1. Trang chủ
  2. » Luận Văn - Báo Cáo

Ảnh hưởng của chân không ngẫu nhiên trong tương tác của trường laser cộng hưởng với hệ lượng tử ba mức

41 310 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 41
Dung lượng 1,84 MB

Nội dung

Bộ GIáO DụC Và ĐàO TạO TRƯờng đại học vinh --------***-------- Phạm xuân đông ảnh hởng của chân không ngẫu nhiên trong t- ơng tác của trờng laser cộng hởng với hệ lợng tử ba mức. Chuyên ngành: Quang học Mã số: 62 44 11 01 Luận văn thạc sỹ vật lý Ngời hớng dẫn khoa học: PGS. TS Nguyễn Huy công Vinh, tháng 11 năm 2009 1 Lời cảm ơn Trớc hết, tôi xin đợc bày tỏ lòng biết ơn sâu sắc đến PGS. TS. Nguyễn Huy Công đã giúp tôi chọn đề tài, tận tình chỉ dẫn tôi, giúp tôi vợt qua các khó khăn trong suốt quá trình học tập và làm luận văn. Tôi xin gửi lời cảm ơn các thầy giáo: TS. Cao Thành Lê, TS. Đoàn Hoài Sơn và các thầy giáo cô giáo trong khoa Vật lí đã góp ý chỉ dẫn cho tôi trong quá trình học tập và nghiên cứu. Cảm ơn Ban chủ nhiệm khoa Vật lí, khoa đào tạo Sau Đại Học đã tạo cho tôi môi trờng học tập và nghiên cứu thuận lợi nhất. Tôi xin cảm ơn gia đình, bạn bè và đồng nghiệp đã động viên, tạo điều kiện cho tôi trong suốt quá trình học tập và nghiên cứu. Vinh, tháng 11 năm 2009 Tác giả Phạm Xuân Đông 2 Mục lục Mở đầu 3 Chơng I: Thăng giáng ngẫu nhiên của chân không điện từ .7 1.1 Chân không điện từ .7 1.1.1 Tính bất định của ánh sáng .7 1.1.2 Trạng thái chân không kết hợp .11 1.1.3 Trạng thái chân không nén 15 1.2 Thăng giáng của chân không ngẫu nhiên .19 1.2.1 Thăng giáng của chân không thờng 20 1.2.2 Thăng giáng của chân không nén .21 1.3 Kết luận chơng I 23 Chơng II: ảnh hởng của chân không ngẫu nhiên vào nghịch đảo độ c trú của hệ lợng tử ba mức trong cấu hình Lamđa .24 2.1 Các loại cấu hình của hệ ba mức 24 2.2 Hamiltonian của hệ nguyên tử ba mứctrờng kích thích 26 2.3 Hệ phơng trình quang học Bloch trong cấu hình lamđa .27 2.4 Hiệu độ c trú trong sự có mặt của chân không ngẫu nhiên 29 2.5 Kết luận chơng II 36 Kết luận 37 Phụ lục .39 Tài liệu tham khảo 40 3 Mở Đầu Nghiên cứu tơng tác giữa trờng điện từ với môi trờng, đã và đang đợc quan tâm nghiên cứu trong nhiều lĩnh vực khoa học khác nhau. Loại tơng tác đợc tập trung nghiên cứu nhiều hơn là tơng tác giữa trờng ánh sáng và môi trờng vật chất. Nh chúng ta đã biết, năm 1900, nhà vật lý học ngời Đức - M. Plăng đã phát minh ra thuyết lợng tử. Theo đó, những nguyên tử hay phân tử vật chất không hấp thụ hay bức xạ một cách liên tục mà thành từng phần riêng biệt, đứt quãng. Mỗi phần đó gọi là một lợng tử, mang một năng lợng hoàn toàn xác định. Năm 1905, Einstein đã đa ra thuyết lợng tử ánh sáng và giải thích một cách đầy đủ thuyết l- ợng tử của M. Plăng và đã dẫn ra công thức Plăng bằng một sự lý giải chặt chẽ và đầy sức thuyết phục. Đây là mốc đánh dấu thời kỳ phát triển mới của Vật lý học nói chung và Quang học nói riêng. Một loạt các ngành nghiên cứu hẹp về lợng tử lần lợt ra đời bắt đầu là cơ học lợng tử. Hơn nửa thế kỷ sau, vào khoảng những năm 60 của thế kỷ XX, cùng với những sự phát triển về khoa học kỹ thuật, các nhà vật lý đã chế tạo ra những thiết bị dùng để khuếch đại ánh sáng, tạo ra đợc những chùm ánh sáng có những tính