1. Trang chủ
  2. » Giáo án - Bài giảng

BÀI TẬP TOÁN CAO CẤP TẬP 2

160 863 13

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 160
Dung lượng 1,04 MB

Nội dung

Bài tập toán cao cấp Tập 2 Nguyễn Thủy Thanh NXB Đại học quốc gia Hà Nội 2007, 158 Tr. Từ khoá: Bài tập toán cao cấp, Giới hạn dãy số, Giới hạn hàm số, Tính liên tục của hàm số, Hàm liên tục, Phép tính vi phân hàm một biến, Đạo hàm, Vi phân, Công thức Taylor, Đạo hàm riêng, Vi phân của hàm nhiều biến, Cực trị của hàm nhiều biến. Tài liệu trong Thư viện điện tử ĐH Khoa học Tự nhiên có thể sử dụng cho mục đích học tập và nghiên cứu cá nhân. Nghiêm cấm mọi hình thức sao chép, in ấn phục vụ các mục đích khác nếu không được sự chấp thuận của nhà xuất bản và tác giả. NGUY ˆ E ˜ N THUY ’ THANH B ` AI T ˆ A . P TO ´ AN CAO C ˆ A ´ P Tˆa . p2 Ph´ep t´ınh vi phˆan c´ac h`am NH ` AXU ˆ A ´ TBA ’ NDA . IHO . CQU ˆ O ´ C GIA H ` AN ˆ O . I Mu . clu . c 7 Gi´o . iha . n v`a liˆen tu . ccu ’ a h`am sˆo ´ 3 7.1 Gi´o . iha . ncu ’ a d˜ay sˆo ´ . 4 7.1.1 C´ac b`ai to´an liˆen quan t´o . id i . nh ngh˜ıa gi´o . iha . n. 5 7.1.2 Ch´u . ng minh su . . hˆo . itu . cu ’ a d˜ay sˆo ´ du . . a trˆen c´ac d i . nh l´y vˆe ` gi´o . iha . n 11 7.1.3 Ch´u . ng minh su . . hˆo . itu . cu ’ a d˜ay sˆo ´ du . . atrˆend iˆe ` u kiˆe . nd u ’ dˆe ’ d˜ay hˆo . itu . (nguyˆen l´y Bolzano-Weierstrass) . . . . . . . . . . . . . . . 17 7.1.4 Ch´u . ng minh su . . hˆo . itu . cu ’ a d˜ay sˆo ´ du . . atrˆend iˆe ` u kiˆe . ncˆa ` nv`ad u ’ dˆe ’ d˜ay hˆo . itu . (nguyˆen l´y hˆo . itu . Bolzano-Cauchy) . . . . . . . . . . . . . . . . . 25 7.2 Gi´o . iha . n h`am mˆo . tbiˆe ´ n 27 7.2.1 C´ac kh´ai niˆe . mv`ad i . nh l´y co . ba ’ nvˆe ` gi´o . iha . n 27 7.3 H`am liˆen tu . c . 41 7.4 Gi´o . iha . n v`a liˆen tu . ccu ’ a h`am nhiˆe ` ubiˆe ´ n 51 8 Ph´ep t´ınh vi phˆan h`am mˆo . tbiˆe ´ n60 8.1 D - a . oh`am 61 8.1.1 D - a . o h`am cˆa ´ p1 61 8.1.2 D - a . o h`am cˆa ´ pcao . 62 8.2 Viphˆan 75 8.2.1 Vi phˆan cˆa ´ p1 . 75 2MU . CLU . C 8.2.2 Vi phˆan cˆa ´ pcao 77 8.3 C´ac d i . nh l´y co . ba ’ nvˆe ` h`am kha ’ vi. Quy t˘a ´ c l’Hospital. Cˆong th´u . cTaylor . 84 8.3.1 C´ac d i . nh l´y co . ba ’ nvˆe ` h`am kha ’ vi 84 8.3.2 Khu . ’ c´ac da . ng vˆo d i . nh. Quy t˘a ´ c Lˆopitan (L’Hospitale) . . . . . . . . . . . . . . . . . . . 88 8.3.3 Cˆong th´u . cTaylor . 96 9Ph´ep t´ınh vi phˆan h`am nhiˆe ` ubiˆe ´ n 109 9.1 D - a . oh`amriˆeng 110 9.1.1 D - a . o h`am riˆeng cˆa ´ p1 . 110 9.1.2 D - a . o h`am cu ’ a h`am ho . . p 111 9.1.3 H`am kha ’ vi 111 9.1.4 D - a . o h`am theo hu . ´o . ng . 112 9.1.5 D - a . o h`am riˆeng cˆa ´ pcao 113 9.2 Vi phˆan cu ’ a h`am nhiˆe ` ubiˆe ´ n . 125 9.2.1 Vi phˆan cˆa ´ p1 . 126 9.2.2 ´ Ap du . ng vi phˆan d ˆe ’ t´ınh gˆa ` nd´ung . . . . . . . 126 9.2.3 C´ac t´ınh chˆa ´ tcu ’ a vi phˆan . . . . . . . . . . . . 127 9.2.4 Vi phˆan cˆa ´ pcao 127 9.2.5 Cˆong th´u . cTaylor .129 9.2.6 Vi phˆan cu ’ a h`am ˆa ’ n . 130 9.3 Cu . . c tri . cu ’ a h`am nhiˆe ` ubiˆe ´ n . 145 9.3.1 Cu . . c tri . . 145 9.3.2 Cu . . c tri . c´o d iˆe ` ukiˆe . n 146 9.3.3 Gi´a tri . l´o . n nhˆa ´ tv`ab´e nhˆa ´ tcu ’ a h`am . . . . . . 147 Chu . o . ng 7 Gi´o . iha . nv`aliˆen tu . ccu ’ a h`am sˆo ´ 7.1 Gi´o . iha . ncu ’ a d˜ay sˆo ´ 4 7.1.1 C´ac b`ai to´an liˆen quan t´o . id i . nh ngh˜ıa gi´o . i ha . n 5 7.1.2 Ch´u . ng minh su . . hˆo . itu . cu ’ a d˜ay sˆo ´ du . . a trˆen c´ac d i . nh l´y vˆe ` gi´o . iha . n 11 7.1.3 Ch´u . ng minh su . . hˆo . itu . cu ’ a d˜ay sˆo ´ du . . a trˆen d iˆe ` ukiˆe . ndu ’ dˆe ’ d˜ay hˆo . itu . (nguyˆen l´y Bolzano-Weierstrass) . . . . . . . . 17 7.1.4 Ch´u . ng minh su . . hˆo . itu . cu ’ a d˜ay sˆo ´ du . . a trˆen d iˆe ` ukiˆe . ncˆa ` nv`adu ’ dˆe ’ d˜ay hˆo . itu . (nguyˆen l ´y h ˆo . itu . Bolzano-Cauchy) . . . . . . . . . . 25 7.2 Gi´o . iha . n h`am mˆo . tbiˆe ´ n 27 7.2.1 C´ac kh´ai niˆe . mv`ad i . nh l´y co . ba ’ nvˆe ` gi´o . iha . n27 7.3 H`am liˆen tu . c 41 7.4 Gi´o . iha . n v`a liˆen tu . ccu ’ a h`am nhiˆe ` ubiˆe ´ n. 51 4Chu . o . ng 7. Gi´o . iha . n v`a liˆen tu . ccu ’ a h`am sˆo ´ 7.1 Gi´o . iha . ncu ’ ad˜ay sˆo ´ H`am sˆo ´ x´ac di . nh trˆen tˆa . pho . . p N d u . o . . cgo . i l`a d˜ay sˆo ´ vˆo ha . n. D˜ay sˆo ´ thu . `o . ng d u . o . . cviˆe ´ tdu . ´o . ida . ng: a 1 ,a 2 , .,a n , . (7.1) ho˘a . c {a n }, trong d´o a n = f(n), n ∈ N du . o . . cgo . il`asˆo ´ ha . ng tˆo ’ ng qu´at cu ’ a d˜ay, n l`a sˆo ´ hiˆe . ucu ’ asˆo ´ ha . ng trong d˜ay. Ta cˆa ` nlu . u ´y c´ac kh´ai niˆe . m sau d ˆay: i) D˜ay (7.1) d u . o . . cgo . il`abi . ch˘a . nnˆe ´ u ∃ M ∈ R + : ∀ n ∈ N ⇒|a n |  M; v`a go . i l`a khˆong bi . ch˘a . nnˆe ´ u: ∀ M ∈ R + : ∃ n ∈ N ⇒|a n | >M. ii) Sˆo ´ a d u . o . . cgo . i l`a gi´o . iha . ncu ’ a d˜ay (7.1) nˆe ´ u: ∀ ε>0, ∃ N(ε):∀ n  N ⇒|a n − a| <ε. (7.2) iii) Sˆo ´ a khˆong pha ’ i l`a gi´o . iha . ncu ’ a d˜ay (7.1) nˆe ´ u: ∃ ε>0, ∀ N : ∃ n  N ⇒|a n − a|  ε. (7.3) iv) D˜ay c´o gi´o . iha . nd u . o . . cgo . i l`a d˜ay hˆo . itu . , trong tru . `o . ng ho . . p ngu . o . . c la . i d˜ay (7.1) go . i l`a d˜ay phˆan k`y. v) D˜ay (7.1) go . i l`a d˜ay vˆo c`ung b´e nˆe ´ u lim n→∞ a n =0v`ago . i l`a d˜ay vˆo c`ung l´o . nnˆe ´ u ∀ A>0, ∃ N sao cho ∀ n>N⇒|a n | >Av`a viˆe ´ t lim a n = ∞. vi) D iˆe ` ukiˆe . ncˆa ` ndˆe ’ d˜ay hˆo . itu . l`a d˜ay d´o pha ’ ibi . ch˘a . n. Ch´u´y:i) Hˆe . th´u . c (7.2) tu . o . ng d u . o . ng v´o . i: −ε<a n − a<ε⇔ a − ε<a n <a+ ε. (7.4) 7.1. Gi´o . iha . ncu ’ a d˜ay sˆo ´ 5 Hˆe . th´u . c (7.4) ch´u . ng to ’ r˘a ` ng mo . isˆo ´ ha . ng v´o . ichı ’ sˆo ´ n>Ncu ’ a d˜ay hˆo . itu . d ˆe ` un˘a ` m trong khoa ’ ng (a − ε, a + ε), khoa ’ ng n`ay go . il`aε-lˆan cˆa . ncu ’ ad iˆe ’ m a. Nhu . vˆa . y, nˆe ´ u d˜ay (7.1) hˆo . itu . d ˆe ´ nsˆo ´ a th`ı mo . isˆo ´ ha . ng cu ’ a n´o tr`u . ra mˆo . tsˆo ´ h˜u . uha . nsˆo ´ ha . ng d ˆe ` un˘a ` m trong ε-lˆan cˆa . nbˆa ´ tk`yb´ebao nhiˆeu t`uy ´y cu ’ ad iˆe ’ m a. ii) Ta lu . u´yr˘a ` ng d˜ay sˆo ´ vˆo c`ung l´o . n khˆong hˆo . itu . v`a k´y hiˆe . u lim a n = ∞ (−∞)chı ’ c´o ngh˜ıa l`a d˜ay a n l`a vˆo c`ung l´o . nv`ak´yhiˆe . ud ´o ho`an to`an khˆong c´o ngh˜ıa l`a d˜ay c´o gi´o . iha . n. 7.1.1 C´ac b`ai to´an liˆen quan t´o . id i . nh ngh˜ıa gi´o . i ha . n Dˆe ’ ch´u . ng minh lim a n = a b˘a ` ng c´ach su . ’ du . ng d i . nh ngh˜ıa, ta cˆa ` ntiˆe ´ n h`anh theo c´ac bu . ´o . csaud ˆay: i) Lˆa . pbiˆe ’ uth´u . c |a n − a| ii) Cho . n d˜ay b n (nˆe ´ udiˆe ` ud´o c ´o l o . . i) sao cho |a n − a|  b n ∀ n v`a v´o . i ε d u ’ b´e bˆa ´ tk`ybˆa ´ tphu . o . ng tr`ınh d ˆo ´ iv´o . i n: b n <ε (7.5) c´o thˆe ’ gia ’ imˆo . t c´ach dˆe ˜ d`ang. Gia ’ su . ’ (7.5) c´o nghiˆe . ml`an>f(ε), f(ε) > 0. Khi d ´o ta c´o thˆe ’ lˆa ´ y n l`a [f(ε)], trong d´o[f(ε)] l`a phˆa ` n nguyˆen cu ’ a f(ε). C ´ AC V ´ IDU . V´ı d u . 