Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 75 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
75
Dung lượng
909,3 KB
Nội dung
Chng 3 : iu khin bn vng Hc kì 1 nm hc 2005-2006 Chng 3 IU KHIN BN VNG 3.1 Gii thiu 3.1.1 Khái nim điu khin bn vng H thng điu khin bn vng làm cho cht lng ca sn phm n đnh, không ph thuc vào s thay đi ca đi tng cng nh ca nhiu tác đng lên h thng.Mc đích ca điu khin bn vng là cht lng vòng kín đc duy trì mc dù có nhng s thay đi trong đi tng. P 0 :Mô hình chun (mô hình danh đnh) Δ P :Mô hình thc t vi sai lch Δ so vi mô hình chun Hình 3.1 : Mô hình điu khin bn vng Cho tp mô hình có sai s Δ P và mt tp các ch tiêu cht lng, gi s P 0 ∈ Δ P là mô hình danh đnh dùng đ thit k b điu khin K.H thng hi tip vòng kín đc gi là có tính : - n đnh danh đnh: nu K n đnh ni vi mô hình danh đnh P 0 - n đnh bn vng: nu K n đnh ni vi mi mô hình thuc Δ P - Cht lng danh đnh: nu các mc tiêu cht lng đc tha đi vi mô hình danh đnh P 0 PGS.TS Nguyn Th Phng Hà Trang 2 http://www.khvt.com - Cht lng bn vng: nu các mc tiêu cht lng đc tha đi vi mi mô hình thuc Δ P Mc tiêu bài toán n đnh bn vng là tìm b điu khin không ch n đnh mô hình danh đnh P 0 mà còn n đnh mt tp các mô hình có sai s Δ P 3.1.2 Chun ca tín hiu 3.1.2.1 Khái nim chun Trong điu khin nói riêng cng nh trong các công vic có liên quan đn tín hiu nói chung,thông thng ta không làm vic ch riêng vi mt tín hiu hoc mt vài tín hiu đin hình mà ngc li phi làm vic vi mt tp gm rt nhiu các tín hiu khác nhau. Khi phi làm vic vi nhiu tín hiu khác nhau nh vy chc chn ta s gp bài toán so sánh các tín hiu đ chn lc ra đc nhng tín hiu phù hp cho công vic. Các khái nim nh tín hiu x 1 (t) tt hn tín hiu x 2 (t) ch thc s có ngha nu nh chúng cùng đc chiu theo mt tiêu chun so sánh nào đó. Cng nh vy nu ta khng đnh rng x 1 (t) ln hn x 2 (t) thì phi ch rõ phép so sánh ln hn đó đc hiu theo ngha nào, x 1 (t) có giá tr cc đi ln hn , có nng lng ln hn hay x 1 (t) cha nhiu thông tin hn x 2 (t)… Nói mt cách khác ,trc khi so sánh x 1 (t) vi x 2 (t) chúng ta phi gn cho mi mt tín hiu mt giá tr đánh giá tín hiu theo tiêu chun so sánh đc la chn . nh ngha: Cho mt tín hiu x(t) và mt ánh x x(t) ||x(t)|| ∈ R + chuyn x(t) thành mt s thc dng ||x(t)||.S thc dng này s đc gi là chun ca x(t) nu nó tha mãn: a. ||x(t)|| ≥ 0 và ||x(t)|| = 0 khi và ch khi x(t) =0 (3.1) b. ||x(t)+y(t)|| ≤ ||x(t)|| + ||y(t)|| ∀ x(t), y(t) (3.2) c. ||ax(t)|| = |a|.