②✿ ✶✳ ❚r➻♥❤ ❜➔② ❝→❝ ❦❤→✐ ♥✐➺♠ ❦❤♦↔♥❣ ❝→❝❤ ❣✐ú❛ ❝→❝ ❤➔♠ ♣❤➙♥ ♣❤è✐✱ ❧÷đ♥❣ t❤ỉ♥❣ t✐♥ tr✉♥❣ ❜➻♥❤ ❣✐ú❛ ❝→❝ ❤➔♠ ♣❤➙♥ ♣❤è✐✱ ✤ë ❧➺❝❤ ❝õ❛ ♣❤➙♥ ♣❤è✐ F ✤è✐ ✈ỵ✐ ♣❤➙♥ ♣❤è✐ G ✭✶ ìợ ữủ ữủ ỳ ố tự ố Pss ã ìợ ❧÷đ♥❣ ✤÷đ❝ ✤ë ❧➺❝❤ ρ1 (F, G) ❝õ❛ ♣❤➙♥ ♣❤è✐ F (x) ố ợ G(x) ã ìợ ữủ ✤÷đ❝ ✤ë ❧➺❝❤ ρ2 (F, G) ❝õ❛ ♣❤➙♥ ♣❤è✐ F (x, y) ố ợ G(x, y) ã ìợ ữủ ữủ ✤ë ❧➺❝❤ ❝õ❛ ♣❤➙♥ ♣❤è✐ ❝❤✉➞♥ n ❝❤✐➲✉ N (µ1 , Σ1 ) ✤è✐ ✈ỵ✐ ♣❤➙♥ ♣❤è✐ ❝❤✉➞♥ n ❝❤✐➲✉ N (µ2, Σ2)✳ ✸✳ ❳➜♣ ①➾ P♦✐ss♦♥ ❝õ❛ ♣❤➙♥ ♣❤è✐ ✤❛ t❤ù❝✳ ✹✳ ❳➜♣ ①➾ P♦✐ss♦♥ ❝õ❛ ♣❤➙♥ ♣❤è✐ s✐➯✉ ❜ë✐✳ ✸✵ ❚⑨■ ▲■➏❯ ❚❍❆▼ ❑❍❷❖ ❬✶❪ ◆❣✉②➵♥ ❱➠♥ ◗✉↔♥❣ ✭✷✵✵✽✮✱ ❳→❝ s✉➜t ♥➙♥❣ ❝❛♦✱ ◆①❜ ✣↕✐ ❤å❝ ◗✉è❝ ❣✐❛ ❍➔ ◆ë✐✳ ❬✷❪ ◆❣✉②➵♥ ❉✉② ❚✐➳♥✱ ❱ô ❱✐➳t ❨➯♥ ✭✷✵✵✵✮✱ ỵ tt st ◆❣✉②➵♥ ❉✉② ❚✐➳♥ ✭✷✵✵✵✮✱ ❈→❝ ♠æ ❤➻♥❤ ①→❝ s✉➜t ù♥❣ ❞ö♥❣✱ ♣❤➛♥ ■✱ ◆①❜ ✣↕✐ ❤å❝ ◗✉è❝ ❣✐❛ ❍➔ ◆ë✐✳ ❬✹❪ ◆✳❑✳ ❆r❡♥❜❛❥❡✈ ❛♥❞ ❆s②♠♣t♦t✐❝ ✭✶✾✼✻✮✱ ❇❡❤❛✈✐♦✉r ♦❢ t❤❡ ♣♦❧✐♥♦♠✐❛❧ ❞✐s✲ tr✐❜✉t✐♦♥✱ ❚❡♦r✳ ❱❡r♦❥❛t ✐ Pr✐♠♠✐❡♥✱ ✷✶✳ ❬✺❪ ▼❝ ❊❧✐❡❝❡ ❘✳❏✳ ✭✷✵✵✷✮✱ ❚❤❡ t❤❡♦r② ♦❢ ■♥❢♦r♠❛t✐♦♥ ❛♥❞ ❈♦❞✐♥❣✱ ❯♥✐✈❡r✳ Pr❡ss✳ ❈❛♠❜r✐❞❣❡✳ ❬✻❪ ❆✳ ●r❛② ❘✳ ▼✱ ✭✷✵✵✵✮✱ ❊♥tr♦♣✐ ❛♥❞ ✐♥❢♦r♠❛t✐♦♥ ❚❤❡♦r②✱ ❙♣✐♥❣❡r✲❱❡r❧❛❣ ◆❡✇ ❨♦r❦✳ ❬✼❪ ▼✳ ❘♦♠❛♥♦✇s❦❛✱ P♦✐ss♦♥ ❆♣♣r♦①✐♠❛t✐♦♥ ♦❢ ❙♦♠❡ Pr♦❜❛❜✐❧✐t② ❉✐str✐❜✉✲ t✐♦♥s✳ ✸✶ ... ♣❤è✐ ♥❤à t❤ù❝✱ ♣❤➙♥ ♣❤è✐ P♦✐ss♦♥✱ ♣❤➙♥ ♣❤è✐ s✐➯✉ ❜ë✐✳✈✳✈✳✳✳ ▲✉➟♥ ✈➠♥ ✤÷đ❝ ❤♦➔♥ t❤➔♥❤ t↕✐ trữớ ữợ sỹ ữợ t t ❝õ❛ t❤➛② ❣✐→♦ P●❙✳❚❙✳ P❤❛♥ ✣ù❝ ❚❤➔♥❤ ✲ ♥❣÷í✐ ✤➣ ữợ t t ú ù t ❣✐↔ tr♦♥❣ s✉èt q✉→ tr➻♥❤