chất rất u việt, đó là các chùm ánh sáng có độ đơn sắc, độ kết hợp cao, và đặc biệt là có cờng độ lớn. Nhờ có những chùm ánh sáng đợc khuếch đại ấy (thông thờng ta gọi chúng là chùm ánh sáng laser, hay gọi tắt là laser) chúng ta nghiên cứu đợc một cách kỹ càng hơn về các hiệu ứng xẩy xa trong các môi trờng vật chất khi có trờng ánh sáng kích thích. Vì có trờng kích thích mạnh nên, ngoài các hiệu ứng bậc nhất (tuyến tính) thông thờng, chúng ta có điều kiện để nghiên cứu các hiệu ứng phi tuyến, xẩy ra khi trờng kích thích có cờng độ mạnh. Nh chúng ta đã biết, theo cơ học lợng tử, bình thờng các hạt (chẳng hạn các điện tử) trong nguyên tử luôn có xu hớng nằm ở trạng thái có mức năng lợng thấp. Khi các hạt đó hấp thụ phôtôn của trờng kích thích thì chúng sẽ chuyển lên các mức năng lợng cao hơn. Nhờ có các quá trình chuyển ngẫu nhiên và chuyển cảm ứng (do trờng kích thích gây ra) các hạt sẽ lại chuyển về các mức năng lợng thấp 4 hơn. Đi cùng với các quá trình chuyển đó là các quá trình bức xạ phôtôn, đợc gọi là các quá trình bức xạ ngẫu nhiên và bức xạ cảm ứng. Một số photon thứ cấp lại bị các nguyên tửmức dới hấp thụ để chuyển lên trạng thái kích thích rồi sau đó lại trở về làm phát xạ các photon mới. Kết quả là chúng ta có hiệu ứng huỳnh quang cộng hởng. Trong thực nghiệm, bằng cách sử dụng các máy quang phổ, chúng ta có thể thu đợc hình ảnh của phổ huỳnh quang này. Trong những năm gần đây, đã có rất nhiều công trình cả về lý thuyết và thực nghiệm nghiên cứu các hiệu ứng thu đợc từ tơng tác của trờng laser nói riêng và tr- ờng điện từ nói chung với các hệ lợng tử (môi trờng). Về mặt lý thuyết, khi nghiên cứu vấn đề này, thông thờng, các nhà khoa học đều xuất phát từ việc nghiên cứu t- ơng tác giữa trờng điện từ với nguyên tử hai mức. Đây là mô hình đơn giản nhất vì nguyên tử 2 mức chỉ bao gồm mức cơ bản (mức dới) và mức kích thích (mức trên). Thực tế, việc giả thiết nguyên tử chỉ có 2 mức năng lợng là một mô hình lý t- ởng hoá. Mặc dù vậy, kết quả nghiên cứu về tơng tác của trờng kích thích với nguyên tử hai mức cũng đã cho chúng ta giải thích đợc khá nhiều các hiệu ứng vật lý. Tuy nhiên nếu dừng lại ở nguyên tử gần đúng hai mức thì còn có nhiều hiệu ứng, nhiều kết quả thực nghiệm khác không thể giải thích đợc về phơng diện lý thuyết. Mặt khác, trong thức tế, nguyên tử có khá nhiều các mức năng lợng khác nhau. Vì vậy việc mở rộng nghiên cứu hệ có nhiều mức trong sự có mặt của trờng kích thích là một việc làm hết sức cần thiết. Điều đó cho phép chúng ta tìm hiểu đ- ợc kỹ càng hơn, hiểu đợc một cách thấu đáo, sâu sắc hơn bản chất vật lý của một số hiện tợng mà nếu chúng ta dừng lại ở nguyên tử hai mức thì không thể giải thích đợc. Trong quá trình nghiên cứu tơng tác của trờng kích thích với hệ lợng tử, thông thờng, để đơn giản chúng ta giả thiết trờng kích thích là hoàn toàn đơn sắc, tức là có biên độ, tần số và pha không thay đổi theo thời gian. Tuy nhiên trong thực tế lại không phải hoàn toàn nh vậy. Chính vì thế mà ngoài việc cần phải để ý thêm về số mức năng lợng của hệ lợng tử, chúng ta vẫn càng phải để ý đến ảnh h- ởng của các thăng giáng trong quá trình tơng tác giữa trờnghệ lợng tử. Có rất nhiều loại