1. Trang chủ
  2. » Cao đẳng - Đại học

De thi dap an TOAN CAO CAP a2 nh 20112012

3 2,7K 16

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 3
Dung lượng 38,5 KB

Nội dung

TRƯỜNG ĐH THỦ DẦU MỘT KỲ THI HỌC KỲ II ; NĂM HỌC 2011–2012 Môn thi : TOÁN CAO CẤP A2 Đề số 1 Lớp : ĐH CNTT (IS1152A1, SE1152A1) Thời gian làm bài : 90 phút CÂU 1.- (2đ) : Dùng phương pháp Gauss giải hệ phương trình : x – 3y + 2z – t = 2 4x + y + 3z – 2t = 1 2x + 7y – z = –1 CÂU 2.- (3đ) : 1) Trong không gian vectơ R 4 cho các vectơ : v 1 = (2 , 3 , 1 , 4) v 2 = (4 , 11 , 5 , 10) v 3 = (6 , 14 , 0 , 18) v 4 = (2 , 8 , 4 , 7) Hệ 4 vectơ này có độc lập tuyến tính không ? 2) Cho dạng toàn phương : Q = 2x 1 2 + 2x 1 x 2 – 2x 2 x 3 + x 3 2 Tìm ma trận của Q và đưa Q về dạng chính tắc bằng phương pháp Jacobi. CÂU 3.- (2đ) : Trong không gian vectơ R 4 cho ánh xạ tuyến tính f xác định bởi f(x,y,z,t) = (x+3y+2z+t, 2x+5y+11z+2t, -y+3z+t, x+2y+z+3t) Tìm ma trận chính tắc của f . Xác định cơ sở và số chiều của Ker(f). CÂU 4.- (3đ) : 7 –2 0 Cho ma trận A = –2 6 –2 ∈ M 3 (R) 0 –2 5 1) Tìm đa thức đặc trưng của ma trận A. 2) Ma trận A có chéo hóa được không ? Nếu A chéo hóa được, hãy cho biết một dạng chéo của nó. 3) Xác định ma trận làm chéo hóa ứng với dạng chéo nêu trên của ma trận A. HẾT - Giám thị coi thi không giải thích đề thi. Họ tên thí sinh : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SBD : . . . . . . . . . . ĐÁP ÁN ĐỀ SỐ 1 CÂU 1.- (2đ) Biến đổi ma trận hệ số mở rộng : 1,5đ Hệ pt vô nghiệm 0,5đ CÂU 2.- (3đ) 1) det(U) = -60 ≠ 0 1,5đ (Có thể biến đổi về ma trận dạng bậc thang) ⇒ hệ độc lập tuyến tính 0,5đ 2) Ma trận của dạng toàn phương 0.5đ 2 1 0 1 0 -1 0 -1 1 Dạng chính tắc Q = 2y 1 2 – ½ y 2 2 + 3y 3 2 0.5đ CÂU 3.- (2đ) Lập ma trận chính tắc : 0.5đ 1 3 2 1 2 5 11 2 0 –1 3 1 1 2 1 3 Ker(f) có cơ sở {(-27,7,1,4)} 1đ dim Ker(f) = 1 0.5đ CÂU 4.- (3đ) Đa thức đặc trưng ϕ A (λ) = -(λ-3)(λ-6) (λ-9) 1đ A chéo hóa được 0.5đ Xác định một dạng chéo của A 0.5đ chẳng hạn : 3 0 0 0 6 0 0 0 9 Tương ứng, xác định ma trận làm chéo hóa 1đ 1 2 2 2 1 -2 2 -2 1 . không gian vectơ R 4 cho nh xạ tuyến t nh f xác đ nh bởi f(x,y,z,t) = (x+3y+2z+t, 2x+5y+11z+2t, -y+3z+t, x+2y+z+3t) Tìm ma trận ch nh tắc của f . Xác đ nh. TRƯỜNG ĐH THỦ DẦU MỘT KỲ THI HỌC KỲ II ; NĂM HỌC 2011–2012 Môn thi : TOÁN CAO CẤP A2 Đề số 1 Lớp : ĐH CNTT (IS1152A1, SE1152A1) Thời gian làm bài : 90 phút

Ngày đăng: 04/01/2014, 11:30

TỪ KHÓA LIÊN QUAN

w