1. Gia ’ su . ’ a n = n (−1) n .Ch´u . ng minh r˘a ` ng: i) D˜ay a n khˆong bi . ch˘a . n. ii) D˜ay a n khˆong pha ’ il`avˆoc`ung l´o . n. Gia ’ i. i) Ta ch´u . ng minh r˘a ` ng a n tho ’ a m˜an di . nh ngh˜ıa d˜ay khˆong bi . ch˘a . n. Thˆa . tvˆa . y, ∀ M>0sˆo ´ ha . ng v´o . isˆo ´ hiˆe . u n = 2([M]+1)b˘a ` ng n v`a l´o . nho . n M.D iˆe ` ud´o c´o ngh˜ıa l`a d˜ay a n khˆong bi . ch˘a . n. 6Chu . o . ng 7. Gi´o . iha . n v`a liˆen tu . ccu ’ a h`am sˆo ´ ii) Ta ch´u . ng minh r˘a ` ng a n khˆong pha ’ i l`a vˆo c`ung l´o . n. Thˆa . tvˆa . y, ta x´et khoa ’ ng (−2, 2). Hiˆe ’ n nhiˆen mo . isˆo ´ ha . ng cu ’ a d˜ay v´o . isˆo ´ hiˆe . ule ’ d ˆe ` u thuˆo . c khoa ’ ng (−2, 2) v`ı khi n le ’ th`ı ta c´o: n (−1) n = n −1 =1/n ∈ (−2, 2). Nhu . vˆa . y trong kho ’ ng (−2, 2) c´o vˆo sˆo ´ sˆo ´ ha . ng cu ’ a d˜ay. T`u . d ´o, theo d i . nh ngh˜ıa suy ra a n khˆong pha ’ i l`a vˆo c`ung l´o . n.  V´ı du . 2. D`ung d i . nh ngh˜ıa gi´o . iha . n d˜ay sˆo ´ d ˆe ’ ch´u . ng minh r˘a ` ng: 1) lim n→∞ (−1) n−1 n =0. 2) lim n→∞ n n +1 =1. Gia ’ i. D ˆe ’ ch´u . ng minh d˜ay a n c´o gi´o . iha . nl`aa, ta cˆa ` nch´u . ng minh r˘a ` ng d ˆo ´ iv´o . imˆo ˜ isˆo ´ ε>0 cho tru . ´o . cc´othˆe ’ t`ım d u . o . . csˆo ´ N (N phu . thuˆo . c ε) sao cho khi n>N th`ı suy ra |a n − a| <ε. Thˆong thu . `o . ng ta c´o thˆe ’ chı ’ ra cˆong th´u . ctu . `o . ng minh biˆe ’ udiˆe ˜ n N qua ε. 1) Ta c´o: |a n − 0| =    (−1) n−1 n    = 1 n · Gia ’ su . ’ ε l`a sˆo ´ du . o . ng cho tru . ´o . ct`uy ´y. Khi d ´o: 1 n <ε⇔ n> 1 ε · V`ıthˆe ´ ta c´o thˆe ’ lˆa ´ y N l`a sˆo ´ tu . . nhiˆen n`ao d ´o tho ’ am˜andiˆe ` ukiˆe . n: N> 1 ε ⇒ 1 N <ε. (Ch˘a ’ ng ha . n, ta c´o thˆe ’ lˆa ´ y N =[1/ε], trong d ´o[1/ε] l`a phˆa ` n nguyˆen cu ’ a1/ε). Khi d ´o ∀ n  N th`ı: |a n − 0| = 1 n  1 N <ε. 7.1. Gi´o . iha . ncu ’ a d˜ay sˆo ´ 7 Diˆe ` ud´o c´o ngh˜ıa l`a lim n→∞ (−1) n n =0. 2) Ta lˆa ´ ysˆo ´ ε>0bˆa ´ tk`yv`at`ımsˆo ´ tu . . nhiˆen N(ε) sao cho ∀ n> N(ε) th`ı:    n n +1 − 1    <ε. Bˆa ´ td ˘a ’ ng th´u . c |a n − 1| <ε⇔ 1 n +1 <ε⇔ 1 ε − 1. Do d ´o ta c´o thˆe ’ lˆa ´ ysˆo ´ N(ε) l`a phˆa ` n nguyˆen cu ’ a 1 ε − 1, t´u . c l`a: N(ε)=E((1/ε) − 1). Khi d ´ov´o . imo . i n  N ta c´o:    n n +1 − 1    = 1 n +1  1 N +1 <ε⇒ lim n→∞ n n +1 =1.  