Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 12 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
12
Dung lượng
508,22 KB
Nội dung
GIÁO TOÁN THPT DỤC GIÁO ÁN ĐIỆN TỬ - DIỄN ĐÀN GIÁO VIÊN TỐN LỚP 12 GIẢI TÍCH Chương 1: ỨNG DỤNG ĐẠO HÀM ĐỂ KHẢO SÁT VÀ VẼ ĐỒ THỊ HÀM SỐ Bài 4: ĐƯỜNG TIỆM CẬN ( TIẾT) I ĐƯỜNG TIỆM CẬN NGANG II ĐƯỜNG TIỆM CẬN ĐỨNG III ÁP DỤNG GIÁO TOÁN DỤC THPT GIÁO ÁN ĐIỆN TỬ - DIỄN ĐÀN GIÁO VIÊN TOÁN KIỂM TRA BÀI CŨ Cho hàm số Tính giới hạn sau: y H M O x GIÁO TOÁN THPT GIÁO ÁN ĐIỆN TỬ - DIỄN ĐÀN GIÁO VIÊN TOÁN DỤC , , I ĐƯỜNG TIỆM CẬN NGANG y y y0 y0 O Khi x → −∞ x x O Khi x → +∞ GIÁO TOÁN THPT DỤC GIÁO ÁN ĐIỆN TỬ - DIỄN ĐÀN GIÁO VIÊN TOÁN , , I ĐƯỜNG TIỆM CẬN NGANG Nội dung cần nhớ: Định nghĩa Cho hàm số y=f(x) xác định một khoảng vô hạn (là khoảng dạng (a;+∞), (-∞;b) hoặc (-∞;+∞)) Đường thẳng y=y là tiệm cận ngang (hay tiệm cận ngang) của đồ thị hàm số y=f(x) nếu ít nhất một các điều kiện sau được thỏa mãn: GIÁO TOÁN DỤC THPT GIÁO ÁN ĐIỆN TỬ - DIỄN ĐÀN GIÁO VIÊN TOÁN , , I ĐƯỜNG TIỆM CẬN NGANG Ví dụ 1: Tìm các đường tiệm cận ngang của đồ thị các hàm số sau: TCN: y = -1 TCN: y = - TCN: y = TCN: y = GIÁO TOÁN THPT DỤC II GIÁO ÁN ĐIỆN TỬ - DIỄN ĐÀN GIÁO VIÊN TOÁN ĐƯỜNG TIỆM CẬN ĐỨNG Cho hàm số y M H O x GIÁO TOÁN THPT DỤC II GIÁO ÁN ĐIỆN TỬ - DIỄN ĐÀN GIÁO VIÊN TOÁN ĐƯỜNG TIỆM CẬN ĐỨNG Nội dung cần nhớ: Định nghĩa: Đường thẳng x=x đgl đường tiệm cận đứng (hay tiệm cận đứng) của đồ thị hàm số y=f(x) nếu ít nhất một các điều kiện sau được thỏa mãn: O x0 O x y O x0 x y x0 x O x0 x GIÁO TOÁN DỤC II THPT GIÁO ÁN ĐIỆN TỬ - DIỄN ĐÀN GIÁO VIÊN TOÁN ĐƯỜNG TIỆM CẬN ĐỨNG Ví dụ 2: Tìm các đường tiệm cận đứng của đồ thị các hàm sớ sau: TCĐ: x= TCĐ: khơng có TCN: x = TCĐ: x = GIÁO TOÁN THPT DỤC III GIÁO ÁN ĐIỆN TỬ - DIỄN ĐÀN GIÁO VIÊN TỐN ÁP DỤNG: Tìm tiệm cận đứng, tiệm cận ngang đồ thị hàm số sau: 1 TCĐ: x = 2, TCN: y = -1 TCĐ: x = -1, TCN: khơng có TCĐ: x = 1, TCN: y = GIÁO TOÁN THPT DỤC GIÁO ÁN ĐIỆN TỬ - DIỄN ĐÀN GIÁO VIÊN TOÁN BÀI TẬP TRẮC NGHIỆM Câu Đồ thị hàm số có đường tiệm cận? B Bài giải y TCN : Là đường thẳng y = (khi x → −∞ x → +∞) TCĐ : Là đường thẳng x = −2 + − (khi x → (−2) x → (−2) ) O -2 x GIÁO TOÁN THPT GIÁO ÁN ĐIỆN TỬ - DIỄN ĐÀN GIÁO VIÊN TOÁN DỤC Câu BÀI TẬP TRẮC NGHIỆM Số đường tiệm cận đồ thị hàm số Bài giải TCN: Là đường thẳng y = ( x → +∞ ) Là đường thẳng y = −1 ( x → −∞ ) TCĐ: Là đường thẳng x = ( Khi x → 0− x → 0+ ) B là: GIÁO DỤC TOÁN THPT GIÁO ÁN ĐIỆN TỬ - DIỄN ĐÀN GIÁO VIÊN TOÁN TIẾT HỌC KẾT THÚC TRÂN TRỌNG CÁM ƠN CÁC EM HỌC SINH ĐÃ THEO DÕI ... ĐÀN GIÁO VIÊN TOÁN DỤC Câu BÀI TẬP TRẮC NGHIỆM Số đường tiệm cận đồ thị hàm số Bài giải TCN: Là đường thẳng y = ( x → +∞ ) Là đường thẳng y = −1 ( x → −∞ ) TCĐ: Là đường thẳng x = ( Khi x →... GIÁO VIÊN TOÁN BÀI TẬP TRẮC NGHIỆM Câu Đồ thị hàm số có đường tiệm cận? B Bài giải y TCN : Là đường thẳng y = (khi x → −∞ x → +∞) TCĐ : Là đường thẳng x = −2 + − (khi x → (−2) x → (−2) )... ÁN ĐIỆN TỬ - DIỄN ĐÀN GIÁO VIÊN TOÁN ĐƯỜNG TIỆM CẬN ĐỨNG Cho hàm số y M H O x GIÁO TOÁN THPT DỤC II GIÁO ÁN ĐIỆN TỬ - DIỄN ĐÀN GIÁO VIÊN TOÁN ĐƯỜNG TIỆM CẬN ĐỨNG Nội dung cần nhớ: Định nghĩa: