1. Trang chủ
  2. » Giáo án - Bài giảng

Giáo án dạy thêm toán lớp 9 (2018 2019) đề bài

96 38 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 96
Dung lượng 3,06 MB

Nội dung

Toán Năm học 20202021  LUYỆN TẬP CĂN THỨC BẬC HAI VÀ HẰNG ĐẲNG THỨC A./ KIẾN THỨC CƠ BẢN: Căn bậc hai - Định nghĩa: Căn bậc hai số thực a số x cho x2 = a - Chú ý: + Mỗi số thực a > 0, có bậc hai số đối số dương + Số có bậc hai nó: A2  A a , số âm  a 0 + Số thực a < khơng có bậc hai (tức a khơng có nghĩa a < 0) Căn bậc hai số học - Định nghĩa: Với a �0 số x  a gọi bậc hai số học a Số gọi bậc hai số học - Chú ý: Việc tìm bậc hai số học số khơng âm gọi phép khai phương - Định lý: Với a, b > 0, ta có: + Nếu a < b � a  b + Nếu a  b � a < b Căn thức bậc hai - Cho A biểu thức biểu thức A gọi thức bậc hai A ; A gọi biểu thức lấy hay biểu thức dấu - A có nghĩa (hay xác định hay tồn tại) ۳ A Hằng đẳng thức A2  A - Định lý : Với số thực a, ta có : a2  a - Tổng quát : Với A biểu thức, ta có : �A nêu A �0 A2  A  � -A nêu A ta có :  A  A2  A - Nếu A, B biểu thức : A; B �0 ta có: A.B  A B - Mở rộng : A.B.C  A B C ( A, B, C �0) Khai phương thương Chia bậc hai a) Định lý : a �0, b  ta có: a a = b b Page Toán Năm học 20202021  a , số a b b) Quy tắc khai phương thương : Muốn khai phương thương khơng âm số b dương, ta khai phương số a số b, lấy kết thứ a a = ) b b chia cho kết thứ hai ( a �0, b  ta có: c) Quy tắc chia hai CBH : Muốn chia CBH số a không âm cho số b dương, ta có a a = ) b b thể chia số a cho số b khai phương kết ( a �0, b  : d) Chú ý : Nếu A, B biểu thức : A �0, B  : A A = B B Đưa thừa số ngoài, vào dấu � �A B ( A �0; B �0) A2 B  A B  �  A B ( A  0; B �0) �  A �0; B �0 : A B  A2 B  A  0; B �0 : A B   A2 B Khử mẫu biểu thức lấy : A.B �0; B �0 : A  B A.B B Trục thức mẫu a) B  : A A B  B B c) A, B �0; A �B : C C  A� B b) A �0; A �B :  Am B  A B B./ BÀI TẬP ÁP DỤNG : Dạng : Tính Bài : Thực phép tính a) 24 0, 01 25 16 b) 2, 25.1, 46  2, 25.0, 02 c ) 2,5.16,9 d ) 117,52  26,52  1440 Dạng : Rút gọn biểu thức Bài : Tính giá trị biểu thức a ) A  0,1  0,9  6,  0,  44,1    C A mB C  A  B2 A �B 64 441     10 10 10 10 10 2 35 35 10 10        10 10 10 10 10 10 10 Page  Toán b) B      3 3  14    2  28 32 2(  7)       3 4  3 4 3 3   4 4 4 4 c) C   Năm học 20202021     12  3   15  12  3   15 24  15  16  13 Bài : Rút gọn biểu thức a)  x   b) x2  x  2 c) 108 x 12 x 208 x y  x    x  5  x  0  x  0  13 x y d)  x �5   x x   x   x   x  x  2 108 x  x  x  3x 12 x 13 x y 1 1      x  0; y �0   6 208 x y 16 x x 4 x x Dạng : Chứng minh Bài : Chứng minh biểu thức sau  35  35  a) VT  (6  35).(6  35)  36  35   VP  17  17  b) VT  (9  17 ).