❇❐ ●■⑩❖ ❉Ư❈ ❱⑨ ✣⑨❖ ❚❸❖ ❚❘×❮◆● ✣❸■ ❍➴❈ ◗❯❨ ◆❍❒◆ ❇Ị■ ❚➷◆ ◆Ú ❚❍❆◆❍ ❳❯❹◆ P❍×❒◆● ❚❘➐◆❍ ❇❾❈ ❇❆ ❱⑨ ▼❐❚ ❙➮ ❱❻◆ ✣➋ ▲■➊◆ ◗❯❆◆ ❚❘❖◆● ❍➐◆❍ ❍➴❈ P❍➃◆● ▲❯❾◆ ❱❿◆ ❚❍❸❈ ❙➒ ❚❖⑩◆ ❍➴❈ ❇➻♥❤ ✣à♥❤ ✲ ✷✵✷✵ ❇❐ ●■⑩❖ ❉Ư❈ ❱⑨ ✣⑨❖ ❚❸❖ ❚❘×❮◆● ✣❸■ ❍➴❈ ◗❯❨ ◆❍❒◆ ❇Ị■ ❚➷◆ ◆Ú ❚❍❆◆❍ ❳❯❹◆ P❍×❒◆● ❚❘➐◆❍ ❇❾❈ ❇❆ ❱⑨ ▼❐❚ ❙➮ ❱❻◆ ✣➋ ▲■➊◆ ◗❯❆◆ ❚❘❖◆● ❍➐◆❍ ❍➴❈ P❍➃◆● ▲❯❾◆ ❱❿◆ ❚❍❸❈ ❙➒ ❚❖⑩◆ ❍➴❈ ❈❤✉②➯♥ ♥❣➔♥❤✿ Pữỡ t sỡ số ữớ ữợ ❞➝♥ ❦❤♦❛ ❤å❝✿ ❚❙✳ ▲➊ ❚❍❆◆❍ ❍■➌❯ ❇➻♥❤ ✣à♥❤ ✲ ử é ởt số ỵ ✶ ❑■➌◆ ❚❍Ù❈ ❈❍❯❽◆ ❇➚ ✐✐✐ ✈ ✶ ✶✳✶ ❈⑩❈ ❇❻❚ ✣➃◆● ❚❍Ù❈ ✣❸■ ❙➮ ◗❯❆◆ ❚❘➴◆● ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✶ ✶✳✷ ❈⑩❈ ❈➷◆● ❚❍Ù❈ ▲×Đ◆● ●■⑩❈ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✷ ✶✳✸ ❈⑩❈ ❍➏ ❚❍Ù❈ ▲×Đ◆● ❈❒ ❇❷◆ ❚❘❖◆● ❚❆▼ ●■⑩❈ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✹ ✶✳✹ ❚➑◆❍ ❈❍❻❚ ◆●❍■➏▼ ❈Õ❆ P❍×❒◆● ❚❘➐◆❍ ❇❾❈ ❇❆ ✻ ✶✳✺ ▼➮■ ▲■➊◆ ❍➏ ●■Ú❆ ❈⑩❈ ◆●❍■➏▼ ❈Õ❆ ▼❐❚ ❙➮ P❍×❒◆● ❚❘➐◆❍ ❇❾❈ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ❇❆ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✶✺ ✷ P❍×❒◆● ❚❘➐◆❍ ❇❾❈ ❇❆ ❱⑨ ❍➏ ❚❍Ù❈ ▲×Đ◆● ❚❘❖◆● ❚❆▼ ●■⑩❈ ✶✾ ✷✳✶ ✷✳✷ P❍×❒◆● ❚❘➐◆❍ ❇❾❈ ❇❆ ❱⑨ ❈⑩❈ ❍➏ ❚❍Ù❈ ▲■➊◆ ◗❯❆◆ ✣➌◆ ❈⑩❈ ✣×❮◆● ❈Õ❆ ❚❆▼ ●■⑩❈ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✶✾ ✷✳✶✳✶ P❤÷ì♥❣ tr➻♥❤ ❜➟❝ ❜❛ ❝â ♥❣❤✐➺♠ ❧➔ ❝→❝ ②➳✉ tè t❤❡♦ ❝↕♥❤ t❛♠ ❣✐→❝ ✳ ✳ ✳ ✶✾ ✷✳✶✳✷ P❤÷ì♥❣ tr➻♥❤ ❜➟❝ ❜❛ ❝â ♥❣❤✐➺♠ ❧➔ ❝→❝ ②➳✉ tè t❤❡♦ ✤÷í♥❣ ❝❛♦ t❛♠ ❣✐→❝ ✷✷ ✷✳✶✳✸ P❤÷ì♥❣ tr➻♥❤ ❜➟❝ ❜❛ ❝â ♥❣❤✐➺♠ ❧➔ ❝→❝ ②➳✉ tè t❤❡♦ ✤÷í♥❣ tr✉♥❣ t✉②➳♥ ✷✹ ✷✳✶✳✹ P❤÷ì♥❣ tr➻♥❤ ❜➟❝ ❜❛ ❝â ♥❣❤✐➺♠ ❧➔ ❝→❝ ②➳✉ tè t❤❡♦ ✤÷í♥❣ ♣❤➙♥ ❣✐→❝ ✳ ✷✻ ✷✳✶✳✺ ❍➺ t❤è♥❣ ❜➔✐ t➟♣ ❝→❝ ❤➺ t❤ù❝ ✈➲ ❝→❝ ✤÷í♥❣ ❝õ❛ t❛♠ ❣✐→❝ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✷✾ P❍×❒◆● ❚❘➐◆❍ ❇❾❈ ❇❆ ❱⑨ ❈⑩❈ ❍➏ ❚❍Ù❈ ▲■➊◆ ◗❯❆◆ ✣➌◆ ❇⑩◆ ❑➑◆❍ ❈⑩❈ ✣×❮◆● ❚❘➪◆ ◆❐■✱ ◆●❖❸■ ❱⑨ ❇⑨◆● ❚■➌P ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✷✳✷✳✶ P❤÷ì♥❣ tr➻♥❤ ❜➟❝ ❜❛ ❝â ♥❣❤✐➺♠ ❧➔ ❝→❝ ②➳✉ tè t❤❡♦ ❜→♥ ❦➼♥❤ ✤÷í♥❣ trá♥ ❜➔♥❣ t✐➳♣ t❛♠ ❣✐→❝ ✷✳✷✳✷ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✸✽ P❤÷ì♥❣ tr➻♥❤ ❜➟❝ ❜❛ ❝â ♥❣❤✐➺♠ ❧➔ ❝→❝ ②➳✉ tè t❤❡♦ ❜→♥ ❦➼♥❤ ❝→❝ ✤÷í♥❣ trá♥ ♥ë✐✱ ♥❣♦↕✐ t✐➳♣ t❛♠ ❣✐→❝ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✷✳✷✳✸ ✸✽ ✹✵ ❍➺ t❤è♥❣ ❜➔✐ t➟♣ ❝→❝ ❤➺ t❤ù❝ ✈➲ ❜→♥ ❦➼♥❤ ❝→❝ ✤÷í♥❣ trá♥ ❜➔♥❣ t✐➳♣✱ ♥ë✐✱ ♥❣♦↕✐ t✐➳♣ ❝õ❛ t❛♠ ❣✐→❝ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✐ ✹✶ ✷✳✸ P❍×❒◆● ❚❘➐◆❍ ❇❾❈ ❇❆ ❱⑨ ❈⑩❈ ❍➏ ❚❍Ù❈ ❱➋ ❈⑩❈ ●➶❈ ❈Õ❆ ❚❆▼ ●■⑩❈ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✹✼ ✷✳✸✳✶ P❤÷ì♥❣ tr➻♥❤ ❜➟❝ ❜❛ ❝â ♥❣❤✐➺♠ ❧➔ ❝→❝ ②➳✉ tè t❤❡♦ ❤➔♠ s✐♥ ❝→❝ ❣â❝ ✳ ✳ ✹✼ ✷✳✸✳✷ P❤÷ì♥❣ tr➻♥❤ ❜➟❝ ❜❛ ❝â ♥❣❤✐➺♠ ❧➔ ❝→❝ ②➳✉ tè t❤❡♦ ❤➔♠ ❝ỉs✐♥ ❝→❝ ❣â❝ ✹✾ ✷✳✸✳✸ P❤÷ì♥❣ tr➻♥❤ ❜➟❝ ❜❛ ❝â ♥❣❤✐➺♠ ❧➔ ❝→❝ ②➳✉ tè t❤❡♦ ❤➔♠ t❛♥❣ ❤♦➦❝ ❝æt❛♥❣ ❝→❝ ❣â❝ ✷✳✸✳✹ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✺✷ ❍➺ t❤è♥❣ ❜➔✐ t➟♣ ♠ët sè ❤➺ t❤ù❝ ❧÷đ♥❣ ❣✐→❝ tr♦♥❣ t❛♠ ❣✐→❝ ✳ ✳ ✳ ✳ ✳ ✳ ✺✺ ✸ ❈⑩❈ ❇❻❚ ✣➃◆● ❚❍Ù❈ ❚❘❖◆● ❚❆▼ ●■⑩❈ ✸✳✶ ✸✳✷ ✻✼ ❇❻❚ ✣➃◆● ❚❍Ù❈ ❱➋ ❈⑩❈ ✣×❮◆● ❈Õ❆ ❚❆▼ ●■⑩❈ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✻✼ ✸✳✶✳✶ ❇➜t ✤➥♥❣ t❤ù❝ ✈➲ ❝→❝ ❝↕♥❤ ❝õ❛ t❛♠ ❣✐→❝ ✻✼ ✸✳✶✳✷ ❇➜t ✤➥♥❣ t❤ù❝ ❤➻♥❤ ❤å❝ ❝❤ù❛ ✳ ✳ ✳ ✳ ✳ ✽✶ ✸✳✶✳✸ ❇➜t ✤➥♥❣ t❤ù❝ ✈➲ ❝→❝ ✤÷í♥❣ ❝❛♦ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✽✹ ✸✳✶✳✹ ❇➜t ✤➥♥❣ t❤ù❝ ✈➲ ✤÷í♥❣ tr✉♥❣ t✉②➳♥ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✽✼ ✸✳✶✳✺ ❇➜t ✤➥♥❣ t❤ù❝ ✈➲ ❝→❝ ✤÷í♥❣ ♣❤➙♥ ❣✐→❝ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✾✵ ✸✳✶✳✻ ❇➜t ✤➥♥❣ t❤ù❝ ✈➲ ❜→♥ ❦➼♥❤ ✤÷í♥❣ trá♥ ❜➔♥❣ t✐➳♣ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ x = p − a, y = p − b, z = p − c ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✾✶ ❇❻❚ ✣➃◆● ❚❍Ù❈ ❱➋ ❈⑩❈ ●➶❈ ❈Õ❆ ❚❆▼ ●■⑩❈ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✾✺ sin A, sin B, sin C ✳ cos A, cos B, cos C ✸✳✷✳✶ ❇➜t ✤➥♥❣ t❤ù❝ ❧÷đ♥❣ ❣✐→❝ ❝❤ù❛ ✸✳✷✳✷ ❇➜t ✤➥♥❣ t❤ù❝ ❧÷đ♥❣ ❣✐→❝ ❝❤ù❛ ✸✳✷✳✸ ❇➜t ✤➥♥❣ t❤ù❝ ❧÷đ♥❣ ❣✐→❝ ❝❤ù❛ t❛♥❣ ❤♦➦❝ ❝ỉt❛♥❣ ❝→❝ ❣â❝ B C A sin , sin , sin 2 A B C cos , cos , cos 2 ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✾✺ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✶✵✵ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✶✵✼ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✶✶✸ ✸✳✷✳✹ ❇➜t ✤➥♥❣ t❤ù❝ ❝❤ù❛ ✸✳✷✳✺ ❇➜t ✤➥♥❣ t❤ù❝ ❝❤ù❛ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✶✶✼ ✸✳✷✳✻ ❇➜t ✤➥♥❣ t❤ù❝ ❝❤ù❛ t❛♥❣ ❤♦➦❝ ❝æt❛♥❣ ❝→❝ ♥û❛ ❣â❝ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✶✷✵ ✸✳✷✳✼ ❇➜t ✤➥♥❣ t❤ù❝ ❝❤ù❛ ❜➻♥❤ ♣❤÷ì♥❣ ❝õ❛ t❛♥❣ ❤❛② ❝ỉt❛♥❣ ❝→❝ ♥û❛ ❣â❝ ✶✷✸ ❑➌❚ ▲❯❾◆ ❚➔✐ ❧✐➺✉ t❤❛♠ ❦❤↔♦ ✳ ✶✷✻ ✶✷✼ ✐✐ ▲❮■ ▼Ð ✣❺❯ ✣↕✐ sè✱ ●✐↔✐ t➼❝❤ ✈➔ ❍➻♥❤ ❤å❝ ❧➔ ♥❤ú♥❣ ♣❤➙♥ ♠ỉ♥ ❝ì ❜↔♥ ❝➜✉ t❤➔♥❤ ♥➯♥ ♠ỉ♥ ❚♦→♥ ð ♣❤ê t❤ỉ♥❣✳ ❈❤ó♥❣ ❝â ♠è✐ ❧✐➯♥ ❤➺ ❝❤➦t ❝❤➩ ✈ỵ✐ ♥❤❛✉ ✈➔ ♠è✐ ❧✐➯♥ ❤➺ ♥➔② ❧➔ ♠ët ✈➜♥ ✤➲ ✤→♥❣ q✉❛♥ t➙♠ ❤✐➺♥ ♥❛②✳ P❤÷ì♥❣ tr➻♥❤ ❜➟❝ ❜❛ tr♦♥❣ ✤↕✐ sè ✈➔ ♠ët sè ✈➜♥ ✤➲ ❧✐➯♥ q✉❛♥ ✤➳♥ t❛♠ ❣✐→❝ tr♦♥❣ ❍➻♥❤ ❤å❝ ♣❤➥♥❣✱ ✤➲✉ ❧➔ ♥❤ú♥❣ ❦✐➳♥ t❤ù❝ ❣➛♥ ❣ơ✐ ✤è✐ ✈ỵ✐ ♥❤ú♥❣ ❛✐ ❤å❝ ✈➔ ♥❣❤✐➯♥ ❝ù✉ ❚♦→♥ ❤å❝✳ ❈❤ó♥❣ ❝ơ♥❣ t❤÷í♥❣ ❤❛② ①✉➜t ❤✐➺♥ tr♦♥❣ ❝→❝ ❦ý t❤✐ ❝❤å♥ ❤å❝ s✐♥❤ ❣✐ä✐ ❝→❝ ❝➜♣✳ ❚✉② ♥❤✐➯♥✱ ♠è✐ ❧✐➯♥ ❤➺ ❣✐ú❛ ❝❤ó♥❣✱ ✤➦❝ ❜✐➺t ❧➔ ♣❤÷ì♥❣ ♣❤→♣ sû ❞ư♥❣ ♣❤÷ì♥❣ tr➻♥❤ ❜➟❝ ❜❛ ✤➸ ❝❤ù♥❣ ♠✐♥❤ ❝→❝ ❤➺ t❤ù❝ tr♦♥❣ t❛♠ ❣✐→❝✱ ✤÷í♥❣ trá♥ ❧↕✐ ❝❤÷❛ ✤÷đ❝ ♥❤✐➲✉ ♥❣÷í✐ ❦❤→♠ ♣❤→✳ ❇↔♥ t❤➙♥ t→❝ ❣✐↔ ❝❤♦ r➡♥❣ ✤➙② ❧➔ ♠ët ❝❤✉②➯♥ ✤➲ ❤❛② ✈➔ t÷ì♥❣ ✤è✐ ❦❤â ✤è✐ ✈ỵ✐ ❤å❝ s✐♥❤ ♣❤ê t❤ỉ♥❣ ✈➔ ❝ơ♥❣ ♣❤ị ❤đ♣ tr♦♥❣ ❝→❝ ❦ý t❤✐ ❤å❝ s✐♥❤ ❣✐ä✐ ❝→❝ ❝➜♣✳ ▲✉➟♥ ✈➠♥ ✏ ♣❤➥♥❣ ✑ P❤÷ì♥❣ tr➻♥❤ ❜➟❝ ❜❛ ✈➔ ♠ët sè ✈➜♥ ✤➲ ❧✐➯♥ q✉❛♥ tr♦♥❣ ❤➻♥❤ ❤å❝ ♥❤➡♠ ♠ư❝ ✤➼❝❤ t➻♠ ❤✐➸✉ ❝→❝ t➼♥❤ ❝❤➜t ❝õ❛ ♣❤÷ì♥❣ tr➻♥❤ ❜➟❝ ❜❛✱ ✤➦❝ ❜✐➺t ❧➔ t➼♥❤ ❝❤➜t ❝õ❛ ❝→❝ ♥❣❤✐➺♠✱ t➻♠ tá✐ ♠è✐ q✉❛♥ ❤➺ ❣✐ú❛ ♠ët ✤è✐ t÷đ♥❣ số ữỡ tr ợ ♣❤➥♥❣✱ ✈➔ ù♥❣ ❞ö♥❣ ❝õ❛ ♥â ✈➔♦ ✈✐➺❝ ❣✐↔✐ ♠ët sè ❞↕♥❣ t♦→♥ ❧✐➯♥ q✉❛♥ ✤➳♥ ❤➺ t❤ù❝ ❧÷đ♥❣ tr♦♥❣ t❛♠ ❣✐→❝ ✈➔ ✤÷í♥❣ trá♥✳ ◆❣♦➔✐ ♣❤➛♥ ▼ð ✤➛✉✱ ❑➳t t ỗ õ ✸ ❝❤÷ì♥❣ ♥❤÷ s❛✉✿ ❈❤÷ì♥❣ ✶✿ ❑✐➳♥ t❤ù❝ ❝❤✉➞♥ ❜à ✳ ❈❤÷ì♥❣ ♥➔② tr➻♥❤ ❜➔② ♠ët sè ❦✐➳♥ t❤ù❝ ❝❤✉➞♥ ❜à ♣❤ö❝ ✈ö ❝❤♦ ❝→❝ ❝❤ù♥❣ ♠✐♥❤ ð ♣❤➛♥ s❛✉✳ ỗ t tự ỡ ❤➺ t❤ù❝ ❧÷đ♥❣ ❝ì ❜↔♥ tr♦♥❣ t❛♠ ❣✐→❝ ✈➔ ✤÷í♥❣ trá♥✱✳✳✳❀ ❝→❝ t➼♥❤ ❝❤➜t ✈➔ ❝ỉ♥❣ t❤ù❝ ❝ì ❜↔♥ ❧✐➯♥ q✉❛♥ ✤➳♥ ♥❣❤✐➺♠ ❝õ❛ ♣❤÷ì♥❣ tr➻♥❤ ❜➟❝ ❜❛ ♥❤÷ ❝ỉ♥❣ t❤ù❝ ♥❣❤✐➺♠✱ ✣à♥❤ ❧➼ ❱✐➧t❡✱ ❝→❝ t➼♥❤ ❝❤➜t ✤è✐ ①ù♥❣✱ ✣à♥❤ ❧➼ ❙t✉r♠✱ sü ①→❝ ✤à♥❤ ♣❤÷ì♥❣ tr➻♥❤ ❜➟❝ ✸ ♥❤➟♥ ❜❛ sè ✤➦❝ ❜✐➺t ❧➔♠ ♥❣❤✐➺♠✱ ✳ ✳ ✳ ❈❤÷ì♥❣ ✷✿ P❤÷ì♥❣ tr➻♥❤ ❜➟❝ ❜❛ ✈➔ ❤➺ t❤ù❝ ❧÷đ♥❣ tr♦♥❣ t❛♠ ❣✐→❝ tr➻♥❤ ❜➔② ♠ët sè ❞↕♥❣ t♦→♥ ✈➲ ❝→❝ ✳ ❈❤÷ì♥❣ ♥➔② ✤➥♥❣ t❤ù❝ ❧✐➯♥ q✉❛♥ ✤➳♥ ❝→❝ ✤÷í♥❣ ✈➔ ❝→❝ ❣â❝ ❝õ❛ t❛♠ ❣✐→❝ ❜➡♥❣ ❝→❝❤ →♣ ❞ư♥❣ ❝→❝ t➼♥❤ ❝❤➜t ♥❣❤✐➺♠ ❝õ❛ ♣❤÷ì♥❣ tr➻♥❤ ❜➟❝ ❜❛✳ ỗ tự q ✤➳♥ ♣❤÷ì♥❣ tr➻♥❤ ❜➟❝ ❜❛ ✈➔ ❝→❝ ❤➺ t❤ù❝ ✈➲ ❝→❝ ❝↕♥❤✱ ❝→❝ ✤÷í♥❣ ❝❛♦✱ tr✉♥❣ t✉②➳♥✱ ✤÷í♥❣ ♣❤➙♥ ❣✐→❝✱ ❜→♥ ❦➼♥❤ ❝õ❛ ❝→❝ ✤÷í♥❣ trá♥ ♥ë✐✱ ♥❣♦↕✐ ✈➔ ❜➔♥❣ t✐➳♣ ✈➔ ❝→❝ ❣â❝ ❝õ❛ t❛♠ ❣✐→❝✳ ❈❤÷ì♥❣ ✸✿ ❈→❝ t tự tr t ữỡ trữợ ữỡ ♥➔② tr➻♥❤ ❜➔② ❤➺ t❤è♥❣ ❝→❝ ✐✐✐ ✳ ❉ü❛ ✈➔♦ ❝→❝ ❦➳t q✉↔ ✤➣ ❜✐➳t tr♦♥❣ ❜➜t ✤➥♥❣ t❤ù❝ tr♦♥❣ t rữợ tr ❧✉➟♥ ✈➠♥✱ ❡♠ ①✐♥ ❜➔② tä ❧á♥❣ ❜✐➳t ì♥ ❝❤➙♥ t❤➔♥❤ ✈➔ s➙✉ s➢❝ tỵ✐ ❚❙✳ ▲➯ ❚❤❛♥❤ ❍✐➳✉ ✲ ữớ t t ữợ õ t ❤♦➔♥ t❤➔♥❤ ❧✉➟♥ ✈➠♥ ♥➔②✳ ❊♠ ❝ô♥❣ ①✐♥ ❜➔② tä ❧á♥❣ ❜✐➳t ì♥ ❝❤➙♥ t❤➔♥❤ tỵ✐ t♦➔♥ t❤➸ t❤➛② ❝ỉ ❣✐→♦ tr♦♥❣ ❦❤♦❛ ❚♦→♥ ✈➔ t❤è♥❣ ❦➯✱ ❚r÷í♥❣ ✣↕✐ ❤å❝ ◗✉② ◆❤ì♥ ✤➣ ❞↕② ❜↔♦ ❡♠ tr♦♥❣ s✉èt t❤í✐ ❣✐❛♥ ❤å❝ t➟♣ t↕✐ ❚r÷í♥❣ ✤➸ ❡♠ ❝â ✤÷đ❝ ♥➲♥ t↔♥❣ tr tự ụ ữ số qỵ ❧➔♠ ❤➔♥❤ tr❛♥❣ ❝❤♦ t÷ì♥❣ ❧❛✐✳ ❳✐♥ ❝❤➙♥ t❤➔♥❤ ❝↔♠ ì♥ ❣✐❛ ✤➻♥❤✱ ❜↕♥ ❜➧ ✤➣ ✤ë♥❣ ✈✐➯♥✱ ❦❤➼❝❤ ❧➺ ✈➔ ❣✐ó♣ ✤ï ❡♠ tr♦♥❣ s✉èt q✉→ tr➻♥❤ ❤å❝ t➟♣ ✈➔ t❤ü❝ ❤✐➺♥ ❧✉➟♥ ✈➠♥✳ ❈✉è✐ ❝ò♥❣✱ ❡♠ ①✐♥ ❣û✐ ỡ t tợ ỵ t ổ tr ỗ tớ qỵ t õ ỵ ỳ ❝á♥ t❤✐➳✉ sât✱ ❣✐ó♣ ❡♠ rót r❛ ✤÷đ❝ ❦✐♥❤ ♥❣❤✐➺♠ ❝❤♦ ❧✉➟♥ ✈➠♥ ❝ơ♥❣ ♥❤÷ q✉→ tr➻♥❤ ♥❣❤✐➯♥ ❝ù✉ s❛✉ ♥➔②✳ ❘➜t ♠♦♥❣ ♥❤➟♥ ✤÷đ❝ sü ❝❤➾ ❜↔♦ t➟♥ t➻♥❤ ỵ t ổ ụ ữ sỹ õ ỵ ❝→❝ ❜↕♥✳ ▼➦❝ ❞ị ❤➳t sù❝ ❝è ❣➢♥❣ ♥❤÷♥❣ ❧✉➟♥ ✈➠♥ ❦❤æ♥❣ tr→♥❤ ❦❤ä✐ ♥❤ú♥❣ s❛✐ sât✱ t→❝ ❣✐↔ r➜t ữủ sỹ õ ỵ ỳ ỵ ỵ t ổ ❝❤➙♥ t❤➔♥❤ ❝↔♠ ì♥✦ ◗✉② ◆❤ì♥✱ ♥❣➔② ✷✽ t❤→♥❣ ✼ ♥➠♠ ✷✵✷✵ ❍å❝ ✈✐➯♥ ❇ị✐ ❚ỉ♥ ◆ú ❚❤❛♥❤ ❳✉➙♥ ✐✈ ởt số ỵ a, b, c a+b+c p= S, S∆ABC ✿ r, R✿ : : ma : la : ✤ë ❞➔✐ ❝→❝ ❝↕♥❤ BC, CA, AB ❝õ❛ t❛♠ ❣✐→❝ABC ♥û❛ ❝❤✉ ✈✐ ❝õ❛ t❛♠ ❣✐→❝✳ ❞✐➺♥ t➼❝❤ t❛♠ ❣✐→❝ ABC ❧➛♥ ❧÷đt ❧➔ ❜→♥ ❦➼♥❤ ✤÷í♥❣ trá♥ ♥ë✐✱ ♥❣♦↕✐ t✐➳♣ ❝õ❛ t❛♠ ❣✐→❝✳ A ❝õ❛ ABC ❜→♥ ❦➼♥❤ ✤÷í♥❣ trá♥ ❜➔♥❣ t✐➳♣ ù♥❣ ✤➾♥❤ ✤÷í♥❣ ❝❛♦ ♥è✐ tø ✤➾♥❤ A ❝õ❛ t❛♠ ❣✐→❝ ✤÷í♥❣ tr✉♥❣ t✉②➳♥ ♥è✐ tø ✤➾♥❤ ✤÷í♥❣ ♣❤➙♥ ❣✐→❝ ♥è✐ tø ✤➾♥❤ ✈ A A ABC ABC ❝õ❛ t❛♠ ❣✐→❝ ❝õ❛ t❛♠ ❣✐→❝ t❛♠ ❣✐→❝ ABC A B ✸✳✷✳✹ ❇➜t ✤➥♥❣ t❤ù❝ ❝❤ù❛ sin , sin , sin ❇➔✐ ✸✳✺✸✳ B C A + sin + sin ≤ 2 2 A B C 2R − r sin2 + sin2 + sin2 = ≥ 2 2R A B C r sin sin sin = ≤ 2 4R A B C A B C sin2 + sin2 + sin2 ≥ sin sin sin 2 2 2 2 B C 8R − p + r A p2 − 8Rr + r2 sin4 + sin4 + sin4 = ≥ 2 8R2 16R2 a) sin b) c) d) e) ●✐↔✐✳ C ✭✸✳✷✳✸✹✮ ✭✸✳✷✳✸✺✮ ✭✸✳✷✳✸✻✮ ✭✸✳✷✳✸✼✮ ✭✸✳✷✳✸✽✮ ❛✮ ❚❛ ❝â C π C π + − B C π A+B A−B A cos cos + sin sin + sin + sin + sin = sin 2 4 2 π π π C + A + B + C + A + B − C − A+B = sin cos ≤ sin + sin 4 8 A+B+C + ≤ sin ❉♦ ✤â sin π = sin π = A B C + sin + sin ≤ 2 2 ❜✮ ❚❤❡♦ ✭✷✳✸✳✺✽✮ t❛ ❝â sin2 ⑩♣ ❞ö♥❣ ❜➜t ✤➥♥❣ t❤ù❝ ❊✉❧❡r 2R − r A B C + sin2 + sin2 = 2 2R R ≥ 2r t❛ ❝â 2R − r ≥ ⇔ 4R − 2r ≥ 3R ⇔ R ≥ 2r 2R ❝✮ ❚❤❡♦ ✭✷✳✸✳✻✵✮ t❛ ❝â sin2 A 2B C r2 A B C r sin sin2 = ⇔ sin sin sin = 2 2 16R 2 4R ⑩♣ ❞ö♥❣ ❜➜t ✤➥♥❣ t❤ù❝ ❊✉❧❡r R ≥ 2r t❛ ❝â r r ≤ = 4R 8r ❞✮ ❚❤❡♦ ✭✷✳✸✳✺✽✮ ✈➔ ✭✷✳✸✳✻✵✮ t❛ ❝â (3.2.37) ⇔ 2R − r r ≥6 ⇔ 2R ≥ 4r ⇔ R ≥ 2r 2R 4R ✶✶✸ ❇➜t ✤➥♥❣ t❤ù❝ ❝✉è✐ ✤ó♥❣ t❤❡♦ ❜➜t ✤➥♥❣ t❤ù❝ ❊✉❧❡r✳ ❡✮ ❚❤❡♦ ✭✷✳✸✳✻✸✮ t❛ ❝â sin4 B C A 8R2 − p2 + r2 + sin4 + sin4 = 2 8R2 ❑❤✐ ✤â 8R2 − p2 + r2 p2 − 8Rr + r2 (3.2.38) ⇔ ≥ 8R2 16R2 2 ⇔ 16R + r + 8Rr ≥ 3p2 ⇔ 3p2 ≤ 12R2 + 12Rr + 9r2 + 4R2 − 4Rr − 8r2 ⇔ p2 ≤ 4R2 + 4Rr + 3r2 + (R − 2r)(R + r) ❇➜t ✤➥♥❣ t❤ù❝ ♥➔② ✤ó♥❣ t❤❡♦ ❜➜t ✤➥♥❣ t❤ù❝ ❊✉❧❡r R ≥ 2r ✈➔ ❜➜t ✤➥♥❣ p2 ≤ 4R2 + 4Rr + 3r2 t❤ù❝ ●❡rr❡ts❡♥ ❱➟② ❝→❝ ❜➜t ✤➥♥❣ t❤ù❝ ✤÷đ❝ ❝❤ù♥❣ ♠✐♥❤✳ ❇➔✐ ✸✳✺✹✳ √ B C A a) sin A sin B sin C ≤ 18 sin sin sin ≤ sin A sin B + sin B sin C + sin C sin A 2 A B C b) sin3 A + sin3 B + sin3 C ≤ (sin A + sin B + sin C) sin2 + sin2 + sin2 2 A B C c) cos A cos B cos C ≤ sin sin sin 2 ●✐↔✐✳ ❛✮ ❚❤❡♦ ✭✷✳✸✳✹✸✮ ✈➔ ✭✷✳✸✳✻✵✮ t❛ ❝â √ √ √ pr A B C r 3 sin A sin B sin C ≤ 18 sin sin sin ⇔ ≤ 18 ⇔p≤ R 2 2R 4R ❇➜t ✤➥♥❣ t❤ù❝ ❝✉è✐ ✤ó♥❣ t❤❡♦ ❜➜t ✤➥♥❣ t❤ù❝ ✭✸✳✶✳✻✮✳ ❚❤❡♦ ✭✷✳✸✳✹✷✮ ✈➔ ✭✷✳✸✳✻✵✮ A B C sin sin ≤ sin A sin B + sin B sin C + sin C sin A 2 2 r p + r + 4Rr ⇔ 18 ⇔ 18Rr ≤ p2 + r2 + 4Rr ⇔ 14Rr ≤ p2 + r2 ≤ 4R 4R2 18 sin ❇➜t ✤➥♥❣ t❤ù❝ ❝✉è✐ ✤ó♥❣ t❤❡♦ ❜➜t ✤➥♥❣ t❤ù❝ ✭✸✳✶✳✻✮✳ ❜✮ ❚❤❡♦ ✭✷✳✸✳✹✶✮✱ ✭✷✳✸✳✺✺✮✱ ✭✷✳✸✳✺✽✮ t❛ ❝â sin3 A + sin3 B + sin3 C ≤ (sin A + sin B + sin C) sin2 A B C + sin2 + sin2 2 p(p2 − 3r2 − 6Rr) p 2R − r ≤ ⇔ p2 − 3r2 − 6Rr ≤ 4R2 − 2Rr 4R R 2R ⇔ p2 ≤ 4R2 + 4Rr + 3r2 ⇔ ✶✶✹ ❇➜t ✤➥♥❣ t❤ù❝ ❝✉è✐ ✤ó♥❣ t❤❡♦ ❜➜t ✤➥♥❣ t❤ù❝ ●❡rr❡ts❡♥✳ ❝✮ ❚❤❡♦ ✭✷✳✸✳✻✼✮ ✈➔ ✭✷✳✸✳✻✵✮ t❛ ❝â cos A cos B cos C ≤ sin B C p2 − (2R + r)2 A r sin sin ⇔ ≤ 2 2 4R 4R 2 ⇔ p − (2R + r) ≤ Rr ⇔ p2 ≤ 4R2 + 5Rr + r2 ❇➜t ✤➥♥❣ t❤ù❝ ❝✉è✐ ✤ó♥❣ t❤❡♦ ❜➜t ✤➥♥❣ t❤ù❝ ✭✸✳✶✳✻✮✳ ❱➟② ❝→❝ ❜➜t ✤➥♥❣ t❤ù❝ ✤÷đ❝ ❝❤ù♥❣ ♠✐♥❤✳ ❇➔✐ ✸✳✺✺✳ cot2 A + cot2 B + cot2 C + ≥ ●✐↔✐✳ A B C sin sin sin 2 ✭✸✳✷✳✸✾✮ ❚❤❡♦ ✭✷✳✸✳✹✼✮ ✈➔ ✭✷✳✸✳✽✻✮ t❛ ❝â cot2 A + cot2 B + cot2 C + = 1 + + 2 sin A sin B sin2 C ✈➔ = B C A sin sin sin 2 = A B C cos cos 2 = sin A + sin B + sin C sin A sin B sin C sin A sin B sin C cos 1 + + sin B sin C sin C sin A sin A sin B 1 1 1 + + + + ≥ 2 sin B sin C sin C sin A sin A sin B sin A sin B sin C 2 ♥➔② ✤ó♥❣ ✈➻ a + b + c ≥ ab + bc + ca ✈ỵ✐ ♠å✐ a, b, c (3.2.39) ⇔ ❇➜t ✤➥♥❣ t❤ù❝ ❇➔✐ ✸✳✺✻✳ r r 3r r(2R − r) A B B C C A + ≤ ≤ ≤ sin sin + sin sin + sin sin R 8R 8R 4R2 2 2 2 2 2 p + r − 8Rr R + r − Rr r 5r ≤ ≤ = − ≤ − 2 16R 4R 16 4R 8R ●✐↔✐✳ ✭✸✳✷✳✹✵✮ ❚❤❡♦ ✭✷✳✸✳✺✾✮ t❛ ❝â sin2 A 2B B C C A p2 + r2 − 8Rr sin + sin2 sin2 + sin2 sin2 = 2 2 2 16R2 ❈→❝ ❜➜t ✤➥♥❣ t❤ù❝ r r 3r r(2R − r) + ≤ ≤ R 8R 8R 4R2 ✈➔ R2 + r2 − Rr r 5r ≤ − ≤ − 4R 16 4R 8R ✶✶✺ ✤ó♥❣ t❤❡♦ ❜➜t ✤➥♥❣ t❤ù❝ ❊✉❧❡r✳ ❇➜t ✤➥♥❣ t❤ù❝ r(2R − r) p2 + r2 − 8Rr R2 + r2 − Rr ≤ ≤ 4R2 16R2 4R2 ⇔4r(2R − r) ≤ p2 + r2 − 8Rr ≤ 4(R2 + r2 − Rr) ⇔ 16Rr − 5r2 ≤ p2 ≤ 4R2 + 4Rr + 3r2 ❇➜t ✤➥♥❣ t❤ù❝ ❝✉è✐ ✤ó♥❣ t❤❡♦ ❜➜t ✤➥♥❣ t❤ù❝ ●❡rr❡ts❡♥✳ ❱➟② ❜➜t ✤➥♥❣ t❤ù❝ ✤÷đ❝ ❝❤ù♥❣ ♠✐♥❤✳ ❇➔✐ ✸✳✺✼✳ 18R 6R R ≤ 12 ≤ ≤8 −4≤ 2R − r r r = ●✐↔✐✳ p − 8Rr + r ≤5 r2 R r −4 sin2 A R ≤8 r + sin2 R r B + sin2 C R − 10 r ❚❤❡♦ ✭✷✳✸✳✻✶✮ t❛ ❝â sin2 A + sin2 B + sin2 C = p2 − 8Rr + r2 r2 ❈→❝ ❜➜t ✤➥♥❣ t❤ù❝ 18R ≤ 12 ⇔ 18R ≤ 24R − 12r ⇔ 2r ≤ R; 2R − r R 6R ≤ − ⇔ 12r ≤ 6R ≤ 8R − 4r ⇔ 2r ≤ R; 12 ≤ r r 2 R R R R R R R −4 ≤8 − 10 ⇔ ≤ ⇔2≤ r r r r r r r ✤ó♥❣ t❤❡♦ ❜➜t ✤➥♥❣ t❤ù❝ ❊✉❧❡r✳ ❇➜t ✤➥♥❣ t❤ù❝ p2 − 8Rr + r2 R −4≤ ≤5 r r2 R r −4 R r ⇔8Rr − 4r2 ≤ p2 − 8Rr + r2 ≤ 5R2 − 4Rr ⇔16Rr − 5r2 ≤ p2 ≤ 5R2 + 4Rr − r2 ❇➜t ✤➥♥❣ t❤ù❝ p2 ≥ 16Rr − 5r2 ❇➜t ✤➥♥❣ t❤ù❝ p2 + r2 ≤ 5R2 + 4Rr ❧➔ ❜➜t ✤➥♥❣ t❤ù❝ ●❡rr❡ts❡♥✳ ❧➔ ❜➜t ✤➥♥❣ t❤ù❝ ✭✸✳✶✳✻✮✳ ❱➟② ❜➜t ✤➥♥❣ t❤ù❝ ✤÷đ❝ ❝❤ù♥❣ ♠✐♥❤✳ ✶✶✻ ✭✸✳✷✳✹✶✮ A B ✸✳✷✳✺ ❇➜t ✤➥♥❣ t❤ù❝ ❝❤ù❛ cos , cos , cos ❇➔✐ ✸✳✺✽✳ B C A 4R + r p2 + cos2 + cos2 = ≤ ≤ 2 √ 2R 6Rr A B C 3 < cos + cos + cos ≤ 2 2 √ 1 + + ≥ A B C cos cos cos 2 √ B C p 3 A ≤ cos cos cos = 2 4R < cos2 a) b) c) d) ●✐↔✐✳ C ✭✸✳✷✳✹✷✮ ✭✸✳✷✳✹✸✮ ✭✸✳✷✳✹✹✮ ✭✸✳✷✳✹✺✮ B C 4R + r A + cos2 + cos2 = ❇➜t ✤➥♥❣ t❤ù❝ < 2 2R r 4R + r 4R + r 2+ = ❧➔ ❤✐➸♥ ♥❤✐➯♥✳ ❚❤❡♦ ❜➜t ✤➥♥❣ t❤ù❝ ❊✉❧❡r t❛ ❝â ≤ ❇➜t ✤➥♥❣ t❤ù❝ 2R 2R 2R p2 27 ≤ ⇔ p2 ≥ Rr ❧➔ ❜➜t ✤➥♥❣ t❤ù❝ ✭✸✳✶✳✻✮✳ 6Rr ❛✮ ❚❤❡♦ ✭✷✳✸✳✼✽✮ t❛ ❝â cos2 ❱➟② ❜➜t ✤➥♥❣ t❤ù❝ ✤÷đ❝ ❝❤ù♥❣ ♠✐♥❤✳ ❜✮ B C A cos + cos + cos 2 2 27 B C A + cos2 + cos2 ≤ = 2 4 √ A B C 3 ❑❤❛✐ ❝➠♥ ❤❛✐ ✈➳ t❛ ✤÷đ❝ cos + cos + cos ≤ 2 2 A B C A B C ❉♦ , , ❧➔ ♥❤ú♥❣ ❣â❝ ♥❤å♥ ♥➯♥ < cos , cos , cos < ❙✉② r❛ 2 2 2 cos ≤ cos2 A A B B C C > cos2 ; cos > cos2 ; cos > cos2 2 2 2 ❱➟② t❛ ❝â cos A B C A B C 4R + r + cos + cos > cos2 + cos2 + cos2 = > 2 2 2 2R ❱➟② ❜➜t ✤➥♥❣ t❤ù❝ ✤÷đ❝ ❝❤ù♥❣ ♠✐♥❤✳ ❝✮ √ A B C 3 cos + cos + cos ≤ 2 2 A cos + B cos + ≥ C cos ❚ø ✭✸✳✷✳✹✸✮ s✉② r❛ cos A + cos B + cos C ≥ √ √ ≥ √ = A B C 3 3 cos + cos + cos ≤ 2 2 ✶✶✼ ❉➜✉ ❜➡♥❣ ①↔② r❛ ❦❤✐ ✈➔ ❝❤➾ ❦❤✐ t❛♠ ❣✐→❝ ABC ✤➲✉✳ ❞✮ ❚❤❡♦ ✭✷✳✸✳✽✵✮ t❛ ❝â cos2 ❙✉② r❛ B C p2 A cos2 cos2 = 2 16R2 A B C p cos cos = 2 4R √ √ 3 3R p ≤ ⇔p≤ t❤ù❝ 4R cos ❇➜t ✤➥♥❣ ❧➔ ❜➜t ✤➥♥❣ t❤ù❝ ✭✸✳✶✳✻✮✳ ❱➟② ❜➜t ✤➥♥❣ t❤ù❝ ✤÷đ❝ ❝❤ù♥❣ ♠✐♥❤✳ ❇➔✐ ✸✳✺✾✳ ab sin ●✐↔✐✳ √ C A B + bc sin + ca sin ≥ 3S 2 ✭✸✳✷✳✹✻✮ ❚❤❡♦ ✭✸✳✷✳✹✹✮ t❛ ❝â √ abc C A B + bc sin + ca sin ≥ 2 4R C C B C A B √ √ sin sin sin ab sin + bc sin + ca sin 2 ≥ + + ≥ ⇔ ⇔ abc 2R c c b 2R C C B √ sin sin sin √ 1 2 ⇔ + + ≥ ⇔ + + ≥ A B C 2R sin C 2R sin A 2R sin B 2R cos cos cos 2 (3.2.46) ⇔ ab sin ❇➔✐ ✸✳✻✵✳ sin A sin B + sin B sin C + sin C sin A ≤ sin2 A + sin2 B + sin2 C A B C ≤ cos2 + cos2 + cos2 2 ●✐↔✐✳ ✭✸✳✷✳✹✼✮ ❚❤❡♦ ✭✷✳✸✳✹✷✮✱ ✭✷✳✸✳✹✻✮✱ ✭✷✳✸✳✼✽✮ t❛ ❝â (3.2.47) ⇔ 4R + r p2 − 4Rr − r2 p2 + r2 + 4Rr ≥ ≥ 2R 2R2 4R2 ❇➜t ✤➥♥❣ t❤ù❝ 4R + r p2 − 4Rr − r2 ≥ ⇔ 4R2 + Rr ≥ p2 − 4Rr − r2 ⇔ p2 ≤ 4R2 + 5Rr + r2 2R 2R2 ❧➔ ❜➜t ✤➥♥❣ t❤ù❝ ✭✸✳✶✳✻✮✳ ✶✶✽ ❇➜t ✤➥♥❣ t❤ù❝ p2 − 4Rr − r2 p2 + r2 + 4Rr ≥ 2R2 4R2 ⇔2(p2 − 4Rr − r2 ) ≥ p2 + r2 + 4Rr ⇔ p2 ≥ 3r(4R + r) ❧➔ ❜➜t ✤➥♥❣ t❤ù❝ ✭✸✳✶✳✻✮✳ ❱➟② ❜➜t ✤➥♥❣ t❤ù❝ ✤÷đ❝ ❝❤ù♥❣ ♠✐♥❤✳ ❇➔✐ ✸✳✻✶✳ 27r (1) 8R + 11r (2) 4R2 + 6Rr − r2 (3) A B B C C A ≤ ≤ ≤ cos cos2 + cos2 cos2 + cos2 cos2 8R 8r 4R 2 2 2 2 (5) 2 (4) (6) 5R + 3Rr + r 10R + 7r 27 p + (4R + r) ≤ ≤ ≤ ✭✸✳✷✳✹✽✮ = 2 16R 4R 8R 16 ●✐↔✐✳ ❚❤❡♦ ✭✷✳✸✳✼✾✮ t❛ ❝â cos2 A p2 + (4R + r)2 B B C C A cos2 + cos2 cos2 + cos2 cos2 = 2 2 2 16R2 ❈→❝ ❜➜t ✤➥♥❣ t❤ù❝ ✭✶✮ ✭✷✮ ✭✺✮ ✭✻✮ 27r 8R + 11r ≤ ⇔ 27r ≤ 8R + 11r ⇔ 16r ≤ 8R ⇔ 2r ≤ R; 8R 8r 4R + 6Rr − r2 8R + 11r ≤ ⇔ 8R2 + 11Rr ≤ 8R2 + 12Rr − 2r2 ⇔ 2r ≤ R; 8r 4R2 5R2 + 3Rr + r2 10R + 7r ≤ ⇔ 10R2 + 6Rr + 2r2 ≤ 10R2 + 7Rr ⇔ 2r ≤ R; 4R 8R 10R + 7r 27 ≤ ⇔ 20R + 14r ≤ 27R ⇔ 14r ≤ 7R ⇔ 2r ≤ R 8R 16 ✤ó♥❣ t❤❡♦ ❜➜t ✤➥♥❣ t❤ù❝ ❊✉❧❡r✳ ❈→❝ ❜➜t ✤➥♥❣ t❤ù❝ ✭✸✮ ✈➔ ✭✹✮ p2 + (4R + r)2 5R2 + 3Rr + r2 4R2 + 6Rr − r2 ≤ ≤ 4R2 16R2 4R2 2 2 ⇔16R + 24Rr − 4r ≤ p (4R + r) ≤ 20R + 12Rr + 4r2 ⇔16Rr − 5r2 ≤ p2 ≤ 4R2 + 4Rr + 3r2 ✤ó♥❣ t❤❡♦ ❜➜t ✤➥♥❣ t❤ù❝ ●❡rr❡ts❡♥✳ ❱➟② ❜➜t ❞➥♥❣ t❤ù❝ ✤÷đ❝ ❝❤ù♥❣ ♠✐♥❤✳ ✶✶✾ ✸✳✷✳✻ ❇➜t ✤➥♥❣ t❤ù❝ ❝❤ù❛ t❛♥❣ ❤♦➦❝ ❝æt❛♥❣ ❝→❝ ♥û❛ ❣â❝ ❇➔✐ ✸✳✻✷✳ √ B C 4R + r 9Rr 9R2 A ≤ ≤ ≤ tan + tan + tan = 2 p 2S 4S A B C r tan tan tan = ≤ √ 2 p 3 B C A cot A + cot B + cot C ≥ tan + tan + tan 2 √ A B C A B C p cot + cot + cot = cot cot cot = ≥ 3 2 2 2 r A B C A B C cot + cot + cot ≥ tan + tan + tan 2 2 2 a) b) c) d) e) ●✐↔✐✳ ✭✸✳✷✳✹✾✮ ✭✸✳✷✳✺✵✮ ✭✸✳✷✳✺✶✮ ✭✸✳✷✳✺✷✮ ✭✸✳✷✳✺✸✮ ❚❤❡♦ ✭✷✳✸✳✾✻✮ t❛ ❝â tan √ ❇➜t ✤➥♥❣ t❤ù❝ 3≤ 4R + r p A B C 4R + r + tan + tan = 2 p ✤ó♥❣ t❤❡♦ ❜➜t ✤➥♥❣ t❤ù❝ ✭✸✳✶✳✻✮✳ ❇➜t ✤➥♥❣ t❤ù❝ 9Rr 9R2 4R + r 9Rr 9R2 4R + r ≤ ≤ ⇔ ≤ ≤ ⇔ 16Rr + 4r2 ≤ 18Rr ≤ 9R2 p 2S 4S p 2S 4pr ✤ó♥❣ t❤❡♦ ❜➜t ✤➥♥❣ t❤ù❝ ❊✉❧❡r✳ ❜✮ ❚❤❡♦ ✭✷✳✸✳✾✹✮ t❛ ❝â A B C r tan tan = 2 p √ r ≤ √ ⇔ p ≥ 3r ✤ó♥❣ t❤❡♦ ❜➜t ✤➥♥❣ p 3 tan ❇➜t ✤➥♥❣ t❤ù❝ t❤ù❝ ✭✸✳✶✳✻✮✳ ❝✮ ❚❤❡♦ ✭✷✳✸✳✽✸✮✱ ✭✷✳✸✳✾✷✮ t❛ ❝â (3.2.51) ⇔ p2 − 4Rr − r2 4R + r ≥ ⇔ p2 − 4Rr − r2 ≥ 2r(4R + r) ⇔ p2 ≥ 12Rr + 3r2 2pr p ❇➜t ✤➥♥❣ t❤ù❝ ❝✉è✐ ✤ó♥❣ t❤❡♦ ❜➜t ✤➥♥❣ t❤ù❝ ✭✸✳✶✳✻✮✳ ❞✮ ❚❤❡♦ ✭✷✳✸✳✾✹✮ ✈➔ ✭✷✳✸✳✾✻✮ t❛ ❝â A B C A B C p + cot + cot = cot cot cot = 2 2 2 r √ p ≥ 3 ✤ó♥❣ t❤❡♦ ❜➜t ✤➥♥❣ t❤ù❝ ✭✸✳✶✳✻✮✳ R cot ❇➜t ❞➥♥❣ t❤ù❝ ❡✮ ❚❤❡♦ ✭✷✳✸✳✸✻✮ ✈➔ ✭✷✳✸✳✾✹✮ t❛ ❝â (3.2.53) ⇔ p 4R + r ≥3 ⇔ p2 ≥ 3r(4R + r) r p ✶✷✵ ✤ó♥❣ t❤❡♦ ❜➜t ✤➥♥❣ t❤ù❝ ✭✸✳✶✳✻✮✳ ❱➟② ❝→❝ ❜➜t ❞➥♥❣ t❤ù❝ ✤÷đ❝ ❝❤ù♥❣ ♠✐♥❤✳ ❇➔✐ ✸✳✻✸✳ B C A cos2 cos2 + + ≥ 27r = 27 a b c 8S 8p cos2 ●✐↔✐✳ ✭✸✳✷✳✺✹✮ ❚❤❡♦ ❝æ♥❣ t❤ù❝ ❤↕ ❜➟❝ ✈➔ ✤à♥❤ ❧➼ ❤➔♠ sè s✐♥✱t❛ ❝â B C A cos2 cos2 + + = 1 + cos A + + cos B + + cos C a b c a b c 1 1 cos A cos B cos C = + + + + + a b c 2R sin A 2R sin B 2R sin C 1 1 + + + (cot A + cot B + cot C) = a b c 4R cos2 ❚ø ✭✷✳✶✳✹✵✮ ✈➔ ✭✷✳✸✳✽✸✮ t❛ ❝â 1 1 + + (cot A + cot B + cot C) + a b c 4R p2 + 4Rr + r2 p2 − 4Rr − r2 + = 2pRr 2pr 2 2p p p 27r = = = ≥ 8pRr 4pRr 4RS 8S ✈➻ t❤❡♦ ❜➜t ✤➥♥❣ t❤ù❝ ✭✸✳✶✳✻✮ t❛ ❝â p2 ≥ ❇➔✐ ✸✳✻✹✳ ≤ cot 27 Rr s✉② r❛ p2 27r ≥ R B B C C A 4R + r A cot + cot cot + cot cot = ≤ 2 2 2 r 9R ≤ A B C 2r sin sin sin 2 ✭✸✳✷✳✺✺✮ ●✐↔✐✳ ❚❤❡♦ ✭✷✳✸✳✾✻✮ t❛ ❝â cot A B B C C A 4R + r cot + cot cot + cot cot = 2 2 2 r ❚❤❡♦ ✭✷✳✸✳✻✵✮ t❛ ❝â 4R + r 9R ≤ = r r 2r 4R ⇔ 18r ≤ 8R + 2r ≤ 9R ⇔ 2r ≤ R (3.2.55) ⇔ ≤ ❇➜t ✤➥♥❣ t❤ù❝ ❝✉è✐ ✤ó♥❣ t❤❡♦ ❜➜t ✤➥♥❣ t❤ù❝ ❊✉❧❡r✳ ❱➟② ❜➜t ✤➥♥❣ t❤ù❝ ✤÷đ❝ ❝❤ù♥❣ ♠✐♥❤✳ ✶✷✶ ❇➔✐ ✸✳✻✺✳ ✭❘♦♠❛♥✐❛♥ ▼❛t❤❡♠❛t✐❝❛❧ ▼❛❣❛③✐♥❡✮✳ b2 + c2 c2 + a2 a2 + b2 + + ≥ 24S A B C tan tan tan 2 ●✐↔✐✳ ✭✸✳✷✳✺✻✮ ❚❛ ❝â b + c c + a2 a2 + b + + A B C tan tan tan 2 b2 c2 c2 a2 a2 b2 = + + + + + A A B B C C tan tan tan tan tan tan 2 2 2 2 (b + c + c + a + a + b) 16p = = A B C A B C tan + tan + tan tan + tan + tan 2 2 2 ❚ø ✭✷✳✸✳✸✻✮ t❛ ❝â tan A B C 4R + r + tan + tan = , 2 p s✉② r❛ b + c c + a2 a2 + b 16p2 + + ≥ A B C A B C tan tan tan tan + tan + tan 2 2 2 = 16p2 8p3 = 4R + r 4R + r p ❇➜t ✤➥♥❣ t❤ù❝ 8p3 ≥ 24S ⇔ p2 ≥ 3r(4R + r) 4R + r ✤ó♥❣ t❤❡♦ ❜➜t ✤➥♥❣ t❤ù❝ ✭✸✳✶✳✻✮✳ ❱➟② ❜➜t ✤➥♥❣ t❤ù❝ ✤÷đ❝ ❝❤ù♥❣ ♠✐♥❤✳ ❇➔✐ ✸✳✻✻✳ ●å✐ ■ ❧➔ t➙♠ ✤÷í♥❣ trá♥ ♥ë✐ t✐➳♣ t❛♠ ❣✐→❝ ABC, AI, BI, CI ❧➛♥ ❧÷đt ❝➢t ✤÷í♥❣ trá♥ ♥❣♦↕✐ t✐➳♣ t❛♠ ❣✐→❝ t↕✐ A1, B1, C1 ❑❤✐ ✤â t❛ ❝â 2R − r IA1 IB1 IC1 + + = ≥ IA IB IC r ✶✷✷ ✭✸✳✷✳✺✼✮ ●✐↔✐✳ ❚❛ ❝â A+C A B AC1 sin 2R sin cos IC.CA1 sin ICA1 IA1 SIA1 C 2 = = = = C C IA SIAC IC.CA sin ICA AC sin 2R sin B sin 2 B B+C B+C cos cos 2R cos 2 = = B B C B C 2R.2 sin cos sin sin sin 2 2 B C B C cos cos − sin sin = C B sin sin 2 B C cot cot − = 2 ❚÷ì♥❣ tü IB1 = IB cot A C IC1 cot − ; = 2 IC cot B A cot − 2 ❚❤❡♦ ✭✸✳✷✳✺✺✮✱ ❜➜t ✤➥♥❣ t❤ù❝ ❊✉❧❡r ✈➔ ❝→❝ ❜➜t ✤➥♥❣ t❤ù❝ tr➯♥ s✉② r❛ IA1 IB1 IC1 + + = IA IB IC = B B C C A A cot + cot cot + cot cot − 2 2 2 4R + r 2R − r −3 = ≥ r r cot ✸✳✷✳✼ ❇➜t ✤➥♥❣ t❤ù❝ ❝❤ù❛ ❜➻♥❤ ♣❤÷ì♥❣ ❝õ❛ t❛♥❣ ❤❛② ❝ỉt❛♥❣ ❝→❝ ♥û❛ ❣â❝ ❇➔✐ ✸✳✻✼✳ a) b) ●✐↔✐✳ 4R + r A B C (4R + r)2 − 2p2 + tan2 + tan2 = = 2 2 p p A B C A B C tan2 + tan2 + tan2 ≥ − sin sin sin 2 2 2 tan2 − ≥ ✭✸✳✷✳✺✾✮ ❛✮ ❚❤❡♦ ✭✷✳✸✳✶✵✵✮ t❛ ❝â A B C (4R + r)2 − 2p2 tan + tan2 + tan2 = = 2 p2 ✶✷✸ 4R + r p ✭✸✳✷✳✺✽✮ − ❇➜t ✤➥♥❣ t❤ù❝ √ (4R + r)2 − 2p2 ≥ ⇔ 4R + r ≥ p p2 ✤ó♥❣ t❤❡♦ ❜➜t ✤➥♥❣ t❤ù❝ ✭✸✳✶✳✻✮✳ ❜✮ ❚❤❡♦ ✭✷✳✸✳✶✵✵✮ ✈➔ ✭✷✳✸✳✺✽✮ t❛ ❝â (3.2.59) ⇔ (4R + r)2 − 2p2 r ≥2−8 p 4R ⇔ R(4R + r)2 ≥ 2p2 (2R − r) ⇔ p2 ≤ R(4R + r)2 2(2R − r) ❇➜t ✤➥♥❣ t❤ù❝ ❝✉è✐ ✤ó♥❣ t❤❡♦ ❜➜t ✤➥♥❣ t❤ù❝ ✭✸✳✶✳✻✮✳ ❱➟② ❝→❝ ❜➜t ✤➥♥❣ t❤ù❝ ✤÷đ❝ ❝❤ù♥❣ ♠✐♥❤✳ ❇➔✐ ✸✳✻✽✳ 2(cos A + cos B + cos C) + tan2 ●✐↔✐✳ A B C + tan2 + tan2 ≥ 2 ✭✸✳✷✳✻✵✮ ❚❤❡♦ ✭✷✳✸✳✷✶✮ ✈➔ ✭✷✳✸✳✶✵✵✮ t❛ ❝â R + r (4R + r)2 − 2p2 2r (4R + r)2 + ≥ ⇔ + ≥4 R p2 R p2 R(4R + r)2 ⇔ 2rp2 + R(4R + r)2 ≥ 4p2 R ⇔ p2 ≤ 2(2R − r) (3.2.60) ⇔ ❇➜t ✤➥♥❣ t❤ù❝ ❝✉è✐ ✤ó♥❣ t❤❡♦ ❜➜t ✤➥♥❣ t❤ù❝ ✭✸✳✶✳✻✮✳ ❱➟② ❜➜t ✤➥♥❣ t❤ù❝ ✤÷đ❝ ❝❤ù♥❣ ♠✐♥❤✳ ❇➔✐ ✸✳✻✾✳ ≤ cot2 ●✐↔✐✳ B C p2 − 8Rr − 2r2 4R2 − 4Rr + r2 A + cot2 + cot2 = ≤ 2 r2 r2 ✭✸✳✷✳✻✶✮ ❚❤❡♦ ✭✷✳✸✳✶✵✻✮ t❛ ❝â cot2 A B C p2 − 8Rr − 2r2 + cot2 + cot2 = 2 r2 ❚❛ ❝â p2 − 8Rr − 2r2 4R2 − 4Rr + r2 (3.2.61) ⇔ ≤ ≤ r2 r2 2 ⇔ 8Rr + 11r ≤ p ≤ 4R + 4Rr + 3r2 ❇➜t ✤➥♥❣ t❤ù❝ 8Rr + 11r2 ≤ p2 ✤ó♥❣ t❤❡♦ ✭✸✳✶✳✻✮ ✈➔ ❜➜t ✤➥♥❣ t❤ù❝ ❧➔ ❜➜t ✤➥♥❣ t❤ù❝ ●❡rr❡ts❡♥✳ ❱➟② ❜➜t ✤➥♥❣ t❤ù❝ ✤÷đ❝ ❝❤ù♥❣ ♠✐♥❤✳ ✶✷✹ p2 ≤ 4R2 + 4Rr + 3r2 ❇➔✐ ✸✳✼✵✳ cot2 ●✐↔✐✳ A B C p2 R cot2 cot2 = ≥ 16 − ≥ 27 2 r r ✭✸✳✷✳✻✷✮ ❚❤❡♦ ✭✷✳✸✳✶✵✺✮ t❛ ❝â cot2 ❇➜t ✤➥♥❣ t❤ù❝ B C p2 A cot2 cot2 = 2 r R p2 ≥ 16 − ⇔ p2 ≥ 16Rr − 5r2 r r ❝â ❜➜t ✤➥♥❣ t❤ù❝ ❝✉è✐ ✤ó♥❣ t❤❡♦ ❜➜t ✤➥♥❣ t❤ù❝ ●❡rr❡ts❡♥✳ ❇➜t ✤➥♥❣ t❤ù❝ 16 R − ≥ 27 r ✤ó♥❣ t❤❡♦ ❜➜t ✤➥♥❣ t❤ù❝ ❊✉❧❡r✳ ❱➟② ❜➜t ✤➥♥❣ t❤ù❝ ✤÷đ❝ ❝❤ù♥❣ ♠✐♥❤✳ ✶✷✺ ❑➌❚ ▲❯❾◆ ❚r♦♥❣ ❧✉➟♥ ✈➠♥ ♥➔② ❝❤ó♥❣ tỉ✐ ✤➣ ✤↕t ✤÷đ❝ ♠ët sè ❦➳t q✉↔ s❛✉✿ ✭✶✮ ❈❤ù♥❣ ♠✐♥❤ ✈➔ ❤➺ t❤è♥❣ ❣➛♥ ✶✵✵ ♣❤÷ì♥❣ tr➻♥❤ ❜➟❝ ❜❛ ✈ỵ✐ ❝→❝ ❤➺ sè ❝❤➾ ❝❤ù❛ ✸ ②➳✉ tè ❝ì ❜↔♥ ❧➔ ♥û❛ ❝❤✉ ✈✐ ✈➔ ❜→♥ ❦➼♥❤ ❝→❝ ✤÷í♥❣ trá♥ ♥ë✐✱ ♥❣♦↕✐ t✐➳♣ ❝õ❛ ♠ët t❛♠ ❣✐→❝ ✭①❡♠ ❝→❝ ♠ö❝ ✷✳✶✳✶ ✲ ✷✳✶✳✹❀ ✷✳✷✳✶❀ ✷✳✷✳✷❀ ✷✳✸✳✶ ✲ ✷✳✸✳✸✮✳ ✭✷✮ P❤➙♥ ❧♦↕✐ ❦❤♦↔♥❣ ✹✵✵ ✤➥♥❣ t❤ù❝ ✈➔ ❜➜t ✤➥♥❣ t❤ù❝ t❤❡♦ tø♥❣ ❞↕♥❣ ❝â ❧í✐ ❣✐↔✐ ❝❤✐ t✐➳t✳ ❚ø ✤â✱ ❜↕♥ ✤å❝ ❝â t❤➸ s→♥❣ t↕♦ t❤➯♠ ♥❤✐➲✉ ❤➺ t❤ù❝ tú ỷ ỵ tữ tr ♥➔②✱ ❜↕♥ ✤å❝ ❝â t❤➸ ❝❤ù♥❣ ♠✐♥❤ ❝→❝ ✤➥♥❣ t❤ù❝✱ ❜➜t ✤➥♥❣ t❤ù❝ ❜➡♥❣ ♣❤÷ì♥❣ ♣❤→♣ ✤↕✐ sè ❤â❛ q✉❛ ♣❤÷ì♥❣ tr➻♥❤ ❜➟❝ ❜❛ ♠➔ ❦❤ỉ♥❣ ❝➛♥ ✤➳♥ ❝→❝ ❜✐➳♥ ữủ ỗ ự t ✭①❡♠ ❝→❝ ♠ö❝ ✷✳✶✳✺❀ ✷✳✷✳✸❀ ✷✳✸✳✹❀ ✸✳✶❀ ✸✳✷✮✳ ▲✉➟♥ ✈➠♥ ♥➔② ❣â♣ ♣❤➛♥ ❣✐ó♣ ❤å❝ s✐♥❤ ✈➔ ❣✐→♦ ✈✐➯♥ ♣❤ê t❤ỉ♥❣ ❝â t❤➯♠ ♠ët ❣â❝ ♥❤➻♥ ♠ỵ✐ ✈➲ ♠è✐ q✉❛♥ ❤➺ ❣✐ú❛ ✤↕✐ sè ✈➔ ❤➻♥❤ ❤å❝✳ ✶✷✻ ❚➔✐ ❧✐➺✉ t❤❛♠ ❦❤↔♦ ❚➔✐ ❧✐➺✉ ❚✐➳♥❣ ❱✐➺t ❬✶❪ ❚r➛♥ P❤÷ì♥❣✱ ◆❤ú♥❣ ✈✐➯♥ ❦✐♠ ❝÷ì♥❣ tr♦♥❣ ❜➜t ✤➥♥❣ t❤ù❝ t♦→♥ ❤å❝✱ ◆❳❇ tr✐ t❤ù❝✱ ✷✵✵✾✳ ❬✷❪ ❚↕ ❉✉② P❤÷đ♥❣✱ P❤÷ì♥❣ tr➻♥❤ ❜➟❝ ❜❛ ✈➔ ❝→❝ ❤➺ t❤ù❝ tr♦♥❣ t❛♠ ❣✐→❝✱ ◆❳❇ ●✐→♦ ❞ư❝ ❱✐➺t ◆❛♠✱ ✷✵✵✻✳ ❬✸❪ P❤↕♠ ❱➠♥ ❚❤÷✱ ▼ët sè t➼♥❤ ❝❤➜t ❝õ❛ ✤❛ t❤ù❝ ✤è✐ ①ù♥❣ ✈➔ ù♥❣ ❞ö♥❣ tr♦♥❣ ✤↕✐ sè✱ ▲✉➟♥ ✈➠♥ t❤↕❝ s➽✱ ❚r÷í♥❣ ✣↕✐ ❤å❝ ❚❤→✐ ◆❣✉②➯♥✱ ✷✵✶✷✳ ❚➔✐ ❧✐➺✉ ❚✐➳♥❣ ❆♥❤ ❬✹❪ ❘✳ ❇✳ ▼❛♥❢r✐♥♦✱ ❏✳ ❆✳ ●✳ ❖rt❡❣❛✱ ❘✳ ❱✳ ❉❡❧❣❛t♦✱ ❆♣♣r♦❛❝❤✳✱ ❇❡r❧✐♥✱ ✷✵✵✾✳ ✶✷✼ ■♥❡q✉❛❧✐t✐❡s✿ ❆ ♠❛t❤❡♠❛t✐❝❛❧ ❖❧②♠♣✐❛❞ ... ❍➴❈ P❍➃◆● ▲❯❾◆ ❱❿◆ ❚❍❸❈ ❙➒ ❚❖⑩◆ ❍➴❈ ❈❤✉②➯♥ ♥❣➔♥❤✿ P❤÷ì♥❣ t sỡ số ữớ ữợ ❦❤♦❛ ❤å❝✿ ❚❙✳ ▲➊ ❚❍❆◆❍ ❍■➌❯ ❇➻♥❤ ✣à♥❤ ✲ ✷✵✷✵ ử é ởt số ỵ ❑■➌◆ ❚❍Ù❈ ❈❍❯❽◆ ❇➚ ✐✐✐ ✈ ✶ ✶✳✶ ❈⑩❈ ❇❻❚ ✣➃◆● ❚❍Ù❈ ✣❸■ ❙➮... t➼❝❤ tự t tứ số t ữủ ỗ t tự s❛✉ ✤➙② ✤ó♥❣ ✈ỵ✐ ♠å✐ x✿ x3 + ax2 + bx + c = (x − x1 )(x − x2 )(x − x3 ) = x3 − (x1 + x2 + x3 )x2 + (x1 x2 + x2 x3 + x3 x1 )x − (x1 x2 x3 ) ❙♦ s→♥❤ số ỗ t tự t ... ◆❤ì♥ ✤➣ ❞↕② ❜↔♦ ❡♠ tr♦♥❣ s✉èt t❤í✐ ❣✐❛♥ ❤å❝ t➟♣ t↕✐ ❚r÷í♥❣ ✤➸ ❡♠ ❝â ✤÷đ❝ ♥➲♥ t↔♥❣ tr✐ tự ụ ữ số qỵ ❤➔♥❤ tr❛♥❣ ❝❤♦ t÷ì♥❣ ❧❛✐✳ ❳✐♥ ❝❤➙♥ t❤➔♥❤ ❝↔♠ ì♥ ❣✐❛ ✤➻♥❤✱ ❜↕♥ ❜➧ ✤➣ ✤ë♥❣ ✈✐➯♥✱ ❦❤➼❝❤ ❧➺