thăng giáng tác động lên quá trình tơng tác nh thăng giáng biên độ, 5 thăng giáng pha, thăng giáng độ điều biên tần số (độ lệch tần số). Mỗi loại thăng giáng đều có một hàm tơng quan tơng ứng. Sử dụng hàm tơng quan này, với các điều kiện dừng, chúng ta có thể giải phơng trình Bloch một cách giải tích và đồng thời tính đợc biểu thức phổ huỳnh quang. Một loạt các công trình liên quan đến ảnh hởng của các nhiễu lợng tử này lên một số thông số của hệ lợng tử đã đợc nghiên cứu, chẳng hạn trong các công trình [1], [2], [3]. [4], [5] Nh chúng ta đã biết trong cơ học lợng tử, năng lợng trung bình của trờng điện từ ở một mức năng lợng nào đó đợc xác định bằng biểu thức += 2 1 nW n với là năng lợng của mỗi photon và aan + = là toán tử số photon. Trờng hợp 0 = n , tức là không có photon nào thì trờng vẫn có năng lợng 2 1 , đây đợc gọi là trạng thái chân không điện từ. Chúng ta coi rằng, toàn bộ trờnghệ lợng tử đ- ợc " nhúng" trong chân không điện từ. Tức là quá trình tơng tác giữa trờnghệ l- ợng tử xẩy ra trong chân không điện từ. Do vậy, mặc dù không có photon nào, nh- ng vì có năng lợng nên chân không điện từảnh hởng đến quá trình tơng tác giữa hệ lợng tửtrờng laser. ảnh hởng đó có mặt trong phơng trình Bloch quang học dới dạng các nhiễu lợng tử. Nh vậy, vấn đề đặt ra ở đây là khi xem hệ lợng tửhệ ba mức và để ý đến các thăng giáng của chân không thì phơng trình quang học Bloch quang học sẽ có dạng ra sao? Một số hiệu ứng lợng tử sẽ đợc xác định thông qua các nhiễu lợng tử nh thế nào? Để giúp có câu trả lời về vấn đề đặt ra ở trên, chúng tôi đã chọn đề tài của luận văn với tiêu đề: ảnh hởng của chân không ngẫu nhiên trong tơng tác của trờng laser cộng hởng với hệ lợng tử ba mức . Luận văn có bố cục nh sau: Ngoài phần mở đầu, kết luận, phụ lục và tài liệu tham khảo, nội dung chính của luận văn đợc chia làm hai chơng. Chơng I, luận văn trình bày tổng quan về thăng giáng ngẫu nhiên của trạng thái chân không điện từ xuất phát từ hệ thức bất định đối với một số thông số của 6 trờng ánh sáng. Trên cơ sở đó luận văn khảo sát chân không ngẫu nhiên kết hợp và chân không ngẫu nhiên nén nh là các nhiễu trắng Gauss. Chơng II, Trên cơ sở các cấu hình của nguyên tử ba mức năng lợng, luận văn khảo sát tơng tác của hệ nguyên tử ba mức với trờng laser khi có mặt chân không ngẫu nhiên. ở đây, hệ ba mức đợc chọn là hệ có cấu hình . Trên cơ sở phơng trình quang học Bloch ngẫu nhiên cũng nh phơng trình quang học Bloch hiệu dụng đối với hệ này khi có mặt của chân không ngẫu nhiên nén, luận văn đã tính toán sự phụ thuộc của hiệu độ c trú giữa các mức vào các thông số nén. Trên cơ sở biểu diễn sự phụ thuộc đó thông qua các đồ thị, luận văn chỉ ra một vài nhận xét về sự thay đổi này trong sự có mặt của chân không ngẫu nhiên Chơng I THĂNG GIáNG NGẫU NHIÊN CủA CHÂN KHÔNG ĐIệN Từ Trờng lợng tử chúng ta đã nghiên cứu có một số trạng thái nh: Trạng thái Fork (trạng thái có số hạt xác định), trạng thái kết hợp, trạng thái nén, trạng thái nén kết hợp, Trong ch ơng này, chúng ta sẽ trình bày về một trờng hợp riêng của 7 trạng thái kết hợp - trạng thái chân không và trạng thái nén của nó hay chân không nén. Để trình bày về trạng thái chân không nén, chúng ta xuất phát từ lý thuyết về sự bất định của ánh sáng và trạng thái chân không. Trên cơ sở đó chúng ta sẽ trình bày về chân không ngẫu nhiên kết hợp và chân không ngẫu nhiên nén nh là các nhiễu trắng Gauss. 