1. Trang chủ
  2. » Kinh Doanh - Tiếp Thị

de va dap an thi thu vao lop 10 nam 2016

7 9 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 7
Dung lượng 179,32 KB

Nội dung

0.25 Trong tam giác FAM có hai đường cao AH, MK nên H là trực tâm của tam giác =>FH vuông góc với AM... Bài hình không có hình vẽ hoặc vẽ sai thì không chấm điểm.[r]

(1)KỲ THI THỬ VÀO LỚP 10 THPT Năm học: 2015 – 2016 Môn thi: Toán Thời gian làm bài: 120 phút không kể thời gian giao đề Đề chẵn Câu 1: (2,0 điểm) Cho phương trình: x2 - 2( m+ 1)x + m2 + 2m = (1) ( m là tham số) a) Giải phương trình với m = 3 b) Tìm m để phương trình có hai nghiệm x1 , x thỏa mãn x1  x 8 Câu 2: (2,0 điểm)  M=  a   Cho biểu thức:   a 1  : a   a  a 2  a   a) Rút gọn M M  b) Tìm các giá trị a để Câu 3: (2,0 điểm) 3x - 2y =  a) Giải hệ phương trình: 2x + 3y = 12 b) Cho hàm số: y = ax +b Tìm a, b biết đồ thị hàm số đã cho song song với đường thẳng ( d1 ): y = 3x – và qua giao điểm Q hai đường thẳng ( d ): y = 2x - 3; ( d ): y = - 3x + Câu 4: (3,0 điểm) Cho tam giác ABC nhọn (AB < AC) Đường cao BD, CE cắt H DE cắt BC F M là trung điểm BC Chứng minh rằng: a) Tứ giác BEDC là tứ giác nội tiếp b) FE FD = FB FC c) FH vuông góc với AM Câu 5: (1,0 điểm) Cho các số thực dương a, b, c cho abc = Chứng minh: ab ca bc + + 1 a + b5 + ab b5 + c5  bc c5 + a + ca -Hết (2) Họ và tên thí sinh:……………………………………………………Số báo danh:………… KỲ THI THỬ VÀO LỚP 10 THPT Năm học: 2015 – 2016 Môn thi: Toán Thời gian làm bài: 120 phút không kể thời gian giao đề Đề lẻ Câu 1: (2,0 điểm) Cho phương trình: x2 - 2( n - 2) x + n2 - 4n = (1) ( n là tham số) a) Giải phương trình với n = 3 b) Tìm n để phương trình có hai nghiệm x1 , x thỏa mãn x1  x 64 Câu 2: (2,0 điểm)  1   x 1 A=   :  x x   x   Cho biểu thức: x 3  x   a) Rút gọn A b) Tìm các giá trị x để Câu 3: (2,0 điểm) A  2x - 3y =  a) Giải hệ phương trình: 3x + 2y = -12 b) Cho hàm số: y = mx + n Tìm m, n biết đồ thị hàm số đã cho song song với đường thẳng ( d1 ): y = 2x – và qua giao điểm T hai đường thẳng ( d ): y = 3x + 2; ( d ): y = - 2x - Câu 4: (3,0 điểm) Cho tam giác MNP nhọn (MN > MP) Đường cao NH, PK cắt D HK cắt NP Q A là trung điểm NP Chứng minh rằng: a) Tứ giác NKHP là tứ giác nội tiếp b) QK QH = QP QN c) QD vuông góc với AM Câu 5: (1,0 điểm) Cho các số thực dương x, y, z cho: xyz = Chứng minh: xy yz zx + + 1 5 x + y + xy y + z  yz z + x + zx (3) -Hết -Họ và tên thí sinh:……………………………………………………Số báo danh:………… HƯỚNG DẪN CHẤM THI THỬ VÀO LỚP 10 MÔN TOÁN Đề chẵn Năm học: 2015 – 2016 Câu Nội dung a) Với m = phương trình (1) trở thành x2 – 4x + = Ta có: + (-4) + = phương trình có dạng a+ b + c = Do đó phương trinh có hai nghiệm là x1 1; x 3 Điểm 0.25 0.5 0.25 Vậy với m = phương trinh có hai nghiệm là x1 1; x 3 Câu , 2 (2điểm b) Ta