1. Trang chủ
  2. » Cao đẳng - Đại học

ON THI VAO LOP 10

12 12 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 12
Dung lượng 297,1 KB

Nội dung

Câu 130:Quãng đường từ A đến B dài 50km.Một người dự định đi xe đạp từ A đến B với vận tốc không đổi.Khi đi được 2 giờ,người ấy dừng lại 30 phút để nghỉ.Muốn đến B đúng thời gian đã định[r]

(1)ÔN THI VÀO THPT 2015 – 2016  x    : x   x - x 1 (với x > 0, x 1) Câu 1: Cho biểu thức P =  x - x a) Rút gọn biểu thức P b) Tìm các giá trị x để P > Câu 2: Cho phương trình: x2 – 5x + m = (m là tham số) x  x 3 a) Giải phương trình m = b) Tìm m để hai nghiệm x1, x2 thỏa mãn: Câu 3: Một xe lửa cần vận chuyển lượng hàng Người lái xe tính xếp toa 15 hàng thì còn thừa lại tấn, còn xếp toa 16 thì có thể chở thêm Hỏi xe lửa có toa và phải chở bao nhiêu hàng Câu 4: Cho phương trình: x2 – 2mx + = (1) a) Giải phương trình đã cho m = b) Tìm giá trị m để phương trình (1) có hai nghiệm x1, x2 thỏa mãn: (x1 + 1)2 + (x2 + 1)2 = 2 x -2 + = b) x - x + x - Câu 5: Giải các phương trình sau: a) x – 3x + = Câu 6: Hai ô tô khởi hành cùng lúc trên quãng đường từ A đến B dài 120 km Mỗi ô tô thứ chạy nhanh ô tô thứ hai là 10 km nên đến B trước ô tô thứ hai là 0,4 Tính vận tốc ô tô x-1 < b) 2x + Câu 7: Giải phương trình và bất phương trình sau: a) ( x – )2 = Câu 8: Cho phương trình ẩn x: x2 – 2mx – = (1) a) Cmr pt đã cho luôn có hai nghiệm phân biệt x1 và x2 b) Tìm m để: x12 + x22 – x1x2 =  a a  a 1    : a  a a  a - với a > 0, a  Câu 9: Cho biểu thức A =  a) Rút gọn biểu thức A b) Tìm các giá trị a để A < Câu 10: Cho phương trình ẩn x: x – x + + m = (1) a) Giải phương trình đã cho với m = b) Tìm các giá trị m để (1) có hai nghiệm x1, x2 thỏa mãn: x1x2.(x1x2 – 2) = 3(x1 + x2) 3x - y = 2m -  Câu 11: Cho hệ phương trình:  x + 2y = 3m + (1) a) Giải hệ phương trình đã cho m = b) Tìm m để hệ (1) có nghiệm (x; y): x2 + y2 = 10 Câu 12: Cho phương trình x2 – 6x + m = 1) Với giá trị nào m thì phương trình có nghiệm trái dấu 2) Tìm m để phương trình có nghiệm x 1, x2 thoả mãn điều kiện x – x2 = Câu 13: 1) Cho hàm số y = ax2, biết đồ thị hàm số qua điểm A (- ; -12) Tìm a 2) Cho phương trình: x2 + (m + 1)x + m2 = (1) a Giải phương trình với m = b Tìm m để phương trình (1) có nghiệm phân biệt, đó có nghiệm -  a a - a a +  a +2   : a a a + a  a - với a > 0, a  1, a  Câu 14: Cho biểu thức: P =  1) Rút gọn P 2) Tìm giá trị nguyên a để P có giá trị nguyên Câu 15: 1) Cho đường thẳng d có phương trình: ax + (2a – 1) y + = Tìm a để đường thẳng d qua điểm M (1, -1) Khi đó, hãy tìm hệ số góc đường thẳng d 2) Cho phương trình bậc 2: (m – 1)x2 – 2mx + m + = a) Tìm m, biết phương trình có nghiệm x = (2) b) Xác định giá trị m để pt có tích nghiệm 5, từ đó hãy tính tổng nghiệm pt x +1 + x -2 x 2+5 x + - x với x ≥ 0, x ≠ x +2 Câu 16: Cho biểu thức: P = 1) Rút gọn P 2) Tìm x để P = Câu 17: Trong mặt phẳng, với hệ tọa độ Oxy, cho đường thẳng d có phương trình: y (m  1)x  n 1) Với giá trị nào m và n thì d song song với trục Ox 2) Xác định phương trình d, biết d qua điểm A(1; - 1) và có hệ số góc -3 Câu 18: Cho phương trình: x2 – 2(m – 1)x – m – = (1) 1) Giải phương trình với m = - 2 2) Tìm m để phương trình (1) có nghiệm thoả mãn hệ thức x1 + x = 10 3) Tìm hệ thức