1.1 Chân không điện từ 1.1.1 Tính bất định của ánh sáng Xuất phát từ việc khảo sát ánh sáng đơn sắc cổ điển, trờng điện hình sin )(tE có thể biểu diễn nh là tổng của hai đại lợng phức biến thiên theo thời gian )(ta và * a (t) : )]()([)( * 2 1 tatatE += (1.1) Trong mặt phẳng phức, )(ta và * a (t) quay ngợc chiều nhau theo thời gian, chúng có thể đợc biểu diễn bằng các biểu thức sau [9]: ti aeta = )( (1.2) ti eata ** )( = Biên độ phức a đợc biểu diễn ipxa += , ở đây x và p là những đại lợng thực. Do việc đảo ngợc mối liên hệ theo (1.2) mà trờng điện có thể đợc viết nh sau: [ ] )sin)(cos()sin)(cos( 2 1 )( titipxtitipxtE +++= Suy ra: tptxtE sincos)( += (1.3) Trong đó: + = + = i aa p aa x 2 2 * * (1.4) Từ (1.3), do sin và cosin lệch pha nhau 0 90 nên các thành phần x và p là vuông góc với nhau (Hình 1-1). 8 a p x Hình 1-1. Pha và các thành phần vuông góc đại diện cho trờng điện đơn sắc cổ điển. giả sử tại 0 = t , )(ta ở vị trí ban đầu thể hiện bằng đờng đứt nét trên hình 1-2. Vị trí ban đầu của )(ta có thể đại diện cho biên độ a và pha ban đầu , hoặc đại diện cho các hình chiếu x và p ban đầu. Véc tơ )(ta quay với tần số góc là tần số của trờng quang học. Trong phép chiếu trên, giá trị hình chiếu trên trục x thay đổi theo thời gian với hình sin và có giá trị lớn nhất là a . Có nhiều sự lựa chọn có thể của các thành phần toạ độ vuông góc, chẳng hạn x và p nh thấy ở hình 1-2. Sử dụng nguyên lý tơng ứng, từ những đặc điểm nói trên của ánh sáng đơn sắc cổ điển, chúng ta nghiên cứu sang trờng hợp lợng tử. Lúc này các đại lợng pxtatatE ,),(),(),( * , đợc chuyển thành các toán tử trong không gian Hilbert [5], [9]. + ppxx tatatata tEtE , )( )(),( )( )( )( * (1.5) 9 Hình 1-2. Quy định sự lựa chọn các giá trị x , p và đối với ánh sáng đơn sắc cổ điển Các định luật của cơ học lợng tử quy định toán tử huỷ )( ta và toán tử sinh )( ta + là liên hợp Hermite, tuân theo quan hệ thay thế: [ ] 1)( )( )( )( )( ),( == +++ tatatatatata Do vậy, x và p tuân theo hệ thức giao hoán sau: [ ] [ ] ) )( () )( ( 4 1 , ++++ ++= aaaaaaaa i px Suy ra: [ ] 2 , i px = (1.6) 0 = t a ttt 0 )(tE a a P x P x a x 10 t

Ngày đăng: 18/12/2013, 10:17

HÌNH ẢNH LIÊN QUAN

Hình 1-2.  Quy định sự lựa chọn các giá trị  x ,  p  và  φ  đối với ánh sáng đơn  sắc - Ảnh hưởng của chân không ngẫu nhiên trong tương tác của trường laser cộng hưởng với hệ lượng tử ba mức
Hình 1 2. Quy định sự lựa chọn các giá trị x , p và φ đối với ánh sáng đơn sắc (Trang 10)
Hình 1-3. Mô tả miền bất định theo quan điểm cơ học lượng tử trên                                hệ toạ độ Descartes và toạ độ cực. - Ảnh hưởng của chân không ngẫu nhiên trong tương tác của trường laser cộng hưởng với hệ lượng tử ba mức
Hình 1 3. Mô tả miền bất định theo quan điểm cơ học lượng tử trên hệ toạ độ Descartes và toạ độ cực (Trang 11)
Hình 1-4.  Sự bất định các thành phần vuông góc và số hạt - pha của trạng thái kết hợp - Ảnh hưởng của chân không ngẫu nhiên trong tương tác của trường laser cộng hưởng với hệ lượng tử ba mức