||x(t)|| ∀ x(t) và Ra ∈∀ . (3.3) 3.1.2.2 Mt s chun thng dùng trong điu khin cho mt tín hiu x(t): - Chun bc 1: dttxtx ∫ ∞ ∞− = |)(|||)(|| 1 (3.4) - Chun bc 2: ∫ ∞ ∞− = dttxtx 2 2 |)(|||)(|| . (3.5) Chng 3 : iu khin bn vng Trang 3 Bình phng chun bc hai chính là giá tr đo nng lng ca tín hiu x(t). -Chun bc p: p p p dttxtx ∫ ∞ ∞− = |)(|||)(|| vi p ∈ N (3.6) - Chun vô cùng: |)(|sup||)(|| txtx t = ∞ (3.7) đây là biên đ hay đnh ca tín hiu Khái nim chun trong đnh ngha trên không b gii hn là ch cho mt tín hiu x(t) mà còn đc áp dng đc cho c vector tín hiu gm nhiu phn t và mi phn t li là mt tín hiu. Xét mt vector tín hiu: x(t) = ⎟ ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎜ ⎝ ⎛ )( )( 1 tx tx n B - Chun 1 ca vector x: ∑ = = n i i xx 1 1 (3.8) - Chun 2 ca vector x: ∑ = = n i i xx 1 2 2 (3.9) - Chun vô cùng ca vector x: ni i xx , .,2,1 max = ∞ = (3.10) 3.1.2.3 Quan h ca chun vi nh Fourier và nh Laplace: phc v mc đích s dng khái nim chun vào điu khin ,ta cn quan tâm ti mi liên quan gia chun tín hiu x(t) là ||x(t)|| vi nh Fourier X(j ω ) cng nh nh Laplace X(s) ca nó. PGS.TS Nguyn Th Phng Hà Trang 4 http://www.khvt.com nh lí 3.1: (Parseval) Chun bc hai ca mt tín hiu x(t) và nh Fourier X(j ω ) ca nó có quan h : ωω π djXdttxtx 222 |)(| 2 1 |)(|||)(|| 2 ∫∫ ∞ ∞− ∞ ∞− == (3.11) Cho tín hiu nhân qu causal x(t). Gi X(s) là nh Laplace ca nó .Gi s rng X(s) có dng thc -hu t vi bc ca đa thc t s không ln hn bc đa thc mu s ,tc là: n n m m sasaa sbsbb sA sB sX +++ +++ == . . )( )( )( 10 10 vi m < n (3.12) nh lí 3.2: Xét tín hiu nhân qu causal x(t) có X(s) dng (3.12) . chun bc 1 ca x(t) là mt s hu hn ||x(t)|| 1 = K < ∞ thì điu kin cn và đ là tt c các đim cc ca X(s) phi nm bên trái trc o (có phn thc âm) . 3.1.3 i s ma trn 3.1.3.1 Mt s ma trn thng gp: - Mt ma trn A=(a ij ) có s hàng bng s ct đc gi là ma trn vuông. ng chéo ni các phn t a ii trong ma trn vuông đc gi là đng chéo chính .ng chéo còn li đc gi là đng chéo ph. A = ⎥ ⎥ ⎥ ⎥ ⎦ ⎤ ⎢ ⎢ ⎢ ⎢ ⎣ ⎡ nnnn n n aaa aaa aaa A BBBB A A 21 22221 11211 (3.13) - Mt ma trn vuông A=(a ij ) có a ij = 0 khi i ≠ j ,tc là các phn t không nm trên đng chéo chính đu bng 0, đc gi là ma trn đng chéo. Ma trn đng chéo đc ký hiu bi: A = ⎥ ⎥ ⎥ ⎥ ⎦ ⎤ ⎢ ⎢ ⎢ ⎢ ⎣ ⎡ nn a a a A BBBB A A 00 00 00 22 11 = diag(a ij ) (3.14) Chng 3 : iu khin bn vng Trang 5 - Ma trn đng