liên hệ các nghiệm không phụ thuộc giá trị m  x    +   :   x - x - x   x 1 x -  Câu 19: Cho M =  với x  0, x 1 a) Rút gọn M b) Tìm x cho M > Câu 20: Cho phương trình x – 2mx – = (m là tham số) a) Cmr pt luôn có hai nghiệm phân biệt 2 b) Gọi x1, x2 là hai nghiệm pt.Tìm m để x1 + x – x1x2 = Câu 21: Cho phương trình: x2 – 4x + m + = (1) 1) Giải pt (1) m = 2 2) Tìm m để pt (1) có nghiệm x1, x2 thỏa mãn x1 + x = (x1 + x2) 3x + my =  Câu 22: Cho hệ phương trình mx - y = a) Giải hệ m = b) Chứng minh hệ có nghiệm với m Câu 23: Một tam giác vuông có cạnh huyền dài 10m Hai cạnh góc vuông kém 2m Tính các cạnh góc vuông Câu 24: Cho phương trình x2 – (m + 5)x – m + = (1) a) Giải phương trình với m = b) Tìm các giá trị m để phương trình (1) có nghiệm x = - 2 c) Tìm các giá trị m để phương trình (1) có nghiệm x1, x2 thoả mãn x1 x + x1x = 24 Câu 25: Một phòng họp có 360 chỗ ngồi và chia thành các dãy có số chỗ ngồi Nếu thêm cho dãy chỗ ngồi và bớt dãy thì số chỗ ngồi phòng không thay đổi Hỏi ban đầu số chỗ ngồi phòng họp chia thành bao nhiêu dãy Câu 26: Cho phương trình x + ( m−1 ) x +m− 1=0 với m là tham số 1) Giải pt m=2 2) Tìm m để pt có hai nghiệm x , x thoả mãn 2 x  x1 x2  x 1 Câu 27: Cho biểu thức: P = ( √2a − 1√ a )( a√−a+1√ a − √a+a −1√ a ) với a > 0, a  1) Rút gọn biểu thức P 2) Tìm a để P > - Câu 28: Cho phương trình x −2 x +m− 3=0 với m là tham số 1) Giải phương trình m=3 2) Tìm giá trị m để pt có hai nghiệm phân biệt x , x thoả mãn điều kiện: x 21 −2 x 2+ x1 x2 =−12 Câu 29: Một xe ô tô cần chạy quãng đường 80km thời gian đã dự định Vì trời mưa nên phần tư quãng đường đầu xe phải chạy chậm vận tốc dự định là 15km/h nên quãng đường còn lại xe phải chạy nhanh vận tốc dự định là 10km/h Tính thời gian dự định xe ô tô đó (3)  x        :   x  x  x   x 1 x   Câu 30: Cho biểu thức A =  với a > 0, a  1) Rút gọn biểu thức A 2) Tính giá trị A x 2  Câu 31: Cho phương trình x  ax  b 1 0 với a , b là tham số 1) Giải phương trình a=3 và b  2) Tìm giá trị a , b để pt trên có hai nghiệm phân biệt x , x thoả mãn điều kiện: ¿ x − x 2=3 3 x − x 2=9 ¿{ ¿ Câu 32: Một thuyền chạy xuôi dòng từ bến sông A đến bên sông B cách 24km Cùng lúc đó, từ A bè trôi B với vận tốc dòng nước là km/h Khi đến B thì thuyền quay lại và gặp bè địa điểm C cách A là 8km Tính vận tốc thực thuyền    x + x  Câu 33: Cho biểu thức P =  x : x   x + x  với x > 2) Tìm các giá trị x để P > 1) Rút gọn biểu thức P Câu 34: Cho phương trình ẩn x: x2 – x + m = (1) 1) Giải phương trình đã cho với m = 2) Tìm các giá trị m để pt (1) có hai nghiệm x1, x2 thỏa mãn: (x1x2 – 1)2 = 9( x1 + x2 ) Câu 35: Một xe lửa từ Huế Hà Nội Sau đó 40 phút, xe lửa khác từ Hà Nội vào Huế với vận tốc lớn vận tốc xe lửa thứ là km/h Hai xe gặp ga cách Hà Nội 300 km Tìm vận tốc xe, giả thiết quãng đường sắt Huế-Hà Nội dài 645km  a a  a1   : a  a + a  a -  Câu 36: Cho biểu thức A = với a > 0, a  1) Rút gọn biểu thức A 2) Tìm các giá trị a để A < Câu 37: Cho phương trình ẩn x: x – 2mx - = (1) 1) Cmr pt đã cho luôn có hai nghiệm phân biệt x1 và x2 2) Tìm m để: x12 + x22 – x1x2 = Câu 38: a) Cho đường thẳng d có pt: y mx  2m  Tìm m để đồ thị hàm số qua gốc tọa độ 2 b) Với giá trị nào m thì đồ thị hàm số y (m  m) x qua điểm A(-1; 2) Câu 39: Cho