1. Trang chủ
  2. » Giáo án - Bài giảng

Bai tap Casio ve So nguyen to

4 1,2K 6

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 4
Dung lượng 82 KB

Nội dung

Số nguyên tố: Định lí 1 (Định lí cơ bản về số nguyên tố): Mọi số nguyên dương n, n > 1, đều có thể được viết một cách duy nhất (không tính đến việc sắp xếp các nhân tử) dưới dạng: 1 2 1 2 . , k ee e k n p p p= với k, e i là số tự nhiên và p i là các số nguyên tố thoả mãn: 1 < p 1 < p 2 < .< p k Khi đó, dạng phân tích trên được gọi là dạng phân tích chính tắc của số n. Bài 15: Tìm các ước nguyên tố nhỏ nhất và lớn nhất của số: A = 215 2 + 314 2 H. Dẫn: - Tính trên máy, ta có: A = 144821 - Đưa giá trị của số A vào ô nhớ A : 144821 SHIFT STO A - Lấy giá trị của ô nhớ A lần lượt chia cho các số nguyên tố từ số 2: ANPHA A ÷ 2 = (72410,5) ANPHA A ÷ 3 = (48273,66667) tiếp tục chia cho các số nguyên tố: 5, 7, 11, 13, .,91: ta đều nhận được A không chia hết cho các số đó. Lấy A chia cho 97, ta được: ANPHA A ÷ 97 = (1493) Vậy: 144821 = 97 x 1493 Nhận xét: Nếu một số n là hợp số thì nó phải có ước số nguyên tố nhỏ hơn n . ⇒ để kiểm tra xem 1493 có là hợp số hay không ta chỉ cần kiểm tra xem 1493 có chia hết cho số nguyên tố nào nhỏ hơn 1493 40< hay không. - Thực hiện trên máy ta có kết quả 1493 không chia hết cho các số nguyên tố nhỏ hơn 40 ⇒ 1493 là số nguyên tố. Vậy A = 215 2 + 314 2 có ước số nguyên tố nhỏ nhất là 97, lớn nhất là 1493. Bài 15: Tìm các ước nguyên tố nhỏ nhất và lớn nhất của số: A = 10001 Đáp số: A có ước số nguyên tố nhỏ nhất là 73, lớn nhất là 137 Bài 16: Số N = 2 7 .3 5 .5 3 có bao nhiêu ước số ? Giải: - Số các ước số của N chỉ chứa thừa số: 2 là 7, 3 là 5, 5 là 3 - Số các ước số của N chứa hai thừa số nguyên tố: 2 và 3 là: 7x5 = 35; 2 và 5 là: 7x3 = 21; 3 và 5 là: 5x3 = 15 - Số các ước số của N chứa ba thừa số nguyên tố 2, 3, 5 là 7x5x3 = 105 Như vậy số các ước số của N là: 7 + 5 + 3 + 35 + 21 + 15 + 105 + 1 = 192. Định lí 2 (Xác định số ước số của một số tự nhiên n): Cho số tự nhiên n, n > 1, giả sử khi phân tích n ra thừa số nguyên tố ta được: 1 2 1 2 . , k ee e k n p p p= với k, e i là số tự nhiên và p i là các số nguyên tố thoả mãn: 1 < p 1 < p 2 < .< p k Khi đó số ước số của n được tính theo công thức: τ (n) = (e 1 + 1) (e 2 + 1) . (e k + 1) Bài 17: (Thi giải Toán trên MTBT lớp 10 + 11 tỉnh Thái Nguyên - Năm học 2003-2004) Hãy tìm số các ước dương của số A = 6227020800. Giải: - Phân tích A ra thừa số nguyên tố, ta được: A = 2 10 .3 5 .5 2 .7.11.13 Áp dụng định lí trên ta có số các ước dương của A là: τ (A) = 11.6.3.2.2.2 = 1584 Bài 18: (Đề thi chọn đội tuyển tỉnh Phú Thọ tham gia kì thi khu vực năm 2004): Có bao nhiêu số tự nhiên là ước của: N = 1890 x 1930 x 1945 x 1954 x 1969 x 1975 x 2004 Giải: - Phân tích N ra thừa số nguyên tố, ta được: N = 2 5 x 3 4 x 5 5 x 7 x 11 x 79 x 167 x 179 x 193 x 389 x 977 Áp dụng định lí 2, ta có số các ước dương của N là: τ (N) = 6 x 5 x 6 x 2 x 2 x 2 x 2 x 2 x 2 x 2 x 2 = 46080 I. SỐ NGUYÊN TỐ: 1. Lí thuyết: Để kiểm tra một số nguyên a dương có là số nguyên tố hay không ta chia số nguyên tố từ 2 đến a . Nếu tất cả phép chia đều có dư thì a là số nguyên tố. Ví dụ 1: Để kiểm tra số 647 có là số nguyên tố hay không ta chia 647 lần lượt cho các số 2; 3; 5; 7; 11; 13; 17; 19; 23; 29. các phép chia đều có dư khi đó ta kết luận số 647 là số nguyên tố. Ví dụ 2 : Chỉ với các chữ số 1, 2, 3, hỏi có thể viết được nhiều nhất bao nhiêu số tự nhiên khác nhau mà mỗi số đều có ba chữ số ? Hãy viết tất cả các số đó. Giải: Các số tự nhiên có 3 chữ số được lập từ 3 số 1; 2; 3 là: 27 số 111; 112; 113; 121; 122; 123; 131; 132; 133; 211; 212; 213; 221; 222; 223; 231; 232; 233 311; 312; 313; 321; 322; 323; 331; 332; 333; Ví dụ 3: Trong tất cả n số tự nhiên khác nhau mà mỗi số đều có bảy chữ số, được viết ratừ các chữ số 1, 2, 3, 4, 5, 6, 7 thì có k số chia hết cho 5 và m số chia hết cho 2. Hãy tính các số n, k, m. Giải: Ví dụ 4 Bài 4: Có 3 thùng táo có tổng hợp là 240 trái . Nếu bán đi 2 3 thùng thứ nhất ; 3 4 thùng thứ hai và 4 5 thùng thứ ba thì số táo còn lại trong mỗi thùng đều bằng nhau. Tính số táo lúc đầu của mỗi thùng ? Điền các kết quả tính vào ô vuông : Thùng thứ nhất là 60 Thùng thứ hai là Thùng thứ ba là Giải: Gọi số táo của 3 thùng lần lượt là: a; b; c (quả) Điều kiện ( ) 0 ; ; 240a b c< < Theo bài ra ta có hệ phương trình: 240 1 1 1 3 4 5 a b c a b c + + =    = =   ⇔ 240 1 1 3 4 1 1 4 5 a b c a b b c   + + =   =    =   ⇔ 240 1 1 0 0 3 4 1 1 0 0 4 5 a b c a b c a b c   + + =   − + =    + − =   Giải hệ phương trình này ta được: a = 60 ; b = 80; c = 100 Vậy Thùng thứ nhất có 60 (quả); Thùng thứ hai có 80 (quả); Thùng thứ ba có 100 (quả). Phân tích một số ra thừa số nguyên tố: |a| |shift| |sto| |A| xem A có chia hết cho 2, cho 3 hay không? (chuyện này đơn giản) lấy A chia cho 3: A/3 = Ấn tiếp: A/(A/Ans+2) Sau đó ấn = = = . để kiểm tra, khi số trên màn hình hạ xuống dưới căn A thì ngưng.

Ngày đăng: 22/12/2013, 07:37

TỪ KHÓA LIÊN QUAN

w