chéo I = diag(1) = ⎥ ⎥ ⎥ ⎥ ⎦ ⎤ ⎢ ⎢ ⎢ ⎢ ⎣ ⎡ 100 010 001 A BBBB A A gi là ma trn đn v. - Ma trn vuông A=(a ij ) có a ij = 0 khi i > j (hoc i < j) đc gi là ma trn tam giác + Ma trn tam giác di A= ⎥ ⎥ ⎥ ⎥ ⎦ ⎤ ⎢ ⎢ ⎢ ⎢ ⎣ ⎡ nnnn aaa aa a A BBBB A A 21 2221 11 0 00 (3.15) + Ma trn tam giác trên A= ⎥ ⎥ ⎥ ⎥ ⎦ ⎤ ⎢ ⎢ ⎢ ⎢ ⎣ ⎡ nn n n a aa aaa A BBBB A A 00 0 222 11211 (3.16) 3.1.3.2 Các phép tính v ma trn: - Phép cng / tr: Cho hai ma trn A=(a ij ) và B=(b ij ) cùng có m hàng và n ct .Tng hay hiu A ± B = C =(c ij ) ca chúng đc đnh ngha là mt ma trn cng có m hàng và n ct vi các phn t c ij = a ij + b ij i=1,2,… ,m và j=1,2,… ,n. - Phép nhân vi s thc: Cho ma trn A=(a ij ) có m hàng và n ct và mt s vô hng thc(phc) x tùy ý .Tích B = xA = Ax = (b ij ) đc hiu là ma trn cng có m hàng và n ct vi các phn t B ij = x.a ij i=1,2,….m và j=1,2,… ,n - Phép chuyn v: Ma trn chuyn v ca ma trn A=(a ij ) vi m hàng và n ct là ma trn A T = (a ji ) có n hàng và m ct đc to t ma trn A qua vic hoán chuyn hàng thành ct và ngc li ct thành hàng. - Phép nhân ma trn: Cho ma trn A=(a ik ) có m hàng và p ct và ma trn B=(b kj ) có p hàng và n ct ,tc là : PGS.TS Nguyn Th Phng Hà Trang 6 http://www.khvt.com + A=(a ik ) i=1,2, ,m và k=1,2,….,p + B=(b kj ) k=1,2,….,p và j=1,2,… ,n Tích AB = C =(c ij ) ca chúng là mt ma trn có m hàng và n ct vi các phn t C ij = ∑ = p k kjik ba 1 Mt ma trn vuông A nn R × ∈ đc gi là ma trn trc giao nu A T A=AA T =I 3.1.3.3 Hng ca ma trn: Cho n vector v i i=1,2,…,n Chúng s đc gi là đc lp tuyn tính nu đng thc a 1 v 1 +a 2 v 2 +…….+a n v n =0 trong đó a i là nhng s thc (hoc phc) s đúng khi và ch khi a 1 = a 2 = … =a n = 0 Xét mt ma trn A=(a ij ) bt kì có m hàng và n ct .Nu trong s m vector hàng có nhiu nht p ≤ m vector đc lp tuyn tính và trong s n vector ct có nhiu nht q ≤ n vector đc lp tuyn tính thì hng ma trn đc hiu là: Rank(A) = min{p,q} Mt ma trn vuông A kiu (n ×n) s đc gi là không suy bin nu Rank(A)=n .Ngc li nu Rank(A) <n thì A đc nói là ma trn suy bin Hng ma trn có các tính cht sau: - Rank(A) = min{p,q} (3.17) - Rank(AB) ≤ rank(A) và rank(AB) ≤ rank(B) (3.18) - Rank(A + B) ≤ rank(A) + rank(B) (3.19) - Nu B không suy bin thì rank(AB) = rank(B) (3.20) 3.1.3.4 Ma trn nghch đo: Cho ma trn A=(a ij ),i=1,2,…,m ; j=1,2,…,n,trong đó a ij là nhng s thc (hoc phc),nói cách khác A ∈ R m × n (hoc A ∈ C m × n ).Nu tn ti mt ma trn B tha mãn : AB = BA = I (ma trn đn v) (3.21) Thì ma trn B đc gi là ma trn nghch đo ca A và ký hiu là B = A -1 . Chng 3 : iu khin bn vng Trang 7 Do phi tn ti c hai phép nhân AA -1 và A -1 A cho ra kt qu có cùng kiu nên ma trn A phi là mt ma trn vuông,tc là phi có m = n.Hn na do det(I) = 1 ≠ 0 nên: det(A)det(A -1 ) ≠ 0 => det(A) ≠ 0 và det(A -1 ) ≠ 0. (3.22) Vy A phi là ma trn không suy bin. Ma trn nghch đo A -1 ca A có tính cht sau: - Ma trn nghch đo A -1 ca A là duy nht (3.23) - Tp hp tt c các ma trn vuông cùng kiu và không suy bin cùng vi phép nhân ma trn to thành mt nhóm (không giao hoán). (3.24) - Nghch đo ma trn kiu (2 ×2): ⎥ ⎦ ⎤ ⎢ ⎣ ⎡ − − = ⎥ ⎦ ⎤ ⎢ ⎣ ⎡ = − ac bd A dc ba A )det( 1 1 (3.25) - (AB) -1 = B -1 A -1 (3.26) - (A -1 ) T = (A T ) -1 (3.27) - Nu A = diag(a i ) và không suy bin thì A -1 = diag ⎥ ⎦ ⎤ ⎢ ⎣ ⎡ i a 1 (3.28) - A -1 = )det(A A adj (3.29) trong đó A adj là ma trn có các phn t a ij = (-1) i+j det(A ij ) vi A ij là ma trn thu đc t A bng cách b đi hàng th j và nh ct th i. - Cho ma trn A ∈ R n × n không suy bin . Nu U ∈ R n × m và V ∈ R n × m là hai ma trn làm cho (I+V T A -1 U) cng không suy bin thì (A+UV T ) -1 = A -1 – A -1 U(I+V T A -1 U) -1 V T A -1 (3.30) - Cho ma trn vuông A = ⎥ ⎦ ⎤ ⎢ ⎣ ⎡ 43 21 AA AA không suy bin,trong đó A 1 ,A 2 ,A 3 ,A 4 cng là các ma trn. Nu A 1 không suy bin và B = A 4 – A 3 A 1 -1 A 2 cng không suy bin thì ⎥ ⎦ ⎤ ⎢ ⎣ ⎡ − −+ = ⎥ ⎦ ⎤ ⎢ ⎣ ⎡ = − − − − −− −− − − − 1 1 13 1 1 2 1 1 1 13 1 2 1 1 1 1 1 43 21 1 BAAB BAAAABAAA AA AA A (3.31) PGS.TS Nguyn Th Phng Hà Trang 8 http://www.khvt.com Nu A 4 không suy bin và C = A 1 – A 2 A 4 -1 A 3 cng không suy bin thì ⎥ ⎦ ⎤ ⎢ ⎣ ⎡ +− − = ⎥ ⎦ ⎤ ⎢ ⎣ ⎡ = − − −− − − − −− − − 1 32 1 3 1 4 1 4 1 3 1 4 1 42 11 1 43 21 1 AACAAAACAA AACC AA AA A (3.32) 3.1.3.5 Vt ca ma trn: Cho ma trn vuông A=(a ij ) ,i,j=1,2,……,n kiu (nxn).Vt ca A đc hiu là tng giá tr các phn t trên đng chéo chính ca A và đc ký hiu bng trace(A): trace= ∑ = m i ii a 1 (3.33) Vt ca ma trn có các tính cht: a. trace(AB) = trace(BA) (3.34) b. trace(S -1 AS) = trace(A) vi S là ma trn không suy bin bt kì (3.35) 3.1.3.6 Giá tr riêng và vector riêng: S thc λ đc gi là giá tr riêng và vector x đc gi là vector riêng bên phi ng vi giá tr riêng λ ca A tha mãn: Ax = λ x ∀ x (3.36) ⇔ (A - λ I)x = 0 ∀ x (3.37) Giá tr riêng và vector riêng ca ma trn A có nhng tính cht sau: a. Hai ma trn tng