(9  17 )  81  17  c)   2 1   d) VT   2    2 � � �� VT  VP VP   22.2   2 �  64   VP   e) 2  3   2   4   49  48 VT   12    22.3   � � �� VT  VP VP   42.3   � � 6 9 VT   6     6   VP g )  15   15  2 VT        3             2  VP    5 3  5 5  Dạng 4: Đưa nhân tử ngoài, vào dấu Bài 5: Đưa nhân tử dấu a ) 125 x  x   b) 80 y    4y  2  5x  x  x x  y Page Toán Năm học 20202021   c)    d ) 27  e) g)  3 10   1  1        1   3.32   10 2  10   1    1  2 2  3  10   10  20  10   1 1  0  30    10  10    10   Bài 6: Đưa thừa số vào dấu so sánh a) 3  32.5  45 � � �do 75  45 � 75  45 �  5  52.3  75 � � b)  42.3  48 � � �do 48  45 � 48  45 �  5  32.5  45 � � c) 72 Ta có:  2.2  98 98  72 � 98  72 �  72 d) Bài 7: Đưa nhân tử vào dấu rút gọn 2a  a   a)   a  2a  a  2 a2 b)  x   x   x  5   25  x c)  a  b  3a  a  b  3a  a  b    2  b a b2  a  a2   2a  a   x   x   x    x     a  0 x   x  x   0   x 3a  b  a   b  a   b  a   3a  b  a   b  a Dạng 5: Thực phép tính rút gọn biểu thức Bài 8: Thực phép tính a ) 125  45  20  80   5  12    5 b) 27 48 75     3 3   16 c) 49 25 1 7 7          18 2 2 Page  Toán Năm học 20202021   27  d ) 20  12  15 52   5.2  3.2  15  10    12    4   4  13  18   13  17   3 e)   28  10   4.3    3   2 5  Bài 9: Rút gọn biểu thức với giả thiết biểu thức chữ có nghĩa a) x xy y  b) c) x y   x  0; y    xy  x  y x  xy  y x y a  ab b  ab x  a; b �0   yy x   b y  a a b a  x xy  x  xy  y  xy  x  xy  y  b xy  x    y xy   x x y d ) A  x  2  x  2  x  2  x  2  x    x  2   x  2   x2   2  y  x y  x  2  x  2   x  2 22     x  0; y   x y x y a b xy   x2  2  x2  x  2 22  x2  2 x2  - Nếu x � ��  x 2 � A x2   x2   x2 - Nếu x2  � x2 2� x  � A x2   x2   2 x Dạng 6: Trục thức mẫu Bài 10: Trục thức mẫu a)  b)  52 c) 14  10  d)     12  12  12     93 3 3 3    2  52 14    2    10    2 54  10  10           14   52 10  10       10      11  11 168  49 33  40 33  385 33  217  11    192  539 337  11  11  11 Page Toán Năm học 20202021        2 3 2 30  10  10  12 18  10    20  18 2 3 2 3 3 e) Bài 11: Trục thức mẫu thực phép tính a)  11   5   3 7 2  11   3    2  5    11   11                11       5   11         16  11   2  97 74 3  5   11      11       11        3 1    5 2 2 b)  5   5 52    2     18 54   34   12     1 26   13  59   1        2   2   2   2        1         5   2  5       32  1   18  36  12  24   Dạng : Giải phương trình Bài 12 : Giải phương trình sau a) 2 x  x  18 x  28  1 �  1 dk : x �0 x  5.2 x  7.3 x  28 � 13 x  28 � x  28 784 392 � 2x  � x  tm  13 169 169 x  45    4( x 5)�۳ x 9( x 5) dk : x x   � � x   x   x   � x   � x   � x   � x   tm  b) x  20  x   Page 10 Toán Năm học 20202021  �  DIA � � tứ giác CKID nt đường trịn đường kính CD Do đó: CKA CI  MD b) xét tam giác MCD, ta có: DK  MC CI �DK  � � �� A trực tâm t.giác MCD � MA  CD (1) A� � mà AB  CD (2) từ (1) (2) suy điểm M, A, B thẳng hàng đpcm Bài 5: Cho đtrịn (O) đường kính AB, M điểm đtròn; C điểm nằm A B qua M kẻ đthẳng vng góc với