biểu thức P= ( 1 + 1− √ a− √ a+3 √a )( a) Rút gọn biểu thức P ) với a > và a b) Tìm các giá trị a để P > Câu 40: Hai người cùng làm chung công việc thì hoàn thành Nếu người làm riêng, để hoàn thành công việc thì thời gian người thứ ít thời gian người thứ hai là Hỏi làm riêng thì người phải làm bao lâu để hoàn thành công việc Câu 41: Cho phương trình x − ( m+3 ) x+ m=0 (1) với m là tham số 1) Giải phương trình m=2 2) Chứng tỏ phương trình (1) có nghiệm với giá trị m Gọi x , x là các nghiệm phương trình (1) Tìm giá trị nhỏ biểu thức sau: A = |x − x 2| Câu 42: Cho phương trình: k (x2 – 4x + 3) + 2(x – 1) = a) Giải phương trình với k = k b) Chứng minh pt luôn có nghiệm với giá trị (4) Câu 43: Cho biểu thức: P = √ a √ a+1 3+7 √ a + + √ a+ √ a −3 − a với a > 0, a a) Rút gọn b) Tìm a để P < Câu 44: Cho phương trình: x4 – 5x2 + m = (1) a) Giải phương trình m = b) Tìm m để phương trình (1) có đúng nghiệm phân biệt √ 1− x 2=1 Câu 45: a) Giải phương trình: x+ Câu 46: Cho phương trình: x – 2(m – 1)x + m + 1= a) Giải phương trình m = - b) Giải hệ phương trình: (1) b) Tìm m để pt (1) có nghiệm x1, x2 thoả mãn 6x  6y 5xy  4   x y  x1 x2 + =4 x2 x1 Câu 47: Cho phương trình: x2 – 2mx – 6m = (1) 1) Giải pt (1) m = 2) Tìm m để pt (1) có nghiệm gấp lần nghiệm Câu 48: Cho phương trình: x +(2m + 1)x – n + = (m, n là tham số) a) Xác định m, n để phương trình có hai nghiệm - và - b) Trong trường hợp m = 2, tìm số nguyên dương n bé để phương trình đã cho có nghiệm dương 2 x  y 5m   Câu 49: Cho hÖ ph¬ng tr×nh:  x  y 2 ( m lµ tham sè) a) Gi¶i hÖ ph¬ng tr×nh víi m = b) Tìm m để hệ có nghiệm (x;y) thỏa mãn : x2 – 2y2 = Câu 50:Một phòng họp dự định có 120 người dự họp, họp có 160 người tham dự nên phải kê thêm dãy ghế,mỗi dãy phải kê thêm ghế thì vừa đủ Tính số dãy ghế dự định lúc đầu Biết số dãy ghế lúc đầu phòng nhiều 20 dãy ghế và số ghế trên dãy là Câu 51:a) Giải phương trình : 2x2 – 5x + = b) Tìm các giá trị tham số m để phương trình x2 – (2m – 3)x + m(m – 3) = có nghiêm phân biệt x1; x2 thỏa mãn điều kiện 2x1 – x2 = Câu 52:Cho hàm số y = x2 Xác định a và b để đường thẳng ( d) : y = ax + b cắt trục tung điểm có tung độ - và cắt đồ thị (P) nói trên điểm có hoành độ 2 Câu 53:1 Giải các phương trình sau: a) x  3x  0 b) x  x 0 2 Cho phương trình: x  2(m  1) x  2m  0 với x là ẩn số a)Chứng minh phương trình luôn có hai nghiệm phân biệt với m x12   m  1 x2  2m  b) Gọi hai nghiệm pt là x1 , x2 , tính theo m giá trị biểu thức: E = Câu 54: Nhà Mai có mảnh vườn trồng rau bắp cải Vườn đánh thành nhiều luống luống cùng trồng số cây bắp cải Mai tính : tăng thêm luống rau luống trồng ít cây thì số cây toàn vườn ít cây , giảm luống luống trồng tăng thêm cây thì số rau toàn vườn tăng thêm 15 cây Hỏi vườn nhà Mai trồng bao nhiêu cây bắp cải ? Câu 55: Cho Phương trình x2 - 2(n-1)x – = ( n tham số) a) Giải phương trình n = Câu 56: Cho biểu thức a) Thu gọn Q Q b) Gọi x1: x2 là hai nghiệm pt Tìm n để x1  x2 4 x  x  x  x với x>0 và x 1 b) Tìm các giá trị x  R cho x và Q có giá trị nguyên 2 Câu 57:Cho Parabol (P): y x và đường thẳng (d): y 2x  m  1) Tìm toạ độ các giao điểm Parabol (P) và đường thẳng (d) m = 2) Tìm m để đường thẳng (d) cắt Parabol (P) hai điểm nằm hai phía trục tung (5) (m  1) x  