Hình 1 4. Sự bất định các thành phần vuông góc và số hạt - pha của trạng thái kết hợp (Trang 12)
Hình 1-5. Sự bất định của các thành phần vuông góc trong trạng - Ảnh hưởng của chân không ngẫu nhiên trong tương tác của trường laser cộng hưởng với hệ lượng tử ba mức
Hình 1 5. Sự bất định của các thành phần vuông góc trong trạng (Trang 13)
Hình 1-6: Trạng thái kết hợp của trờng điện phụ thuộc thời gian - Ảnh hưởng của chân không ngẫu nhiên trong tương tác của trường laser cộng hưởng với hệ lượng tử ba mức
Hình 1 6: Trạng thái kết hợp của trờng điện phụ thuộc thời gian (Trang 15)
Hình 1- 8: Minh hoạ trạng thái nén vuông góc của ánh sáng - Ảnh hưởng của chân không ngẫu nhiên trong tương tác của trường laser cộng hưởng với hệ lượng tử ba mức
Hình 1 8: Minh hoạ trạng thái nén vuông góc của ánh sáng (Trang 17)
Hình 1-9: So sánh độ bất định của các thành phần vuông góc đối với trạng thái  chân không kết hợp và chân không nén. - Ảnh hưởng của chân không ngẫu nhiên trong tương tác của trường laser cộng hưởng với hệ lượng tử ba mức
Hình 1 9: So sánh độ bất định của các thành phần vuông góc đối với trạng thái chân không kết hợp và chân không nén (Trang 18)
Hình 1-10. Trạng thái chân không nén của trờng điện phụ thuộc thời gian - Ảnh hưởng của chân không ngẫu nhiên trong tương tác của trường laser cộng hưởng với hệ lượng tử ba mức
Hình 1 10. Trạng thái chân không nén của trờng điện phụ thuộc thời gian (Trang 19)
Hình chữ  Λ , cấu hình chữ V và cấu hình chữ xigma  Ξ  [8], [11] - Ảnh hưởng của chân không ngẫu nhiên trong tương tác của trường laser cộng hưởng với hệ lượng tử ba mức
Hình ch ữ Λ , cấu hình chữ V và cấu hình chữ xigma Ξ [8], [11] (Trang 25)
Hình 2.2: Cấu hình chữ V - Ảnh hưởng của chân không ngẫu nhiên trong tương tác của trường laser cộng hưởng với hệ lượng tử ba mức
Hình 2.2 Cấu hình chữ V (Trang 26)
Hình 2.3: Cấu hình - Ảnh hưởng của chân không ngẫu nhiên trong tương tác của trường laser cộng hưởng với hệ lượng tử ba mức
Hình 2.3 Cấu hình (Trang 27)
Hình 1: Sự phụ thuộc của hiệu mật độ c trú  ρ 11 − ρ 33  vào các  tham sè  N  và   Ω - Ảnh hưởng của chân không ngẫu nhiên trong tương tác của trường laser cộng hưởng với hệ lượng tử ba mức
Hình 1 Sự phụ thuộc của hiệu mật độ c trú ρ 11 − ρ 33 vào các tham sè N và Ω (Trang 33)
Hình 2: Sự phụ thuộc của hiệu độ c trú vào trờng ngoài khi tham số nén là một  hằng số ( ở đây ta lấy N =1, N =5, N =10 ) - Ảnh hưởng của chân không ngẫu nhiên trong tương tác của trường laser cộng hưởng với hệ lượng tử ba mức
Hình 2 Sự phụ thuộc của hiệu độ c trú vào trờng ngoài khi tham số nén là một hằng số ( ở đây ta lấy N =1, N =5, N =10 ) (Trang 34)
Hình 3: Sự phụ thuộc của hiệu độ c trú vào tham số nén khi - Ảnh hưởng của chân không ngẫu nhiên trong tương tác của trường laser cộng hưởng với hệ lượng tử ba mức
Hình 3 Sự phụ thuộc của hiệu độ c trú vào tham số nén khi (Trang 35)
Hình 4: Sự phụ thuộc của  ρ 12  vào các tham số   Ω  và  N - Ảnh hưởng của chân không ngẫu nhiên trong tương tác của trường laser cộng hưởng với hệ lượng tử ba mức
Hình 4 Sự phụ thuộc của ρ 12 vào các tham số Ω và N (Trang 36)

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w