CM, đthẳng cắt tiếp tuyến (O) kẻ từ A B E F CMR: a) Các tứ giác: AEMC, BCMF nt b) Tam giác ECF vuông C E M F A 1 C O B �  900  900  1800 , mà góc A góc M góc vị trí đối a) xét tứ giác AEMC có: � A M diện, tứ giác AEMC nt chứng minh tương tự ta có tứ giác BCMF nt � (cùng chắn cung MC) A1  E b) tứ giác ACME nt � � (1) �F � (cùng chắn cung MC) tứ giác BCMF nt � B 1 (2) �  900 A1  B ta có: � AMB  900 (góc nt chắn nửa đtrịn) � (3) �F �  900 từ (1); (2) (3) � E 1 � F �  900 � ECF �  900 �  ECF vuông C xét tam giác ECF, có: E 1 Bài 6: Cho tam giác ABC nhọn nt đtrịn (O), có đường cao BB’ CC a) CMR: tứ giác BCB’C’ nt b) Tia AO cắt đtròn (O) D cắt B’C’ I CMR: tứ giác BDIC’ nt c) Chứng minh OA vng góc với B’C’ Page 82 Tốn Năm học 20202021  A B' I O C' C D B � 'C  BC � 'C  900 � tứ giác BCB’C’ nt a) xét tứ giác BCB’C’ có BB b) ta có: � ACB  � ADB (cùng chắn cung AB) (1) � ' B'  � mặt khác tứ giác BCB’C’ nt � BC ACB  1800 (2) � 'B'  � � ' I  IDB �  1800 , suy tứ giác BDIC’ nt từ (1) (2) � BC ADB  1800 hay BC �' BD  900 c) ta có: � ABD  900 (góc nt chắn nửa đtrịn) � C �' BD  C �' ID  1800 � C �' ID  900 � AO  B 'C ' tứ giác BDIC’ nt � C Bài 7: Cho hình vng ABCD Gọi M, N điểm cạnh BC CD cho �  450 AM AN cắt đường chéo BD P Q Gọi H giao điểm MQ NP MAN CMR: a) Tứ giác ABMQ nt b) Tam giác AQM vuông cân c) AH vuông góc với MN A 450 B P M H Q D C N a) ABCD hình vng có BD đường chéo, nên BD phân giác góc ABC �B �  900  450 � B �  QAM �  450 � tứ giác ABMQ nt �B 2 b) tứ giác ABMQ nt �� ABM  � AQM  1800 � 900  � AQM  1800 � � AQM  900 � MQ  AN � � A  450 � xét tam giác AQM, có: � ��  AQM vng cân Q AQM  90 � c) ta có: DB đường chéo hình vng ABCD nên DB phân giác góc ADC � D �  900  450 �D 2 Page 83 Toán Năm học 20202021  � D �  450 � tứ giác ADNP nt tứ giác ADNP có � DAN � ADN  � APN  1800 � 900  � APN  1800 � � APN  900 � NP  AM MQ  AN � � Xét tam giác AMN, ta có: NP  AM �� H trực tâm tam giác AMN � AH  MN MQ �NP  H � � **************************************************************** PHƯƠNG TRÌNH QUY VỀ PHƯƠNG TRÌNH BẬC HAI A Kiến thức bản: Phương trình trùng phương - dạng tổng quát: ax  bx  c   a �0  - cách giải: dùng phương pháp đặt ẩn phụ, đặt x  t  t �0  Khi ta có pt: at  bt  c  (đây pt bậc hai ẩn) Phương trình chứa ẩn mẫu: Các bước giải - Tìm đk xác định pt - Quy đồng mẫu thức vế pt, khử mẫu - Giải pt vừa nhận - Kết luận: so sánh nghiệm tìm với đk xác định pt Phương trình tích - dạng tổng qt: A x  B x   A x   � A B  � � - cách giải:  x   x  B x   � � B Bài tập áp dụng: Bài 1: Giải phương trình a) x  5x   b) x  x   c) x  29 x  100  d ) x  13 x  36  Bài 2: Giải phương trình a)    x  1 x  c) 30 13  18 x   x 1 x  x  x 1 Bài 3: Giải phương trình a )  x  x  1  x  3x    c)  x     x     x    x    12 x  23 2 2x 1 x  8x2  b)   18 x  x  x  d) x  x  38   x  2x  x 1 b) x  x     x     x  1 d )  x    10 x  15 x  e) x  x  x   Page 84 Tốn Năm học 20202021  Bài 4: Tìm m để pt ẩn x sau có nghiệm: x  x  m  (1) Đặt x  t  t �0  Khi pt (1) trở thành: t  6t  m  (2) Để pt (1) có nghiệm pt (2) phải có nghiệm phân biệt dương � '   m  � �� t1  t2   �  m  � t1.t2  m  � Bài 5: Tìm m để pt có nghiệm: x   m  1 x  m   (1) 2 Đặt x  t  t �0  Khi pt (1) trở thành: t   m  1 t  m   (2) Để pt (1) có nghiệm pt (2) phải có nghiệm dương (hay có nghiệm trái dấu) � 3� � � �  0 �   m    m  3  � �m  3m   � ��m  �  � �m � m  �� �� � � � � 2� m3 t1.t2  m3 m3  � � � � � m3 � ' Bài 6: Cho pt: mx   m  3 x  m  (1) Với giá trị m pt có nghiệm? 2 Đặt x  t  t �0  Khi pt (1) trở thành: mt   m  3 t  m  (2) Để pt (1) có nghiệm pt (2) phải có nghiệm dương phân biệt: a  m �0 � � m �0 �' � 2 � m �0    m  3  m  � � � 3 � � 3 �� �� 6m   � �m  � m0 2  m  3 2 t  t   �1 �m  � m 3  m  � � � 0 � m � � t1.t2   � *************************************************************** GIẢI BÀI TOÁN BẰNG CÁCH LẬP PHƯƠNG TRÌNH – HỆ PHƯƠNG TRÌNH A Kiến thức bản: - bước giải toán cách lập pt (hpt): bước B Bài tập áp dụng: Bài 1: Tìm số biết tổng chúng 17 tổng bình phương chúng 157 Gọi số thứ x (x < 17) Số thứ hai là: 17 – x Theo ta có pt: x   17  x   157 � � x  34 x  132  � x1  11; x2  Vậy số cần tìm là: 11 Page 85 Toán Năm học 20202021  Bài 2: Hai tổ đánh cá tháng đầu bắt 590 cá, tháng sau tổ vượt mức 10%, tổ vượt mức 15%, cuối tháng hai tổ bắt 660 cá Tính xem tháng đầu tổ bắt cá * Cách 1: lập pt Tháng đầu Tháng sau x x  10%.x Tổ 590  x Tổ  590  x   15%  590  x  …… Ta có pt: x  10%.x   590  x   15%  590  x   660 � x  370 Vậy tổ 1: 370 cá; tổ 2: 220 cá * Cách 2: lập pt Tháng đầu x Tổ y Tổ ……… Tháng sau x  10%.x  1,1x y  15% y  1,5 y �x  y  590 �x  370 �� 1,1x  1,5 y  660 � �y  220 Ta có hpt: � Bài 3: Lấy số có chữ số chia cho số viết theo thứ tự ngược lại thương dư 15 lấy số trừ số tổng bình phương chữ số Tìm số này? Gọi số cần tìm xy  x, y �N ;0  x, y �9  Số viết theo thứ tự ngược lại là: yx Vì lấy xy đem chia cho yx thương dư 15 nên ta có: xy  yx  15 � x  13 y  (1) Lấy xy trừ số tổng bình phương chữ số, nên ta có: xy   x  y � 10 x  y   x  y (2) x  13 y  � �x  � � � � xy  91 10 x  y   x  y �y  � Từ (1) (2) ta có hpt: � 2 Bài 4: hai vịi nước chảy vào bể sau thời gian đầy bể Nếu vịi chảy lâu 2h đầy bể so với vịi, vịi chảy phải lâu 4,5h đầy bể so với vòi Hỏi chảy vịi chảy đầy bể? Cả vòi Vòi Vòi x x  4,5 x2 TGHTCV 1 1h chảy x Ta có pt: x2 x  4,5 1   � � x  � x  �3 x  x  4,5 x Nghiệm thỏa mãn x = Page 86 Toán Năm học 20202021  Bài 5: cơng nhân phải hồn thành 50 sản phẩm thời gian quy định Do cải tiến kỹ thuật nên tăng suất thêm sản phẩm người hồn thành kế hoaahj sớm thời gian quy định 1h40ph Tính số sản phẩm người phải làm theo dự định Số sản phẩm làm TGHTCV x 50 Dự định x 50 x5 x5 Thực tế …… Ta có pt: 50 50   � � x  x  150  x x5 � x1  10; x2  15 Nghiệm thỏa mãn x = 10 Bài 6: thuyền khởi hành từ bến sông A sau 2h40ph ca nô chạy từ A đuổi theo gặp thuyền cách bến A 10km Hỏi vận tốc thuyền, biết vận tốc ca nô vận tốc thuyền 12km/h V x  12 T Ca nô S 10 Thuyền 10 x 10 x  12 10 x … ta có pt: 10 10   � 30  x  12   30 x  x  x  12  � � x  96 x  360  x x  12 � x1  3; x2  15 Giá trị thỏa mãn x = Bài 7: khoảng cách bến sông A B 30km ca nô từ A đến B, nghỉ 40ph B, lại trở A thời gian kể từ lúc đến lúc trở A 6h Tính vận tốc ca nơ nước n lặng, biết vận tốc dòng nước 3km/h x x3 S T Nước yên lặng xuôi V 30 Ngược x 3 30 30 x3 30 x3 Ta có phương trình: 30 30 30 30 16 3   6�   � x  90 x  72  � x1  12; x2  x3 x3 x3 x3 Bài 8: phòng họp có 360 ghế xếp thành dãy số ghế dãy Nếu số dãy tăng thêm số ghế dãy tăng thêm thì phịng họp có 400 ghế Tính số dãy ghế số ghế dãy lúc ban đầu Số dãy Số ghế dãy Page 87 Số ghế phịng Tốn Năm học 20202021  Ta có hpt: y y 1 x x 1 Ban đầu Sau thay đổi �xy  360 �xy  360 �� � �  x  1  y  1  400 �x  y  39 � xy  x  1  y  1 x, y nghiệm pt bậc hai: t  39t  360  � t1  24; t  15 Vậy: - Nếu số dãy ghế 24 số ghế dãy 15 - Nếu số dãy ghế 15 số ghế dãy 24 Bài 9: xuồng máy xi dịng 30km, ngược dịng 28km hết thời gian thời gian mà xuồng máy 59,5km mặt hồ yên lặng Tính vận tốc xuồng hồ yên lặng, biết vận tốc nước 3km/h Nước yên lặng V x S 59,5 xuôi x3 30 Ngược x 3 28 T 59,5 119  x 2x 30 x3 28 x3 … Ta có pt: 119 30 28   � 119  x  3  x  3  x.30  x    x.28  x  3 2x x  x  � x  12 x  1071  � x  x  357  � x1  17; x2  21 Bài 10: lâm trường dự định trồng 75ha rừng số tuần lễ Do tuần trồng vượt mức 5ha so với kế hoạch nên trồng 80ha hoàn thành sớm tuần Hỏi tuần lâm trường dự định trồng rừng? tuần trồng số TGHTCV x 75 Kế hoạch x 80 x5 x5 Thực tế … Ta có pt: 75 80   � x  10 x  375  � x1  15; x2  25 x x5 Bài 11: ca nô xuôi từ A đến B cách 24km, lúc từ A đến B bè nứa trồi với vận tốc dịng nước 4km/h Khi đến B ca nơ quay trở lại gặp bè nứa điểm C cách A 8km Tính vận tốc thực ca nô A C B Gọi vận tốc thực ca nô là: x (km/h; x > 4) Vận tốc xuôi: x + (km/h) Vận tốc xuôi: x - (km/h) Page 88 Toán Năm học 20202021  Thời gian xuôi từ A đến B: 24 (h) x4 Quãng đường BC: 24 – = 16 (km) 16 (h) x4 Thời gian bè nứa từ A đến C:  (h) 24 16   � x  40 x  � x1  0; x2  20 Ta có pt: x4 x4 Thời gian ngược từ B đến C: BÀI TẬP VỀ NHÀ: Bài Hai thành phố A B cách 50km Một người xe đạp từ A đến B Sau 1giờ 30phút xe máy từ A đến B trước người xe đạp Tính vận tốc người biết vận tốc người xe máy 2,5 lần vân tốc người xe đạp * Lập bảng Quãng đường Vận tốc Thời gian 50 Xe đạp 50 x Xe máy * Ta có phương trình: 50 2,5x x 50 2,5.x 50 50    , nghiệm x = 12 x 2,5.x Bài 2: Một tơ từ Hải Phịng Hà Nội, đường dài 100km, người lái xe tính tăng vận tốc thêm 10 km/h đến Hà Nội sớm nửa Tính vận tốc tơ không tăng * Lập bảng Quãng đường Vận tốc Thời gian Không tăng 100 x 100/x Tăng 100 x + 10 100/x + 10 * Ta có phương trình: 100 100   x x  10 Bài Một ô tô quãng đường AB dài 840km, sau nửa đường xe dừng lại 30 phút nên quãng đường lại, xe phải tăng vận tốc thêm 2km/h để đến B hẹn Tính vận tốc ban đầu ô tô + Gọi vân tốc ban đầu ô tô x (km/h, x > 0) + Thời gian hết quãng đường AB theo dự định là: + Nửa quãng đường đầu ô tô hết: 840 (h) x 420 (h) x + Vận tốc ô tô nửa quãng đường lại là: x + (km/h) + Thời gian tơ nửa qng đường cịn lại là: 420 (h) x2 Page 89 Toán Năm học 20202021  + Theo ta có phương trình sau: 840 420 420    � � x1  40; x2  42 x x x2 Bài Quãng sông từ A đến B dài 36km, ca nô xuôi từ A đến B ngược từ B A hết tổng cộng Tính vận tốc thực ca nơ biết vận tốc dịng nước 3km/h V thực V nước V xi V ngược S t Xuôi x x+3 36 36/x+3 Ngược x–3 36/x-3 * ta có pt sau: 36 36   � x  15; x  0, x 3 x3 Bài Lúc ô tô từ A đến B Lúc 7giờ 30 phút xe máy từ B đến A với vận tốc vận tốc ô tô 24km/h Ơ tơ đến B 20 phút xe máy đến A Tính vận tốc xe , biết quãng đường AB dài 120km * lập bảng V S T Ơ tơ x 120 120/x Xe máy x-24 120 120/x-24 - thời gian xe máy nhiều tơ là: - ta có pt:   ( h) 120 120   � x  24 x  3456  � x  72; x  48 x  24 x Bài 6: Một người đoạn đường dài 640 km với ô tô tàu hỏa Hỏi vận tốc cuả ô tô tàu hỏa biết vận tốc cuả tàu hỏa vận tốc cuả ô tô km/h * lập bảng V T S ô tô x 4x Tàu hỏa x+5 7(x+5) * ta có pt : 4x + 7(x + 5) = 640 => x = 55 Bài Một ca nô xi từ A đến B, lúc người đi từ dọc bờ sông hướng B Sau chạy 24km, ca nô quay trở lại gặp người C cách A 8km Tính vận tốc ca nơ nước n lặng , biết vận tốc người vận tốc dịng nước 4km/h Tốn suất * Chú ý: - Năng suất (NS) số sản phẩm làm đơn vị thời gian (t) - (NS) x (t) = Tổng sản phẩm thu hoạch Bài Hai công nhân phải làm theo thứ tự 810 900 dụng cụ thời gian Mỗi ngày người thứ hai làm nhiều người thứ dụng cụ Kết người thứ hoàn thành trước thời hạn ngày, người thứ hai hồn thành trước thời hạn ngày Tính số dụng cụ người phải làm ngày * Lập bảng Tổng số sản phẩm cần làm Mỗi ngày làm TGHTCV Người 810 x 810/x Page 90 Toán Năm học 20202021  Người 900 y 900/y �y  x  � � x  34 x  1080  � x1  20; x2  54 , sau tìm y 900 * Ta có hệ phtrình: �810 �x   y  � Bài Hai đội công nhân, đội phải sửa quãng đường dài 20km, tuần hai đội làm tổng cộng 9km Tính xem đội sửa km tuần, biết thời gian đội I làm nhiều đội II làm tuần * Lập bảng Tổng số quãng đường phải Mỗi tuần làm TGHTCV sửa Đội 20 x 20/x Đội 20 9–x 20/9 – x * Ta có phtrình: 20 20   � x  49 x  180  � x  45; x  x 9 x Bài Một đội cơng nhân dự định hồn thành cơng việc với 500 ngày cơng thợ Hãy tính số người đội, biết bổ sung thêm cơng nhân số ngày hồn thành cơng việc giảm ngày * Lập bảng Tổng số ngày công Số công nhân TGHTCV Lúc đầu 500 x 500/x Sau bổ sung 500 x+5 500/ x + * Ta có phtrình: 500 500   � x  x  500  � x  25; x  20 x x5 *************************************************************** ÔN TẬP HÌNH HỌC Bài 1: Từ điểm M ngồi (O), vẽ tiếp tuyến MA, MB với đtrịn Trên cung nhỏ AB lấy điểm C Vẽ CD vng góc với AB, CE vng góc với MA, CF vng góc với MB Gọi I giao điểm AC DE, K giao điểm BC DF CMR: a) Tứ giác AECD nt; tứ giác BFCD nt b) CD2 = CE.CF c) Tứ giác ICKD nt d) IK vng góc với CD Page 91 Tốn Năm học 20202021  A O I D E K 1C 22 F B M �  BFC �  900 (gt) a) Ta có: � AEC  � ADC  BDC + xét tứ giác AECD, ta có: AECD nt + xét tứ giác BFCD, ta có: BFCD nt � AEC  � ADC  1800 , mà góc vị trí đối suy tứ giác �  BFC �  1800 , mà góc vị trí đối suy tứ giác BDC � (cùng chắn cung AC) A1  B b) ta có: � �B � (cùng chắn cung CD) + tứ giác BFCD nt F 1 �� A1 Suy ra: F (1) � (cùng chắn cung CE) A1  D + tứ giác AECD nt � (2) �D � B � Từ (1) (2) suy ra: F 1 � (cùng chắn cung BC) Mặt khác: �A2  B � (cùng chắn cung CD) + tứ giác AECD nt �A2  E � B � Suy ra: E 2 (3) � B � (cùng chắn cung CF) + tứ giác BFCD nt D 2 (4) � D � � A2 Từ (3) (4) suy ra: E 2 Xét tam giác CDE tam giác CDF, ta có: � F � D 1 � � E D � CD CE �  � CD  CE.CF �� CDE : CFD  g.g  � CF CD 2� �  IDK �  ICK � D � D � � � A �  1800 (tổng góc ACB  B c) Xét tứ giác ICKD, ta có: ICK 2 � ; IDK � góc vị trí đối nhau, suy tứ giác ICKD nt tam giác ABC), mà ICK � (cùng chắn cung CK), mà D � A � (cmt) d) ta có tứ giác ICKD nt I�1  D 2 � , mà I�; A � góc vị trí đồng vị nên IK // AB, lại AB vng góc với CD, Suy I�1  A 2 nên IK vng góc với CD Page 92 Tốn Năm học 20202021  Bài 2: Cho tam giác ABC cân A nt đtròn (O), điểm D thuộc tia đối tia AB, CD cắt (O) E, tiếp tuyến (O) B cắt EA F CMR: a) Tứ giác BFDE nt b) FD // BC D F A E O 1 B C �E � (cùng bù với E � ) a) ta có: B 1 �C � (do tam giác ABC cân A) mà B 1 �C � suy ra: E 1 (1) � C �B � (cùng chắn cung AB) mặt khác: E 2 (2) �B � � đỉnh B, E nhìn xuống cạnh DF dới góc nhau, từ (1) (2) suy E suy tứ giác BFDE nt � D � (cùng chắn cung BF), mà �E2 = �B2 = �C1 = �B1, suy b) tứ giác BFDE nt E �D1 = �B1 (2 góc vị trí so le trong) => FD // BC Bài 3: Cho hình vng ABCD, điểm M thuộc cạnh AD Vẽ đtrịn (O) đường kính MB, cắt AC E (khác A) Gọi giao điểm ME DC CMR: a) Tam giác BEM vuông cân b) EM = ED c) điểm B, M, D, K thuộc đtròn d) BK tiếp tuyến (O) A B O M D E 1 C K Page 93 Toán Năm học 20202021  a) tứ giác ABEM nt => �BAM + �BEM = 1800 => 900 + �BEM = 1800 => �BEM = 900 (1) Mặt khác: �A1 = �A2 (tính chất hình vng) => sđ cung BE = sđ cung ME => BE=ME (2) Từ (1) (2) suy tam giác BEM vuông cân E b) xét tam giác BCE tam giác DCE, ta có: CE: chung �C1 = �C2 (tính chất hình vng) CB = CD (gt) Do BCE  DCE (c.g.c) => BE = DE (cạnh tương ứng) (3) Từ (2) (3) => EM = ED (= BE) (4) � M �  900 � K 1 � � � � � D �  900 c) ta có: D �� K1  D1 � EDK cân E => ED = EK � D �  EDM cân EM  ED  � M � � (5) (4) (5) => EB = EM = ED = EK => điểm B, M, D, K thuộc đtrịn có tâm E �  MBK �  1800 � MBK �  900 � BK  BM � BK d) tứ giác BKDM nt (E) � MDK tiếp tuyến đtròn (O) Bài 4: Cho tam giác ABC cân A có cạnh đáy nhỏ cạnh bên nội tiếp đtrịn (O) Tiếp tuyến B C đtròn cắt tia AC tia AB D E CMR: a) BD2 = AD.CD b) Tứ giác BCDE nt c) BC // DE A O B 1j 2 E C D a) ta có: �A1 = �B2 (cùng chắn cung BC) xét tam giác ABD tam giác BCD, ta có: Page 94 Toán Năm học 20202021  � � � A1  B AD BD �  � BD  AD.CD �� ABD : BCD  g g  � � : chung � BD CD D b) ta có:     � �  sd � � E AC  sd BC � � � � � �  sd � � D AB  sd BC �� D1  E1 � điểm D E nhìn xuống cạnh BC 2 � � � mà AB  AC � sd � AB  sd AC � � góc => tứ giác BCDE nt �C � (gt), mà tứ giác BCDE nt => �BED = �C1 (cùng bù với �BCD) c) ta có: B 1 �B1 = �BED (2 góc vị trí đồng vị) => BC // DE Bài 5: Cho tứ giác ACBD nt đtròn (O), đường chéo AB CD vng góc với I trung tuyến IM tam giác AIC cắt BD K, đường cao IH tam giác AIC cắt BD N a) CMR: IK vng góc với BD b) Chứng minh N trung điểm BD c) Tứ giác OMIN hình gì? Tại sao? d) Chứng minh OM  BD; ON  AC C M O H A 1 I B N D K a) ta có: �B1 = �C1 (cùng chắn cung AD) (1) + IM trung tuyến tam giác AIC => IM = MA => tam giác MAI cân M => �A1= �MIA + mà �MIA = �KIB (đối đỉnh) => �KIB = �A1 (2) Từ (1) (2) => �B1 + �BIK = �C1 + �A1 = 90 => �IKB = 900 suy IK vng góc với BD b) ta có: �CIH = �DIN (đối đỉnh), mà �CIH + �C1 = 900, đó: �DIN + �C1 = 900 + mà �C1 = �B1 suy ra: �DIN + �B1 = 900 (*) + mặt khác: �DIN + �BIN = 900 (**) (*) (**) suy ra: �B1 = �BIN => tam giác BIN cân N => NB = NI (3) + lại có: Page 95 Tốn Năm học 20202021  �IDN + �B1 = 900 �DIN + �B1 = 900 Do đó: �IDN = �DIN => tam giác NID cân N => NI = ND (4) (3) (4) => NB = ND => N trung điểm BD c) ta có: M, N trung điểm AC BD => OM vng góc với AC; ON vng góc với BD => OM // IN (cùng vng góc với AC); ON // IM (cùng vng góc vói BD) Do tứ giác DMIN hình bình hành (vì có cạnh đối song song) d) tứ giác OMIN hình bình hành => OM = IN; ON = IM 2 mà IN  BD; IM  AC nên OM  BD; ON  AC Page 96 ... trình Bài 12 : Giải phương trình sau a) 2 x  x  18 x  28  1 �  1 dk : x �0 x  5.2 x  7.3 x  28 � 13 x  28 � x  28 784 392 � 2x  � x  tm  13 1 69 1 69 x  45    4( x 5)�۳ x 9( x... �C  490 06' HC 18 � �A  180   �B  �C   70054' tgC  - theo hệ thức cạnh góc, ta có: HC  AC.cos C � AC  HC 18  �27,5 cos C cos 490 06' Bài 6: Cho hình thang ABCD, có �A  �D  90 0 , đáy... 2�A2  560 08' AC 17 Page 19 Toán Năm học 20202021  + xét tam giác AHB vng H, ta có: �B  90 0  �A1  90 0  28004'  61056' Bài 3: Cho tam giác ABC có

Ngày đăng: 09/08/2021, 19:00

TỪ KHÓA LIÊN QUAN

w