1. Trang chủ
  2. » Giáo Dục - Đào Tạo

TICH PHAN CO LOI GIAI

13 4 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 13
Dung lượng 2,27 MB

Nội dung

sin x.lncos xdx.. sin x.tan xdx..[r]

(1)2 4   dx  x  x 1  2 sin x(sin x  1)dx   cos x   x x   1 dx  x2 1  cot x1  ln(sin x ) dx  ( x  1)dx  x6 1 1 dx   x2    sin x cos  4  dx  sin x x dx  ( x  1) x 3dx  x2 1 (3x  3)dx  ( x  1)( x  3x  1) e x   ln x dx  x   x  ln x  x   dx  x 1 x  ln(1  x ) dx  x 1  sin xdx  sin x  cos x (e x  e  x ) ln(e x  e  x ) dx  e x  e x ln e dx  x ( x  1)   x x e  e  1 dx (6 x  x  1)(24 x  10) dx  xdx  1 dx  cos x (1  3x)sin xdx (2 x  3)2 dx  x ln e   2 cos xdx  cos x x dx  ex  32 x  3 x  2dx 1 dx  ( x  2)( x  1)     x  s inx   dx  cos x  e3 x  dx x  e   1 x dx  x    s inxdx (  cos2 x   cos2 x )dx    x 64 sin xdx  cos x 4dx 4x   x 1 x 2   x  dx x (4 x  x  1) dx  x3  e  ln x  x  x  ln x   dx  x    e x   cos x dx ( x3  3x  x  8) dx  1 x2  x   2  sin x(sin x  cos x)dx (2)  2  sin x(sin x  2cos x) dx dx  x  x 1 x3dx  x2  1 xdx   x2   sin x (sin x  4cosx )dx x3 dx  1  x2  dx  ( x  1)( x  2) ( x  1) dx  3x   x  dx  x x2  1 dx   x2 13 x  dx  2x 1 dx  x  x2   x  ln x  x   dx  x 1 e2 ln x  dx  e x ln x 1 2x ln dx  2 x 14  x  dx   sin x cot x  sin x  cos x I  dx  sin 2x  tan x I  dx tan x   /3 sin x  sin x K  dx  /6 sin x I  3 I  4     tan x   cot x  dx   x 1  x   dx (2cot x  5) dx 3tan x dx     sin x.cos xdx  0  1 1  cos x dx  2  (2cos x  3sin x )dx ( x  tan x)dx  1 x2 1 xdx   x10  cos x    4 cos x dx  3 sin x dx  x  1  x   dx sin x  sin x cot x dx sin x sin x dx  dx x x sin cos 2    cot x dx  ( x  x)dx   x2 1 (3)   e ln x   ln x  dx  x  2  cos x sin xdx x3 dx  1  x2   x cos x sin xdx 38)  x sin x dx  01  sin x  n  (1  sin x) cos xdx(n  N ) x (1  x ) dx x x .e ln(e  1)dx  ln(cos x ) dx   sin x    sin   x  4  dx     sin   x  4   cos x(1  sin x) dx    sin x e  ln x ln x dx  x e 1 dx  0 2  x  1    dx   sin x   dx  cos x cos x(sin x  cos  cos xdx  x 16  x  e x) dx dx 2  x dx x  x dx 4sin x 1  cosx dx x dx  2x  e2x e x  dx  3 x2  dx x  x 4 x dx x (x  4) dx x  x dx   x dx 1 e e ln x x(ln x  1)dx e x e x  dx (1  2x)(1  3x  3x ) dx (x  3) x  6x  dx e tan x 2  cos x  x dx e 4 sin 2x dx x 1 x x 9 dx 1 sin x      x 1 dx   x x 1 ln x  e  1dx e sin(ln x) dx x  (4) 1 dx   2x e  2x e x  dx   ln  sin xdx  ln x  ln x dx  x 1  e  x  x3 dx 1 e2x  3dx  x e 1 dx dx  sin x cot x  3 x (x  1) dx x 1 dx 3 3x  1 2  tan x  cot x  2.dx  ln  ex (e x  1)3  ln  e 2x dx e 1 x sin x.sin 2x.sin 3xdx x 1  x8  2x dx dx e cos(ln x)dx   4 cos 2x(sin x  cos x)dx   x dx x 1  cos 2x dx  2 x  x dx 1  x 1  x ln xdx  2x x(e  x  1)dx e x 1 dx 3 3x  0 4cos x  3sin x  4sin x  3cos x  dx  x sin dx ln(1  x)  x  dx 2  (1  x ) dx dx    cos x sin x.cos xdx x x  ln cos x dx x2 dx  (x  1) x  3 ( cos x  sin x )dx x  xdx   x dx 2x  2 x sin x sin x  cos x dx x dx  x  1  (5) e  e  3ln x ln x dx x ln(x  x)dx 2 e (ln x) dx ln x  x dx e  x  dx e  2  1  cos(ln x)dx ln(sin x)  cos x dx   x 1 dx  x 1 dx x e2  cos x 6  5sin x  sin x dx  x  2x  x  dx 1   sin xdx  ln(x  x  1)  dx 1 3  x sin x 1  cos2 x dx  x sin xdx x.sin x cos xdx x ln(1  )dx  x 2 sin xdx ln(  x  x)dx x3 x  16 dx 3  x  dx 4 cos x sin xdx     cos 2x  1dx x 1  2x dx 1 x ln(x  1)dx   sin 2x dx 1 ( ln x  ln x )dx e  3 2 ln x dx ln x dx 4 x   sin xdx 1 2 x cos xdx x  (x  2)2 dx 0 e ln x dx  (x  1) e x e (x  1)(4 x  1) dx 2x e sin xdx 1 x x.ln  x dx (6)  /4 2014 xdx  sin 2x.cos   e2 cos (ln x)dx sin x.ln(cos x)dx  cos x dx   1 x x e dx cos3 x dx 0    x  dx sin 2x 1  cos x dx x  6x  dx x (x  1) dx sin x (tan x  1)2 cos5 x dx 1 2x  8x  26 dx 5 sin 2x  (2  sin x)2 dx  1 e sin x .sin x cos xdx x  4x  dx 2x  x (x  1)(x  3x  2) dx     sin x (sin x  3) dx sin x.tan xdx   cos x   cos x  dx  1 4x  x dx    sin x x  3 dx  sin x dx  cos x 0  x  x  dx 1 2  4x  x  dx 1 cos x sin x  cos x  dx x   (x  4)  sin x  9cos x dx     1 cos x.sin x dx 1  3cos x dx 3  sin 2x dx   (x  4x  3) dx 4sin x 1  cos x dx  x (x  1) dx x  xdx 4x (x  1) dx   2 x  2x  2x  dx x  4x  13 dx (7)  e 3e x  e   e 2x  dx x ln x dx ln x dx  e 3e 4x  e 2x x 2ex (x  2)2 dx e sin x dx dx (1  x) ln x dx 2x x 9x x 9  dx dx  x e sin xdx  x sin xdx cos x cos x  sin x dx 0  1 0  2 x cos xdx 2 x sin x dx  x cos x sin x dx e x(2  ln x) dx  cos x dx x cos x dx e x e  sin 2x 1  sin x dx ( x   x  ) dx 3 2 (x  x) ln x dx e  3x e sin 4x dx 1 1 x ( ln x  ln x )dx e ln x  x dx x ln  x dx x cos x sin x dx  dx sin x dx 2 x ln(1  x ) dx x cos x.ln(1  cos x) dx  x1 ( ) dx  1 x 2  e  e sin 2x sin x sin x cos3 x dx  x.tan x dx 1  cos x dx ln x (x  1)2 dx x  6x  dx (8) x  3x   x  dx 1 x (x  1) dx 1 x 1  x dx e  15 x  x dx ln x dx sin x (e  cos x)cos x dx e   1 sin 2x  sin x dx   3cos x  tan x   2 cos x  cos x dx ln(1  x)  x dx    dx x 1  x x x  dx   x e e x dx sin 2x.cos x   cos x dx x  2x dx   sin 2x 1  cos x dx x 1 dx x2  1 e2x  e x dx x sin 3x cos x  dx 3 0 x3 1 x 2 x 1 sin 2013 x sin 2013 x  cos 2013 x dx  sin x cos2 x dx e ln x (x  1)2 dx x 4  x dx   e 4  x dx x  x dx ex x dx  x 2  2 x 1 x 1  x dx 2 cos x.cos 4x dx ln(1  x)  x  dx 2sin x   sin 2x dx dx  1 x 5 4 sin x.ln(1  cos x) dx dx  x  1dx 2  x2 dx 1 x  ex 1  e x dx 0 ln  3 (cos x  sin x) dx (9) x 1 dx  x  3   sin 2x  3 sin 2x(1  sin x) dx x sin x cos xdx  sin x (1  cos x)e x dx 2    x  x2 x2  x2 dx dx sin x 1  sin x dx x 1 dx 3 3x  cos x dx cos 2x  x 1 dx 3 3x    dx  2 x sin x.cos xdx  cos 2x sin x.cos x  cos x  dx  cos x cos x  cos xdx    sin 2x 2   sin x dx cos3x  x  x2 2    dx 4x  x  3x  dx x (x  1) dx  x x 9 dx ln( x  a  x)dx 1  sin 2x sin x  2cos x dx dx x x2  dx  2 cos x dx  cos 2x 1 x2 dx x2 x (1  x ) dx cos x  sin x dx   sin 2x  cos x  (1  e x ) dx  2x 1 e    cos x  cos x  sin x  x (1  x) dx   0   2x (1  x) e dx x 1 dx 3x  2 (1  x)x dx  cos x cos x  cos xdx   (10)    sin x tan xdx x 1  cos x e dx  (1  x ) dx 0   (4  x ) dx 1  x5 x(1  x ) dx     2 x.tan xdx sin x  sin x  cos 2x dx cos x 1  sin x dx  3x x 2 sin x cos6 x dx dx   sin x  cos x dx  x (1  x ) dx 2  sin x cos x  dx  sin x  cos x sin x  cos x  dx 1 ex x dx a x  dx  dx  x 1 (x  1) ln x dx 1 4x  x  2x  x  dx  sin x dx  x sin x cos x(1  cos x) dx  sin x  cos x sin x  cos x  dx 0  sin x cos x  cos x dx sin x   x  2x  10x   x  2x  dx x 1 x  dx 1  1 x 1 x2 dx 2  (3  2x) x (2x  1)3 dx x ln(x 1) dx  x3 (x  1)3 dx  12x  4x x ln(x   x )  1 x 3x x  2x  dx 1 dx  dx x   x dx (11)    cos x  sin x dx  sin 2x  cos x dx  cos 2x  cos x sin xdx  3 (cos x  sin x)dx   0 2   4 cos 2x(sin x  cos x)dx  2  cos x dx x 1 x  3 dx    2 x x 1 dx dx sin x sin x  dx cos x cos x  dx   cos x (1  cos x) dx  2  sin x dx 3 cos x  dx    sin x cos x  sin x dx dx dx     0  3  e2x dx  e 2cos x  sin x  dx  3x 1 dx cos x    1 x 2  cos x dx sin x  3x  dx   ln (cos x) dx   11  x 1 tan x 1 x  tan x dx  x3 x3 x  1 x  cos x sin x cos x dx  tan x cos x cos x  dx sin x dx cos x  sin x x2 x2  dx   3x  6x  1dx sin x cos x  sin x dx 1 dx  x  (e  1)(x  1)  cos3 x cos  3cos x  dx  tan x dx (12)        3 cot x dx tan x dx sin x cos x  dx 2  tan x dx   tan x    tan x   dx  0 cos 2x 1  cos 2x dx    e4 x dx x3 1 1  1  x cos2 (ln x  1) dx e   ln(1  tan x)dx  dx   sin x  cos x  4x dx  04x 42 x  (x  1).sin 2xdx dx  2x   4x  e x ln xdx  2 (2x  1).cos xdx 2x  dx   2x  x (e  1) e  dx x 16  dx  x x log2    x 1  x dx 1 x 1 dx  x x 2 1 1  ex ln x  x3 dx x4    10 dx  x  x  e  ln x dx  x  ln x  sin x.tan xdx  sin x cos x dx  tan x  e dx  x  x3    sin x 1cosx dx ln  cos x   cos 2x dx   sin x.cos2 x  /2 cos x  cos x dx   sin x  cos x  x 2 I  dx x 1 e3 ln x dx  x ln x 1 x  x 1 dx  x2   x.sin x dx  2x  cos  (13)  cos x  4sin x dx   cos x  sin x   3sin x  cos x dx  3sin x  cos2 x 2x dx  01   x  x 1 dx  3x   2x   x  sin x dx   cos x   2   x  x  sin x  dx    cos x ln(tan x)dx   sin x dx  cos x  sin x  sin x ln  tan x  dx   cos x x ln( x   x ) dx   (5 x  1)  x ax dx  a a x ; với a > x 2m  dx  (1  x ) m   2  sin x  cos x dx  (4 cos x  3) cos xdx  (1  sin 3x )  n  (1  sin x) cos xdx(n  N ) 1 x2 dx x ln 1 x2 ( x  1)dx  x  x 1    sin x   x  cos xdx  e  0    m N  x.tan xdx ( x  4)dx  x  3x   sin n1 x cos xdx  n n ; (n  Z ) cos x  sin x  x sin x dx   cos x  x2 1   dx  x e x    2  b  a  x  dx; a, b   (a  x ) 2n  (1  x n ) m dx x  m, n  N   4 sin x   dx   cot x    cos x  ln x  2x   2e  e  xdx   (14)

Ngày đăng: 13/09/2021, 11:59

w