có:  (m 1)  ( m  2m) 1  ) Do đó phương trình (1) có hai nghiệm với m 3 Vì x1  x 8 nên x1  x Khi đó x1 m  2; x m 0.25  m 0 x  x 8  ( m  2)  m 8    m  3 Vậy với m   2; 0 thì phương trình có hai nghiệm thỏa mãn x1  x 8 Câu a) ĐKXĐ: a > 0; a 1;a 4 (2điểm  ( a - 2)( a  1)  a - a   a   (a  4)  a ) M= : : = = 3 3 a ( a  1)  ( a  2)( a  1)  a ( a -1)  a M>-    a    a  2 a b) a> Câu (2điểm ) a    a 16 a 25 0.5 0.25 0,25 0,75 0,75 16 ; a 1; a  M  25 thì Kết hợp với ĐKXĐ ta có: 16 a>;14 M  Vậy : 25 thì 3x - 2y = 13x = 39  x 3    a) Ta có: 2x + 3y = 12 2x + 3y = 12  y 2  x 3  Vậy nghiệm hệ phương trình là:  y 2 0.75 0.25 a) Vì đồ thị hàm số y = ax +b song song với đường thẳng ( d1 ): y = 3x – Nên a = 3; b  Vì Q là giao điểm hai đường thẳng ( d ): y = 2x - 3; ( d ): y = - 3x + nên tọa độ điểm Q là nghiệm hệ phương trình => Q( ; -1) 0.25 0,25 0,5  y 2 x   x 1    y  x   y  0,25 (4) Do đồ thị hàm số đã cho qua Q nên - = + b => b = - thỏa mãn b  Vậy a = 3, b = - thỏa mãn bài toán   Câu a) Ta có BD  AC ; CE  AB (GT)  BDC BEC = 90 (3điểm Hai điểm E, D cùng nhìn BC góc vuông ) =>tứ giác BEDC nội tiếp   b) Vì BEDC nội tiếp => FEB  FCD  Mà EFB chung  ΔFEB ΔFCD (g.g)  0,5 0,5 0,5 A FE FC =  FD.FE = FB.FC FB FD K c) Gọi giao điểm FA với đường tròn ngoại tiếp tam giác ABC là K   Ta có tứ giác AKBC nội tiếp => FKB  FCAF  Lại có KFB chung 0,5 D E H B C M N FK FC =  FK FA = FB.FC FB FA FK FD  FK FA = FE FD   FE FA KFE     ΔFKE  ΔFDA (g.g) => FKE  FDA Mà chung => tứ giác AKED nội tiếp ADH  AEH = 900  ΔFKB ΔFCA (g.g)  Mặt khác ( GT) => A, E, D cùng thuộc đường tròn đường kính AH 0.25 0.25  =>K thuộc đường tròn đường kính AH => AKH = 900 Gọi N là giao điểm HK và đường tròn ngoại tiếp tam giác ABC   Ta có AN là đường kính  ABN  ACN = 90 0.25 = > NC // BH; BN // CH => BHCN là hình bình hành => HN qua trung điểm M BC => MH vuông góc với FA Vì H là giao điểm hai đường cao BD, CE nên H là trực tâm tam giác ABC => AH vuông góc với FM 0.25 Trong tam giác FAM có hai đường cao AH, MK nên H là trực tâm tam giác =>FH vuông góc với AM Câu Vì a, b, c là các số dương nên (1điểm a + b5 = (a + b)(a - a 3b + a b - ab3 + b ) ) 2 2 2 = (a + b)  a b  ( a  b) ( a  ab  b )  ( a  b) a b  a  b  ab ab [ ab ( a  b) 1]  a  b  ab a 2b ( a  b  c ) ( abc 1) ab c   a  b  ab a b c bc a ca b  ;  5 a  b  c c  a  ca a b c ; Tương tự ta có: b  c  bc 0.5 0.25 (5) ab ca bc + + 1 5 a + b + ab b + c  bc c + a + ca Khi đó: Dấu “ =” xảy a = b = c = Chú ý: Nếu học sinh làm cách khác đáp án mà đúng thì điểm tối đa Bài hình không có hình vẽ vẽ sai thì không chấm điểm HƯỚNG DẪN CHẤM THI THỬ VÀO LỚP 10 MÔN TOÁN Năm học: 2015 – 2016 Đề lẻ Câu Nội dung a) Với n = phương trình (1) trở thành x2 + 2x - = Ta có: + +(- 3) = phương trình có dạng a + b + c = Do đó phương trinh có hai