đng A và S -1 AS luôn cùng giá tr riêng, nói cách khác giá tr riêng ca ma trn bt bin vi phép bin đi tng đng: det(A- λ I)=det(S -1 AS- λ I) (3.38) b. Các giá tr riêng ca ma trn bt bin vi phép chuyn v, tc là: det(A- λ I)=det(A T - λ I) (3.39) c. Nu A không suy bin thì AB và BA có cùng các giá tr riêng ,tc là: det(AB- λ I)=det(BA- λ I) (3.40) d. Nu A là ma trn đi xng (A T =A) thì các vector riêng ng vi nhng giá tr riêng khác nhau s trc giao vi nhau Trong Matlab ,s dng hàm eig(A) đ tìm ma trn riêng và vector riêng. Chng 3 : iu khin bn vng Trang 9 3.1.3.7 Tính toán ma trn: Cho ma trn X = (x ij ) ∈ C m × n là mt ma trn thc (hoc phc) và F(X) ∈ C là mt vô hng thc hoc phc ca X .o hàm ca F(X) đi vi X đc đnh ngha ⎥ ⎥ ⎦ ⎤ ⎢ ⎢ ⎣ ⎡ ∂ ∂ = ∂ ∂ )()( XF x XF X ij (3.41) Cho A và B là nhng ma trn phc vi không gian tng thích .Mt s công thc đo hàm : () () () 1 (3.42) () (3.43) 2 ( ) (3.44) () (3.45) ( ) (3.46) TT kkT TT TT T Trace AXB A B X Trace X k X X Trace XBX XB B B X XAX AX AX X Trace AX B BA X − ∂ = ∂ ∂ = ∂ ∂ == ∂ ∂ =+ ∂ ∂ = ∂ 3.1.3.8 Chun ca ma trn: Ngi ta cn đn chun ca ma trn là nhm phc v vic kho sát tính gii tích ca nó.Có nhiu chun khác nhau cho mt ma trn A=(a ij ) ,i=1,2,…,m;j=1,2,…,n. Nhng chun thông thng đc s dng: - Chun 1 ca ma trn A ∑ = ≤≤ = m i ij nj aA 1 1 1 max (3.47) - Chun 2 ca ma trn A )(max * 1 2 AAA i ni λ ≤≤ = (3.48) - Chun vô cùng ca ma trn A PGS.TS Nguyn Th Phng Hà Trang 10 http://www.khvt.com ∑ = ≤≤ ∞ = n j ij mi aA 1 1 max (3.49) - Chun Euclide ca ma trn A (chun Frobenius) )( 2 AAtraceaA T ij ij F == ∑∑ (3.50) vi * A là ma trn chuyn v và ly liên hip. )( * AA i λ là tr riêng ca ma trn AA * là mt s thc không âm. 3.1.4 Tr suy bin ca ma trn – đ li chính(Principal gain) Tr suy bin ca ma trn A(m x l) đc ký hiu là )(A i σ đc đnh ngha nh sau: kiAAA ii , .2,1)()( * == λσ (3.51) vi },min{ lmk = . Nu chúng ta biu din ma trn A di dng A(s) và đt ω js = )0( ∞<≤ ω , thì tr suy bin ca )( ω jA là mt hàm ca ω và đc gi là đ li chính ca A(s). đây chúng ta gi s rng i σ đc sp xp theo th t sao cho 1+ ≥ ii σσ . Nh vy, 1 σ là tr suy bin ln nht và k σ là tr suy bin nh nht. Ký hiu σ là tr suy bin ln nht và σ là tr suy bin nh nht. Ta có: )(max)(max)( * AAAA ii λσσ == 2 A= (3.52) vi 2 2 2 sup x Ax A = . li ca h đa bin nm gia đ li chính ln nht và nh nht. Trong Matlab tìm tr suy bin ca ma trn A dùng lnh svd(A) Ví d: Cho ma trn A: