THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng | |
---|---|
Số trang | 129 |
Dung lượng | 814,91 KB |
Nội dung
Ngày đăng: 08/08/2021, 17:33
Nguồn tham khảo
Tài liệu tham khảo | Loại | Chi tiết |
---|---|---|
[10] Anh, L.Q., Khanh, P.Q., Van, D.T.M.: Well-posedness without semicontinu- ity for parametric quasiequilibria and quasioptimization. Computers and Mathematics with Applications 62, 2045–2057 (2011) | Khác | |
[11] Anh, L.Q., Khanh, P.Q., Van, D.T.M.: Well-posedness under relaxed semi- continuity for bilevel equilibrium and optimization problems with equi- librium constraints. Journal of Optimization Theory and Applications 153, 42–59 (2012) | Khác | |
[12] Anh, L.Q., Khanh, P.Q., Van, D.T.M., Yao, J.C.: Well-posedness for vector quasiequilibria. Taiwanese Journal of Mathematics 13, 713–737 (2009) [13] Ansari, Q.H., Flores-Bazan, F.: Generalized vector quasi-equilibrium prob-lems with applications. Journal of Mathematical Analysis and Applica- tions 277, 246–256 (2003) | Khác | |
[14] Auchmuty, G.: Variational principles for variational inequalities. Numeri- cal Functional Analysis and Optimization 10, 863–874 (1989) | Khác | |
[15] Auslender, A.: Optimisation Méthodes Numériques. Masson, Paris (1976) [16] Auslender, A.: Asymptotic analysis for penalty and barrier methods in vari-ational inequalities. SIAM Journal on Control and Optimization 37, 653–671 (1999) | Khác | |
[17] Aussel, D., Gupta, R., Mehra, A.: Gap functions and error bounds for inverse quasi-variational inequality problems. Journal of Mathematical Analysis and Applications 407, 270–280 (2013) | Khác | |
[18] Bianchi, M., Kassay, G., Pini, R.: Well-posed equilibrium problems. Non- linear Analysis: Theory, Methods and Applications 72, 460–468 (2010) [19] Bianchi, M., Konnov, I.V., Pini, R.: Lexicographic and sequential equilib-rium problems. Journal of Global Optimization 46, 551–560 (2010) | Khác | |
[20] Bianchi, M., Pini, R.: A note on stability for parametric equilibrium prob- lems. Operations Research Letters 31, 445–450 (2003) | Khác | |
[21] Bianchi, M., Pini, R.: Sensitivity for parametric vector equilibria. Optimiza- tion 55, 221–230 (2006) | Khác | |
[22] Bianchi, M., Schaible, S.: Generalized monotone bifunctions and equilib- rium problems. Journal of Optimization Theory and Applications 90, 31–43 (1996) | Khác | |
[23] Blum, E., Oettli, W.: From optimization and variational inequalities to equi- librium problems. The Mathematics Student 63, 123–145 (1994) | Khác | |
[24] Bonsangue, M.M., van Breugel, F., Rutten, J.J.M.M.: Generalized metric spaces: completion, topology, and powerdomains via the Yoneda embed- ding. Theoretical Computer Science 193, 1–51 (1998) | Khác | |
[27] Chen, C.R., Li, S.J., Teo, K.L.: Solution semicontinuity of parametric gen- eralized vector equilibrium problems. Journal of Global Optimization 45, 309–318 (2009) | Khác | |
[28] Courant, R.: Variational methods for the solution of problems of equilib- rium and vibrations. Bulletin of American Mathematical Society 49, 1–23 (1943) | Khác | |
[29] Crespi, G.P., Guerraggio, A., Rocca, M.: Well posedness in vector optimiza- tion problems and vector variational inequalities. Journal of Optimization Theory and Applications 132, 213–226 (2007) | Khác | |
[30] Crespi, G.P., Papalia, M., Rocca, M.: Extended well-posedness of quasicon- vex vector optimization problems. Journal of Optimization Theory and Applications 141, 285–297 (2009) | Khác | |
[31] Crouzeix, J.P., Marcotte, P., Zhu, D.: Conditions ensuring the applicability of cutting-plane methods for solving variational inequalities. Mathemati- cal Programming 88, 521–539 (2000) | Khác | |
[32] Darabi, M., Zafarani, J.: Tykhonov well-posedness for quasi-equilibrium problems. Journal of Optimization Theory and Applications 165, 458–479 (2015) | Khác | |
[36] Dontchev, A.L., Zolezzi, T.: Well-posed Optimization Problems. Springer, Berlin (1993) | Khác | |
[37] Facchinei, F., Kanzow, C.: Penalty methods for the solution of generalized Nash equilibrium problems. SIAM Journal on Optimization 20, 2228–2253 (2010) | Khác |
TỪ KHÓA LIÊN QUAN
TÀI LIỆU CÙNG NGƯỜI DÙNG
TÀI LIỆU LIÊN QUAN