V´ı d u . 3. Ch´u . ng minh r˘a ` ng c´ac d˜ay sau d ˆay phˆan k`y: 1) a n = n, n ∈ N (7.6) 2) a n =(−1) n ,n∈ N (7.7) 3) a n =(−1) n + 1 n · (7.8) Gia ’ i. 1) Gia ’ su . ’ d˜ay (7.6) hˆo . itu . v`a c´o gi´o . iha . nl`aa.Talˆa ´ y ε =1. Khi d ´o theo di . nh ngh˜ıa gi´o . iha . ntˆo ` nta . isˆo ´ hiˆe . u N sao cho ∀ n>Nth`ı ta c´o |a n − a| < 1 ngh˜ıa l`a |n− a| < 1 ∀ n>N.T`u . d ´o −1 <n− a<1 ∀ n>N⇔ a− 1 <n<a+1∀ n>N. Nhu . ng bˆa ´ td ˘a ’ ng th´u . c n<a+1,∀ n>N l`a vˆo l´y v`ı tˆa . pho . . p c´ac sˆo ´ tu . . nhiˆen khˆong bi . ch˘a . n. 2) C´ach 1. Gia ’ su . ’ d˜ay a n hˆo . itu . v`a c´o gi´o . iha . nl`aa.Talˆa ´ y lˆan cˆa . n  a− 1 2 ,a+ 1 2  cu ’ ad iˆe ’ m a.Taviˆe ´ t d˜ay d˜a cho du . ´o . ida . ng: {a n } = −1, 1,−1, 1, (7.9) 8Chu . o . ng 7. Gi´o . iha . n v`a liˆen tu . ccu ’ a h`am sˆo ´ V`ıdˆo . d`ai cu ’ a khoa ’ ng  a − 1 2 ,a+ 1 2  l`a b˘a ` ng 1 nˆen hai d iˆe ’ m −1 v`a +1 khˆong thˆe ’ d ˆo ` ng th`o . i thuˆo . c lˆan cˆa . n  a− 1 2 ,a+ 1 2  cu ’ ad iˆe ’ m a, v`ı khoa ’ ng c´ach gi˜u . a −1v`a+1b˘a ` ng 2. D iˆe ` ud´o c´o ngh˜ıa l`a o . ’ ngo`ai lˆan cˆa . n  a − 1 2 ,a+ 1 2  c´o vˆo sˆo ´ sˆo ´ ha . ng cu ’ ad˜ayv`av`ıthˆe ´ (xem ch´u ´yo . ’ trˆen) sˆo ´ a khˆong thˆe ’ l`a gi´o . iha . ncu ’ a d˜ay. C´ach 2. Gia ’ su . ’ a n → a. Khi d´o ∀ ε>0 (lˆa ´ y ε = 1 2 ) ta c´o |a n − a| < 1 2 ∀ n  N. V`ı a n = ±1nˆen |1 − a| < 1 2 , |−1 − a| < 1 2 ⇒2=|(1 − a)+(1+a)|  |1 − a| + |a +1|  1 2 + 1 2 =1 ⇒2 < 1, vˆo l´y. 3) Lu . u´yr˘a ` ng v´o . i n =2m ⇒ a 2m =1+ 1 2m .Sˆo ´ ha . ng kˆe ` v´o . in´o c´o sˆo ´ hiˆe . ule ’ 2m +1(hay2m − 1) v`a a 2m+1 = −1+ 1 2m +1 < 0 (hay a 2m−1 = −1+ 1 2m − 1  0). T`u . d ´o suy r˘a ` ng |a n − a n−1 | > 1. Nˆe ´ usˆo ´ a n`ao d ´o l`a gi´o . iha . ncu ’ ad˜ay(a n ) th`ı b˘a ´ tdˆa ` ut`u . sˆo ´ hiˆe . u n`ao d ´o ( a n ) tho ’ a m˜an bˆa ´ td˘a ’ ng th´u . c |a n − a| < 1 2 . Khi d ´o |a n − a n+1 |  |a n − a| + |a n+1 − a| < 1 2 + 1 2 =1. Nhu . ng hiˆe . ugi˜u . a hai sˆo ´ ha . ng kˆe ` nhau bˆa ´ tk`ycu ’ ad˜ayd ˜a cho luˆon luˆon l´o . nho . n1. D iˆe ` u mˆau thuˆa ˜ n n`ay ch´u . ng to ’ r˘a ` ng khˆong mˆo . tsˆo ´ thu . . c n`ao c´o thˆe ’ l`a gi´o . iha . ncu ’ a d˜ay d ˜a cho. 

Ngày đăng: 21/12/2013, 22:56

TỪ KHÓA LIÊN QUAN

w