my 3m   Câu 58:Cho hÖ ph¬ng tr×nh: 2 x  y m  a) Gi¶i hÖ ph¬ng tr×nh víi m = 2 b) Tìm m để hệ phơng trình có nghiệm ( x ; y ) cho x  y  Câu 59: Cho đồ thị (d) hàm số y = -x + Tìm trên (d) điểm có hoành độ và tung độ Câu 60: 2 1) Giải phương trình (2 x  1)  ( x  3) 10 2) Xác định các hệ số m và n biết hệ phương trình 3 x  my 5  mx  2ny 9 có nghiệm là (1;  2) 3) Cho hàm số y = x Cho hàm số y = mx + có đồ thị là (d) Tìm m cho (d) và (P) cắt 1  5 y y hai điểm có tung độ y1, y2 thỏa mãn Câu 61: A 1) Rút gọi biểu thức x  x 3 x1   x x 1 x  x 1 x  với x 0 2) Hai người thợ quét sơn ngôi nhà Nếu họ cùng làm thì ngày xong việc Nếu họ làm riêng thì người thợ thứ hoàn thành công việc chậm người thợ thứ hai là ngày Hỏi làm riêng thì người thợ phải làm bao nhiêu ngày để xong việc Câu 62: Cho phương trình x  2( m  1) x  2m  0 1) Chứng minh phương trình luôn có hai nghiệm x1 , x2 với m 2) Tìm các giá trị m để phương trình có hai nghiệm x x1 , x2 thỏa mãn điều kiện  2mx1  2m  1  x22  2mx2  2m  1  Câu 63:  27  32  3 a) Tính giá trị biểu thức A =  b) Rút gọn biểu thức Câu 64: B   x  x  1 x  : x 1  x  x  x  0 16x +16  9x +9+ 4x +4 =16  1) Giải các phương trình sau: a) x 6 b) 2) Cho phương trình bậc hai 2x2 – mx + m – = ( m là tham số) a) Chứng tỏ phương trình luôn có nghiệm với giá trị m y1  y2  x1  x2 và y12  y22 1 ; y biết b) Lập phương trình bậc hai có hai nghiệm là y 3) Cho phương trình bậc hai ẩn x: x2 + mx + 2m – = (1) a) Biết phương trình có nghiệm x1 = Hãy tính nghiệm còn lại x2 và m b) Gọi x1, x2 là hai nghiệm phân biệt phương trình (1) A Tìm giá trị nguyên dương m để biểu thức x1 x  x1  x có giá trị nguyên x+1 (6) Câu 65: Cho hàm số y mx  (d) với x là biến, m 0 a) Xác định hàm số biết đồ thị hàm số (d) qua điểm A(2; 8) b) Tìm m để đồ thị hàm số (d) song song với đồ thị hàm số y 3  x c) Tìm giá trị m để đồ thị hàm số (d) tạo với trục tung và trục hoành tam giác có diện tích (đơn vị diện tích) Câu 66: Cho phương trình : x2 – 2(m – 3)x – 4m + = ( m là tham số) a/ Chứng minh phương trình luôn có nghiệm b/ Gọi x1, x2 là nghiệm phân biệt phương trình  x1   x2    1    x x Tìm giá trị nguyên m để giá trị biểu thức A =     đạt giá trị nguyên Câu 67: Trên vùng biển xem phẳng và không có các chướng ngại vật Vào lúc có tàu cá thẳng qua tọa độ X theo hướng từ Nam đến Bắc với vận tốc không đổi đến tàu du lịch thẳng qua tọa độ X theo hướng từ Đông sang Tây với vận tốc lớn vận tốc tàu cá 12 km/h Đến khoảng cách hai tàu là 60km Tính vận tốc tàu 1 x Câu 68: Trong mặt phẳng với hệ tọa độ Oxy, cho (P): y = a) Vẽ đồ thị (P) b) Gọi A(x1, y1) và B(x2;y2) là hoành độ giao điểm (P) và (d): y = x – Chứng minh: y1  y2  5( x1  x2 ) 0 Câu 69: Cho phương trình x  ax  b  0 a) Giải phương trình a = b = b) Tính 2a3 + 3b4 biết phương trình nhận x1 = 3, x2= -9 làm nghiệm 3  x  y 6    y  Câu 70: Giải hệ phương trình  x Câu 71: Cho hàm số y = x2 có đồ thị (P) Cho các hàm số y = x + và y = - x + m ( với m là tham số) có đồ thị là (d) và (d m) Tìm tất các giá trị m để trên mặt phẳng tọa độ các đồ thị (P) , (d) và (dm) cùng qua điểm Câu 72: Cho phương trình x2 - 2(m – 1)x – 2m = 0, với m là tham số 1) Giải phương trình m = 2) Chứng minh phương trình luôn có hai nghiệm phân biệt với m Gọi x1 và x2 là hai nghiệm phương trình, tìm tất các giá trị m cho : x12 + x1 – x2 = – 2m mx  y 5  Câu 73: Cho hệ phương trình : 2 x  my 0 ( m là tham số ) 1.Giải hệ phương trình với m = 2.Tìm m để hệ phương trình có nghiệm (x;y) thỏa mãn y = 2x Câu 74: Cho hàm số: y mx  (1), đó m là tham số a) Tìm m để đồ thị hàm số (1) qua điểm A(1; 4) Với giá trị m vừa tìm được, hàm số (1) đồng biến hay nghịch biến trên  ? b) Tìm m để đồ thị hàm số (1) song song với đường thẳng d: y m x  m  (7) 2 Câu 75: Cho phương trình: x  4mx  2m  0 (1), với x là ẩn, m là tham số a) Chứng minh với giá trị m, phương trình (1) luôn có hai nghiệm phân biệt 2 b) Gọi hai nghiệm phương trình (1) là x1 , x2 Tìm m để x1  4mx2  2m   Câu 76: Giải các phương trình và hệ phương trình sau: a) Câu 77: a) Rút gọn biểu thức A ( a  2)    a3    x 3  y   y   x b) x  x  0 a   9a với a 0 b) Khoảng cách hai tỉnh A và B là 60 km Hai người xe đạp cùng khởi hành lúc từ A đến B với vận tốc Sau thì xe người thứ bị hỏng nên phải dừng lại sửa xe 20 phút, còn người thứ hai tiếp tục với vận tốc ban đầu Sau sửa xe xong, người thứ với vận tốc nhanh trước km/h nên đã đến B cùng lúc với người thứ hai Tính vận tốc hai người lúc đầu Câu 78: 2 a) Tìm các giá trị m để phương trình x  2( m  1) x  m  0 có nghiệm kép Tìm nghiệm kép đó b) Cho hai hàm số y (3m  2) x  với m  và y  x  có đồ thị cắt điểm A( x; y ) Tìm các giá trị m để biểu thức P  y  x  đạt giá trị nhỏ Câu 79: Cho phương trình x2 – 2(m + 1)x + 2m = (m là tham số) 1) Giải phương trình m = 2) Tìm m để phương trình có nghiệm x1; x2 thỏa mãn Câu 80: x1  x2  1) Tìm m để hai đồ thị hàm số y 2x  và y x   2m cắt điểm có hoành độ x  m  x  2m  0  1   2) Cho phương trình : a/ Giải phương trình (1) với m = -2 b/ Tìm m để phương trình (1) có hai nghiệm x1; x2 thỏa mãn: x1  2x 10 Câu 81: Với x > 0, cho hai biểu thức A x 3 và B = x1 x  x  10  x x 2 x a) Tính giá trị biểu thức A x = 25 b) Rút gọn biểu thức B A  c) Tính x để B Câu 82: Một xe tải và xe cùng khởi hành từ A đến B Xe tải với vận tốc 30 km/h , xe với vận tốc 45 km/h Sau quãng đường AB , xe tăng vận tốc thêm km/h trên quãng đường còn lại Tính quãng đường AB biết xe đến B sớm xe tải 2giờ 20 phút Câu 83: Một tàu tuần tra chạy ngược dòng 60 km, sau đó chạy xuôi dòng 48 km trên cùng dòng sông có vận tốc dòng nước 2km/h Tính vận tốc tàu tuần tra nước yên lặng, biết thời gian xuôi dòng ít thời gian ngược dòng Câu 84: (8) 2  x  y   x  4   x  y   x   1) Giải hệ phương trình  x   m   x  3m  0 (x là ẩn số) 2) Cho phương trình a) Chứng minh phương trình luôn có nghiệm với số thực m b) Tìm m để phương trình có hai nghiệm x1; x2 là độ dài hai cạnh góc vuông tam giác vuông có độ dài cạnh huyền Câu x xy y A    x y  85: Cho biểu thức a) Rút gọn A Câu 86:   x y xy     x y       b) Tính giá trị A x = 99; y = 100 Cho phương trình x  x  m  0 a) Tìm m để phương trình có nghiệm phân biệt b) Tìm m để phương trình có nghiệm lần nghiệm Một ruộng hình chữ nhật có chu vi 52m Nếu tăng bề rộng lên gấp đôi và bề dài lên gấp thì chu vi ruộng là 136m Tính diện tích ruộng ban đầu ( x  1)( x  2)  ( x  2)( x  3)  0 Câu 87: Giải các phương trình sau: a) b) x  1998.( x  12 x  32) 0 Câu 88: Một ruộng hình chữ nhật có chiều dài chiều rộng 10m Nếu giữ nguyên chiều dài và giảm chiều rộng 10m, thì diện tích ruộng giảm nửa Tính chu vi ruộng ban đầu? Câu 89: Một ô tô từ A đến C dài 270km gồm đoạn đường nhựa AB và đoạn đường đất BC Trên đoạn đường nhựa AB ô tô với vận tốc 50km/h, trên đoạn đường đất BC ô tô với vận tốc 40km/h Tính đoạn đường AB và BC (biết thời gian trên đoạn đường là nhau) Câu 90: Cho phương trình x  mx  m  0 (1) (x là ẩn số) a) Chứng minh phương trình (1) luôn có nghiệm phân biệt với giá trị m x12  x22  4 x , x x  x  1 2 b) Định m để hai nghiệm (1) thỏa mãn Câu 91: Cho phương trình: x2 +(2m + 1)x – n + = (m, n là tham số) a) Xác định m, n để phương trình có hai nghiệm – và – b) Trong trường hợp m = 2, tìm số nguyên dương n bé để phương trình đã cho có nghiệm dương Câu 92: Hưởng ứng phong trào thi đua”Xây dựng trường học thân thiện, học sinh tích cực”, lớp 9A trường THCS Hoa Hồng dự định trồng 300 cây xanh Đến ngày lao động, có bạn Liên Đội triệu tập tham gia chiến dịch an toàn giao thông nên bạn còn lại phải trồng thêm cây đảm bảo kế hoạch đặt Hỏi lớp 9A có bao nhiêu học sinh Câu 93: 1) Giải các phương trình sau: a/ 9x2 + 3x – = b/ x4 + 7x2 – 18 = 2) Với giá trị nào nào m thì đồ thị hai hàm số y = 12x + (7 – m) và y = 2x + (3 + m) cắt điểm trên trục tung ? A  1  2 Câu 94: 1) Rút gọn biểu thức:   1   B        ; x  0, x  x  x x  x      2) Cho biểu thức: a) Rút gọn biểu thức B  y  x m   Câu 95: Cho hệ phương trình: 2 x  y m  b) Tìm giá của x để biểu thức B = (1) (9) 1) Giải hệ phương trình (1) m =1 2) Tìm giá trị m để hệ phương trình (1) có nghiệm (x ; y) cho biểu thức P = x + y2 đạt giá trị nhỏ Câu 96: 1) Cho hàm số y  f ( x) x  x  a Tính f ( x) khi: x 0; x 3 2) Giải bất phương trình: 3( x  4)  x  b Tìm x biết: f ( x)  5; f ( x)  Câu 97: y  m – x m3   1) Cho hàm số bậc (d) a Tìm m để hàm số đồng biến b Tìm m để đồ thị hàm số (d) song song với đồ thị hàm số y 2 x   x  y 3m  x2  y   4 x  y 5 x; y  2) Cho hệ phương trình  Tìm giá trị m để hệ có nghiệm  cho y  Câu 98: Hai người thợ quét sơn ngôi nhà Nếu họ cùng làm ngày thì xong công việc Hai người làm cùng ngày thì người thứ chuyển làm công việc khác, người thứ hai làm mình 4,5 ngày (bốn ngày rưỡi) thì hoàn thành công việc Hỏi làm riêng thì người hoàn thành công việc đó bao lâu Câu 99: a) Giải phương trình : 2x2 – 5x + = b) Tìm các giá trị tham số m để phương trình x – (2m – 3)x + m(m – 3) = có nghiêm phân biệt x1; x2 thỏa mãn điều kiện 2x1 – x2 = Câu 100: Một người xe đạp từ A đến B với vận tốc không đổi.Khi từ B đến A người đó tăng vận tốc thêm km/h so với lúc ,vì thời gian ít thời gian 30 phút tính vận tốc lúc từ A đến B ,biết quãng đường AB dài 30 km Câu 101: Cho hàm số y = x2 1) Vẽ đồ thị ( P) hàm số đó 2) Xác định a và b để đường thẳng ( d) : y = ax + b cắt trục tung điểm có tung độ - và cắt đồ thị (P) nói trên điểm có hoành độ A Câu 102: Cho biểu thức: Rút gọn A  x 1 x  x  x với x 0, x 1 2) Tính giá trị A x = −2 √ mx  2y 18  Câu 103: Cho hệ phương trình :  x - y  ( m là tham số ) Tìm m để hệ phương trình có nghiệm (x ;y) đó x = 2 Tìm m để hệ phương trình có nghiệm (x ;y) thoả mãn 2x + y = Câu 104: Trong mặt phẳng tọa độ Oxy, cho parabol (P): y = x và đường thẳng (d): y=ax + ( a là tham số ) a Chứng minh (d) luôn cắt (P) hai điểm phân biệt b Gọi x1 ; x2 là hoành độ giao điểm (P) và (d), tìm a để x +2x = Câu 105: 1  1 1  5 b) B =   Rút gọn các biểu thức sau: a) A = Biết đồ thị hàm số y = ax – qua điểm M(2; 5) Tìm a Câu 106: Giải các phương trình sau: a) x  3x  0 b) x  x 0 2.Cho phương trình: x  2(m  1) x  2m  0 với x là ẩn số a) Chứng minh phương trình luôn có hai nghiệm phân biệt với m (10) x  m  x  2m    b) Gọi hai nghiệm phương trình là x1 , x2 , tính theo m giá trị E = Câu 107: Giải bài toán sau cách lập hệ phương trình: Nhà Mai có mảnh vườn trồng rau bắp cải Vườn đánh thành nhiều luống luống cùng trồng số cây bắp cải Mai tính : tăng thêm luống rau luống trồng ít cây thì số cây toàn vườn ít cây , giảm luống luống trồng tăng thêm cây thì số rau toàn vườn tăng thêm 15 cây Hỏi vườn nhà Mai trồng bao nhiêu cây bắp cải ?  x    A     :    x  x  x   x 1 x   Câu 108: Cho biểu thức a) Rút gọn biểu thức A b) Tìm các giá trị x cho A<0 Câu 109: Giải hệ phương trình sau: Câu 110: Cho hàm số (P): (x  0;x 1) y  2x  y   1  x  y 5 x Tìm m để đường thẳng (d): y = x + m tiếp xúc với đồ thị (P) x  2(m  1)x  m  0 (1) Câu 111: Cho phương trình: (m là tham số) a) Giải phương trình (1) m = b) Chứng tỏ rằng, với giá trị m phương trình (1) luôn có hai nghiệm phân biệt c) Gọi x1, x2 là hai nghiệm phương trình (1) Chứng minh biểu thức B x1 (1  x )  x (1  x1 ) không phụ thuộc vào m Câu 112:  a 3 a   a  A      1  a 3   a   , với a 0; a 1 Rút gọn biểu thức 2 x  y 13  Giải hệ phương trình:  x  y  Cho phương trình: x  x  m  0 (1), với m là tham số Tìm các giá trị m để phươngg x  x 4 trình (1) có hai nghiệm x1 , x2 thoả mãn   Câu 113: Một mảnh vườn hình chữ nhật có diện tích 192 m Biết hai lần chiều rộng lớn chiều dài 8m Tính kích thước hình chữ nhật đó Câu 114: a) Giải phương trình: 3x2 – 4x – = Câu 115: Cho biểu thức: P = b) Giải hệ phương trình: x√ x−8 +3(1 − √ x) x +2 √ x + , với x a) Rút gọn biểu thức P b) Tìm các giá trị nguyên dương x để biểu thức Q = A Câu 116: Cho x 10 x   x  x  25 1) Rút gọn biểu thức A x 5 ¿ √ x −2 √ y=−1 √ x + √ y=4 ¿{ ¿ 2P 1−P nhận giá trị nguyên Với x 0, x 25 2) Tính giá trị A x = 3) Tìm x để A (11) Câu 117: Một đội xe theo kế hoạch chở hết 140 hàng số ngày quy định Do ngày đội đó chở vượt mức nên đội đã hoàn thành kế hoạch sớm thời gian quy định ngày và chở thêm 10 Hỏi theo kế hoạch đội xe chở hàng hết bao nhiêu ngày? 2 Câu upload.123doc.net: Cho Parabol (P): y x và đường thẳng (d): y 2x  m  1) Tìm toạ độ các giao điểm Parabol (P) và đường thẳng (d) m = 2) Tìm m để đường thẳng (d) cắt Parabol (P) hai điểm nằm hai phía trục tung Câu 119: a) Rút gọn biểu thức: P = (4   2)  b) Tìm toạ độ giao điểm hai đồ thị hàm số y x và y 3 x  Câu 120: Một công ty vận tải điều số xe tải đến kho hàng để chở 21 hàng Khi đến kho hàng thì có xe bị hỏng nên để chở hết lượng hàng đó, xe phải chở thêm 0,5 so với dự định ban đầu Hỏi lúc đầu công ty đã điều đến kho hàng bao nhiêu xe Biết khối lượng hàng chở xe là (m  1) x  my 3m   Câu 121: Cho hệ phương trình: 2 x  y m  a) Giải hệ phương trình với m = 2 b) Tìm m để hệ phương trình có nghiệm ( x; y ) cho x  y   x  y 0  Câu 122: Giải hệ phương trình  x  2y  0 Câu 123: Cho phương trình x2 – 2mx + m2 – =0 (x là ẩn, m là tham số) a) Giải phương trình với m = – b) Tìm tất