nghiệm là x1 1; x  Vậy với n = phương trinh có hai nghiệm là x1 1; x  Câu , 2 (2điểm b) Ta có:  (n  2)  ( n  4n) 4  ) Do đó phương trình (1) có hai nghiệm với n 3 Vì x1  x 64 nên x1 ,  x Khi đó x1 n; x n   n 0 x  x 64  n  ( n  4) 64    n 4 3 Vậy với n  4; 0 thì phương trình có hai nghiệm thỏa mãn x1  x 64 Câu (2điểm ) 0.25 3 a) ĐKXĐ: x > 0; x 1; x 9 Điểm 0.25 0.5 0.25 0.25 0.5 0.25 0,25  ( x - 3)( x  1)  3( x  1) x - x   x   ( x  9)  : = :  0,75   = x ( x  3)  ( x  3)( x  1)  x ( x - 3)  x  3( x  1) A>-    x    x  x   x  0,75 4 25 x b) A= x> Câu (2điểm ) ; x 1; x 9 A  25 thì Kết hợp với ĐKXĐ ta có: x> ; x 1; x 9 A  25 Vậy : thì 2x - 3y = 13y = - 39  x     a) Ta có: 3x + 2y = -12 3x + 2y = -12  y   x   Vậy nghiệm hệ phương trình là:  y  b) Vì đồ thị hàm số y = mx +n song song với đường thẳng ( d1 ): y = 2x – Nên m= 2; n  0.25 0.75 0.25 0,25 (6) Vì T là giao điểm hai đường thẳng ( d ): y = 3x + 2; ( d ): y = - 2x - nên  y 3 x   x    tọa độ điểm T là nghiệm hệ phương trình  y  x   y  => T( -1 ; -1) Do đồ thị hàm số đã cho qua T nên -1 = - + n => n = thỏa mãn n  Vậy m = 2, n = thỏa mãn bài toán   Câu a) Ta có PK  MN ; NH  MP (GT)  PKN PHN = 90 (3điểm Hai điểm K, H cùng nhìn NP góc vuông ) =>tứ giác PHKN nội tiếp   b) Vì PHKN nội tiếp => QHP QNK  HQP Mà QH QN ΔQHP ΔQNK (g.g)  =  QK QH = QP.QN QP QK   Q Ta có tứ giác MLPN nội tiếp => QLP QNM  LQP Lại có 0,5 0,5 L c) Gọi giao điểm MQ với đường tròn ngoại tiếp tam giác MNP là L K 0,5 H D P N A G chung QL QN =  QL QM = QP QN QP QM QH QM  QH QK = QL QM    QL QK mà LQH chung  ΔQLH ΔQKM (g.g)  ΔQLP ΔQNM (g.g)   0,25 0,5 M chung nên 0,5 0.25  => QLH QKM => tứ giác MLHK nội tiếp   Mặt khác MKD MHD = 90 ( GT) => H, M, K cùng thuộc đường tròn đường kính MD 0.25  => L thuộc đường tròn đường kính MD => MLD = 900 Gọi G là giao điểm LD và đường tròn ngoại tiếp tam giác MNP    Ta có MLD = 900 => MG là đường kính  MNG MPG = 90 = > ND // PG; GN // PD => PDNG là hình bình hành => GD qua trung điểm A NP => DA vuông góc với MQ Vì D là giao điểm hai đường cao NH, PK nên D là trực tâm tam giác MNP => MD vuông góc với QN Trong tam giác MQA có hai đường cao MD, AD nên D là trực tâm tam giác => QD vuông góc với AM Câu Vì x, y, z là các số dương nên (1điểm ) 0.25 0.25 (7) x + y = (x + y)(x - x y + x y - xy + y ) = (x + y)  x y  ( x  y ) ( x  xy  y )  ( x  y ) x y  x  y  xy xy [ xy ( x  y ) 1] 0.5  x  y  xy x y ( x  y  z ) ( xyz 1)  xy z  x  y  xy x yz yz x zx y  ;  5 y  z  yz x  y  z z  x  zx x yz ; Tương tự ta có: xy yz zx + + 1 5 5 x + y + xy y + z  yz z + x + zx Khi đó: Dấu “ =” xảy x = y = z = Chú ý: Nếu học sinh làm cách khác đáp án mà đúng thì điểm tối đa Bài hình không có hình vẽ vẽ sai thì không chấm điểm 0.25 0.25 (8)

Ngày đăng: 02/10/2021, 04:16

TỪ KHÓA LIÊN QUAN

w