các giá trị m đê phương trình (1) có hai nghiệm phân biệt c) Tìm tât các giá trị m để phương trình (1) có hai nghiệm x , x2 cho tổng P = x12 + x22 đạt giá trị nhỏ Câu 124: a/ Giải phương trình (2x + 1)(3 – x) + = b/ Giải hệ phương trình 3x – | y| = 5x + 3y = 11 Câu 125: Rút gọn biểu thức Q = − √3 − √ + : ( √√62−1 ) √ 5− √5 − √ Câu 126:Cho phương trình x2 – 2x – 2m2 = ( m là tham số ) a/ Giải phương trình m = b/ Tìm m để phương trình có hai nghiệm x1;x2 khác và thỏa điều kiện x12 = 4x22 Câu 127:Một hình chữ nhật có chu vi 28 cm và đường chéo nó có độ dài 10cm Tìm độ dài các cạnh hình chữ nhật đó Câu 128:Quãng đường AB dài 120 km Hi xe máy khởi hành cùng lúc từ A đến B Vận tốc xe máy thứ lớn vận tốc xe máy thứ hai là 10 km/h nên xe máy thứ đến B trước xe máy thứ hai Tính vận tóc xe ? Câu 129: 1) Cho phương trình bậc hai x2 + 5x + = có hai nghiệm x1; x2 Hãy lập phương trình bậc hai có hai nghiệm (x12 + ) và ( x22 + 1) 2 x    4   2) Giải hệ phương trình  x 4 y 1 y (12) Câu 130:Quãng đường từ A đến B dài 50km.Một người dự định xe đạp từ A đến B với vận tốc không đổi.Khi giờ,người dừng lại 30 phút để nghỉ.Muốn đến B đúng thời gian đã định,người đó phải tăng vận tốc thêm km/h trên quãng đường còn lại.Tính vận tốc ban đầu người xe đạp Câu 131:Rút gọn các biểu thức (không sử dụng máy tính cầm tay): a) M  27  12  b)  a  N   :a a  2  a 2 , với a > và a 4 Câu 132:Giải các phương trình: a) x  x  0 Câu 133: a) Vẽ đồ thị (d) hàm số y = – x + 3; b) Tìm trên (d) điểm có hoành độ và tung độ b) x 1  x 3 2 Câu 134:Gọi x1, x2 là hai nghiệm phương trình x2 + 3x – = Tính giá trị biểu thức x1  x2 Câu 135:Tính chu vi hình chữ nhật, biết tăng chiều hình chữ nhật thêm 4m thì diện tích hình chữ nhật tăng thêm 80m ; giảm chiều rộng 2m và tăng chiều dài 5m thì diện tích hình chữ nhật diện tích ban đầu Câu 136:Một canô xuôi dòng sông từ bến A đến bến B hết giờ, ngược dòng sông từ bến B bến A hết (Vận tốc dòng nước không thay đổi) a) Hỏi vận tốc canô nước yên lặng gấp lần vận tốc dòng nước chảy ? b) Nếu thả trôi bè nứa từ bến A đến bến B thì hết bao nhiêu thời gian ? Câu 137:Cho Parapol y = x2 (P), và đường thẳng : y = 2(1 – m)x + (d), với m là tham số 1/ Chứng minh với giá trị m, parapol (P) và đường thẳng (d) luôn cắt hai điểm phân biệt 2/ Tìm các giá trị m, để (P) và (d) cắt điểm có tung độ y = Câu 138:Cho biểu thức B = ( b b 2  b b  b1 ): b b  với b 0 và b  1) Rút gọn biểu thức B 2) Tính giá trị B b = + 2 Câu 139:Cho phương trình : x – ( 2n – 1)x + n (n – 1) = ( ) với n là tham số Giải phương trình (1) với n = 2 CMR phương trình (1) luôn có hai nghiệm phân biệt với n Gọi x1 , x2 là hai nghiệm phương trình (1) ( vơí x1 < x2 Chứng minh : x12 – 2x2 +  Câu 140: 1) Tính chiều dài và chiều rộng hình chữ nhật có chu vi là 33m và diện tích là 252m2 2) Cho phương trình : x2 – 2(m + 2)x + 2m + = (1) Tìm tất giá trị m để phương trình (1) có nghiệm phân biệt lớn 0,5 P x2  x x x  x  x 1 x1 Câu 141: Cho biểu thức : (với x 0 và x 1 ) a) Rút gọn biểu thức P b) Tìm x biết P = Câu 142: Cho phương trình x  x  2m 0 (với m là tham số) 1) Giải phương trình với m = 2) Tìm m để phương trình trên có hai nghiệm phân biệt x1 ; x thỏa mãn x1  x1 x 2 (13)

Ngày đăng: 01/10/2021, 04:13

TỪ KHÓA LIÊN QUAN

w