Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 87 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
87
Dung lượng
765,65 KB
Nội dung
Chng 1 : iu khin ti u Hc kì 1 nm hc 2005-2006 Chng 1 IU KHIN TI U Vài nét lch s phát trin lý thuyt điu khin . - Phng pháp bin phân c đin Euler_Lagrange 1766 . - Tiêu chun n đnh Lyapunov 1892 . - Trí tu nhân to 1950 . - H thng điu khin máy bay siêu nh 1955 . - Nguyên lý cc tiu Pontryagin 1956 . - Phng pháp quy hoch đng Belman 1957 . - iu khin ti u tuyn tính dng toàn phng LQR ( LQR : Linear Quadratic Regulator ) . - iu khin kép Feldbaum 1960 . - Thut toán di truyn 1960 . - Nhn dng h thng 1965 . - Logic m 1965 . - Lut điu khin h thng thích nghi mô hình tham chiu MRAS và b t chnh đnh STR 1970 ( MRAS : Model-Reference Adaptive System , STR : Self-Tuning Regulator ) . - H t hc Tsypkin 1971 . - Sn phm công nghip 1982 . - Lý thuyt bn vng 1985 . - Công ngh tính toán mm và điu khin tích hp 1985 . PGS.TS Nguyn Th Phng Hà 2 http://www.khvt.com 1.1 CHT LNG TI U 1.1.1 c đim ca bài toán ti u 1. Khái nim Mt h điu khin đc thit k ch đ làm vic tt nht là h luôn trng thái ti u theo mt tiêu chun cht lng nào đó ( đt đc giá tr cc tr ) . Trng thái ti u có đt đc hay không tùy thuc vào yêu cu cht lng đt ra , vào s hiu bit v đi tng và các tác đng lên đi tng , vào điu kin làm vic ca h điu khin … Mt s ký hiu s dng trong chng 1 . Hình 1.1: S đ h thng điu khin . H thng điu khin nh hình trên bao gm các phn t ch yu : đi tng điu khin ( TK ) , c cu điu khin ( CCK ) và vòng hi tip ( K ) . Vi các ký hiu : x 0 : tín hiu đu vào u : tín hiu điu khin x : tín hiu đu ra ε = x 0 – x : tín hiu sai lch f : tín hiu nhiu Ch tiêu cht lng J ca mt h thng có th đc đánh giá theo sai lch ca đi lng đc điu khin x so vi tr s mong mun x 0 , lng quá điu khin ( tr s cc đi x max so vi tr s xác lp ( ) x ∞ tính theo phn trm ) , thi gian quá đ … hay theo mt ch tiêu hn hp trong điu kin làm vic nht đnh nh hn ch v công sut , tc đ , gia tc … Do đó vic chn mt lut điu khin và c cu điu khin đ đt đc ch đ làm vic ti u còn tùy thuc vào lng thông tin ban đu mà ta có đc . đây chúng ta có th thy đc s khác bit ca cht lng ti u khi lng thông tin ban đu thay đi ( Hình 1.2 ) . Chng 1 : iu khin ti u Trang 3 Hình 1.2 : Ti u cc b và ti u toàn cc . Khi tín hiu điu khin u gii hn trong min [u 1 ,u 2 ] , ta có đc giá tr ti u cc đi 1 J ∗ ca ch tiêu cht lng J ng vi tín hiu điu khin 1 u ∗ . Khi tín hiu điu khin u không b ràng buc bi điu kin 12 uuu ≤ ≤ , ta có đc giá tr ti u 21 JJ ∗ ∗ > ng vi 2 u ∗ . Nh vy giá tr ti u thc s bây gi là 2 J ∗ . Tng quát hn , khi ta xét bài toán trong mt min [ ] , mn uu nào đó và tìm đc giá tr ti u i J ∗ thì đó là giá tr ti u cc b . Nhng khi bài toán không có điu kin ràng buc đi vi u thì giá tr ti u là () i JextremumJ ∗∗ = vi i J ∗ là các giá tr ti u cc b , giá tr J ∗ chính là giá tr ti u toàn cc . iu kin tn ti cc tr : • o hàm bc mt ca J theo u phi bng 0 : 0= ∂ ∂ u J • Xét giá tr đo hàm bc hai ca J theo u ti đim cc tr : 0 2 2 > ∂ ∂ u J : đim cc tr là cc tiu 0 2 2 < ∂ ∂ u J : đim cc tr là cc đi PGS.TS Nguyn Th Phng Hà 4 http://www.khvt.com 2. iu kin thành lp bài toán ti u thành lp bài toán ti u thì yêu cu đu tiên là h thng phi có đc tính phi tuyn có cc tr . Bc quan trng trong vic thành lp mt h ti u là xác đnh ch tiêu cht lng J . Nhim v c bn đây là bo đm cc tr ca ch tiêu cht lng J . Ví d nh khi xây dng h ti u tác đng nhanh thì yêu cu đi vi h là nhanh chóng chuyn t trng thái này sang trng thái khác vi thi gian quá đ nh nht , ngha là cc tiu hóa thi gian quá đ . Hay khi tính toán đng c tên la thì ch tiêu cht lng là vt đc khong cách ln nht vi lng nhiên liu đã cho . Ch tiêu cht lng J ph thuc vào tín hiu ra x(t) , tín hiu điu khin u(t) và thi gian t . Bài toán điu khin ti u là xác đnh tín hiu điu khin u(t) làm cho ch tiêu cht lng J đt cc tr vi nhng điu kin hn ch nht đnh ca u và x . Ch tiêu cht lng J thng có dng sau : 0 [(),(),] T JLxtuttdt= ∫ Trong đó L là mt phim hàm đi vi tín hiu x , tín hiu điu khin u và thi gian t . Ly ví d v bài toán điu khin đng c đin mt chiu kích t đc lp kt constΦ= vi tín hiu điu khin u là dòng đin phn ng i u và tín hiu ra x là góc quay ϕ ca trc đng c . Hình 1.3 : ng c đin mt chiu kích t đc lp . Ta có phng trình cân bng moment ca đng c : Chng 1 : iu khin ti u Trang 5 Mu c q d ki M M dt ω −= (1) d dt ϕ ω = (2) trong đó MM k C const=Φ= ; M q là moment quán tính ; ω là tc đ góc ; ϕ là góc quay . Gi s b qua ph ti trên trc đng c ( 0 c M = ) thì : 2 2 Mu q d ki M dt ϕ = (3) Nu xét theo thi gian tng đi bng cách đt : / M q tk M τ = thì (3) có dng : 2 2 u d i d ϕ τ = (4) T đó ta có : 2 2 dx u d τ = (5) Vy phng trình trng thái ca đng c đin là mt phng trình vi phân cp hai . • Bài toán ti u tác đng nhanh ( thi gian ti thiu ) : Tìm lut điu khin u(t) vi điu kin hn ch 1u ≤ đ đng c quay t v trí ban đu có góc quay và tc đ đu bng 0 đn v trí cui cùng có góc quay bng 0 ϕ và tc đ bng 0 vi mt khong thi gian ngn nht . Vì cn thi gian ngn nht nên ch tiêu cht lng J s là : 0 [(),(),] T JLxtuttdtT = = ∫ Rõ ràng t phng trình trên ta phi có [(),(),] 1Lxtutt = . Nh vy , đi vi bài toán ti u tác đng nhanh thì ch tiêu cht lng J có dng : ∫ == T TdtJ 0 1 PGS.TS Nguyn Th Phng Hà 6 http://www.khvt.com • Bài toán nng sut ti u : Nng sut đây đc xác đnh bi góc quay ln nht ca đng c trong thi gian T nht đnh . Khi đó ch tiêu cht lng J có dng : 0 00 [ (), (),] () TT T JLxtuttdt tdt ϕϕ ϕ ==−= ∫∫ Do đó [ (), (),] () ()Lxtutt t xt ϕ = = và ta s có ch tiêu cht lng J đi vi bài toán nng sut ti u nh sau : () 0 T Jxtdt= ∫ • Bài toán nng lng ti thiu : Tn hao nng lng trong h thng : 0 T uu QUidt= ∫ Da vào phng trình cân bng đin áp : uuu e UiRk ω = + và phng trình cân bng moment : Mu c q d ki M M dt ω −= Ta tính đc : 2 0 00 () TT ec uu T uu M kM QUidt Ridt k ϕϕ == −+ ∫∫ có đc tiêu hao nng lng ti thiu , ta ch cn tìm cc tiu ca J : 2 00 [(),(),] TT u JLxtuttdtidt== ∫ ∫ Mà dòng đin phn ng i u đây chính là tín hiu điu khin u . Vì vy ch tiêu cht lng J đi vi bài toán nng lng ti thiu có dng : 2 0 () T Jutdt= ∫ Chng 1 : iu khin ti u Trang 7 3. Ti u hoá tnh và đng Chúng ta cn phân bit hai dng bài toán ti u hoá tnh và ti u hóa đng . Ti u hóa tnh là bài toán không ph thuc vào thi gian . Còn đi vi ti u hóa đng thì thi gian cng là mt bin mà chúng ta cn phi xem xét đn . 1.1.2 Xây dng bài toán ti u 1. Ti u hóa không có điu kin ràng buc Mt hàm ch tiêu cht lng vô hng () 0=uL đc cho trc là mt hàm ca mt vector điu khin hay mt vector quyt đnh m Ru ∈ . Chúng ta cn chn giá tr ca u sao cho L(u) đt giá tr nh nht . gii bài toán ti u , ta vit chui Taylor m rng cho đ bin thiên ca L(u) nh sau : )3( 2 1 OduLduduLdL uu TT u ++= (1.1) Vi O(3) có th coi là s hng th 3 . Grad ca L theo u là mt vector m ct : ⎥ ⎥ ⎥ ⎥ ⎦ ⎤ ⎢ ⎢ ⎢ ⎢ ⎣ ⎡ ∂∂ ∂∂ ∂∂ = ∂ ∂ Δ m u uL uL uL u L L / / / 2 1 (1.2) và đo hàm cp 2 ca L theo u là mt ma trn m x m ( còn gi là ma trn Hessian ) : ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ ∂∂ ∂ = ∂ ∂ Δ ji uuuu L u L L 2 2 2 (1.3) L uu đc gi là ma trn un . Mt đim cc tr hoc đim dng xut hin khi s bin thiên dL vi thành phn th nht tin v 0 vi mi bin thiên du trong quá trình điu khin . Vì vy , đ có đim cc tr thì : 0 = u L (1.4) Gi s đang ti đim cc tr , có L u = 0 nh (1.4) . đim cc tr tr thành đim cc tiu , chúng ta cn có : PGS.TS Nguyn Th Phng Hà 8 http://www.khvt.com )3( 2 1 OduLdudL uu T += (1.5) là xác đnh dng vi mi s bin thiên du . iu này đc đm bo nu ma trn un L uu là xác đnh dng : 0> uu L (1.6) Nu L uu là xác đnh âm thì đim cc tr chính là đim cc đi ; còn nu L uu là không xác đnh thì đim cc tr chính là đim yên nga . Nu L uu là bán xác đnh thì chúng ta s xét đn thành phn bc cao hn trong (1.1) đ xác đnh đc loi ca đim cc tr . Nhc li : L uu là xác đnh dng ( hoc âm ) nu nh các giá tr riêng ca nó là dng ( hoc âm ) , không xác đnh nu các giá tr riêng ca nó va có dng va có âm nhng khác 0 , và s là bán xác đnh nu tn ti giá tr riêng bng 0 . Vì th nu 0= uu L , thì thành phn th hai s không hoàn toàn ch ra đc loi ca đim cc tr . 2. Ti u hóa vi các điu kin ràng buc Cho hàm ch tiêu cht lng vô hng ( ) uxL , , vi vector điu khin m Ru ∈ và vector trng thái n Rx ∈ . Bài toán đa ra là chn u sao cho hàm ch tiêu cht lng L(x,u) đt giá tr nh nht và tha mãn đng thi các phng trình điu kin ràng buc . ( ) 0, =uxf (1.7) Vector trng thái x đc xác đnh t mt giá tr u cho trc bng mi quan h (1.7) , vì th f là mt h gm n phng trình vô hng , n Rf ∈ . tìm điu kin cn và đ ca giá tr cc tiu , đng thi tha mãn () 0, =uxf , ta cn làm chính xác nh trong phn trc . u tiên ta khai trin dL di dng chui Taylor , sau đó xác đnh s hng th nht và th hai . Tha s Lagrange và hàm Hamilton . Ti đim cc tr , dL vi giá tr th nht bng 0 vi mi s bin thiên ca du khi df bng 0 . Nh vy chúng ta cn có: 0=+= dxLduLdL T x T u (1.8) và: 0 =+= dxfdufdf xu (1.9) Chng 1 : iu khin ti u Trang 9 T (1.7) ta xác đnh đc x t giá tr u đã có, đ bin thiên dx đc xác đnh bi (1.9) t giá tr bin thiên du đã có . Nh vy , ma trn Jacobi f x không k d và : duffdx ux 1− −= (1.10) Thay dx vào (1.8) ta đc : duffLLdL ux T x T u )( 1− −= (1.11) o hàm riêng ca L theo u cha hng s f đc cho bi phng trình : () x T x T uu T ux T x T u df LffLffLL u L −− = −=−= ∂ ∂ 1 0 (1.12) vi () T x T x ff 1−− = . Lu ý rng : u dx L u L = ∂ ∂ =0 (1.13) thành phn th nht ca dL bng không vi giá tr du tùy ý khi 0=df , ta cn có : 0=− − x T x T uu LffL (1.14) ây là điu kin cn đ có giá tr cc tiu . Trc khi đi tìm điu kin đ , chúng ta hãy xem xét thêm mt vài phng pháp đ có đc (1.14) . Vit (1.8) và (1.9) di dng: 0= ⎥ ⎦ ⎤ ⎢ ⎣ ⎡ ⎥ ⎦ ⎤ ⎢ ⎣ ⎡ = ⎥ ⎦ ⎤ ⎢ ⎣ ⎡ du dx ff LL df dL ux T u T x (1.15) H phng trình tuyn tính này xác đnh mt đim dng , và phi có mt kt qu [] T TT dudx . iu này ch xy ra nu ma trn h s ( )( ) mnn +×+1 có hng nh hn n+1 . Có ngha là các hàng ca ma trn tuyn tính vi nhau đ tn ti mt vector λ có n s hng nh sau: [ ] 0.1 = ⎥ ⎦ ⎤ ⎢ ⎣ ⎡ ux T u T x T ff LL λ (1.16) Hay: 0=+ x TT x fL λ (1.17) 0=+ u TT u fL λ (1.18) PGS.TS Nguyn Th Phng Hà 10 http://www.khvt.com Gii (1.17) ta đc λ : 1− −= x T x T fL λ (1.19) và thay vào (1.18) đ có đc (1.14) . Vector n R∈ λ đc gi là tha s Lagrange , và nó s là công c hu ích cho chúng ta sau này . hiu thêm ý ngha ca tha s Lagrange ta xét du = 0 , t (1.8) và (1.9) ta kh dx đ đc : dffLdL x T x 1− = (1.20) Vì vy: () λ −== ∂ ∂ − = T x T x du fL f L 1 0 (1.21) Do đó - λ là đo hàm riêng ca L vi bin điu khin u là hng s . iu này nói lên tác dng ca hàm ch tiêu cht lng vi bin điu khin không đi khi điu kin thay đi . Nh là mt cách th ba đ tìm đc (1.14) , ta phát trin thêm đ s dng cho các phân tích trong nhng phn sau . Kt hp điu kin và hàm ch tiêu cht lng đ tìm ra hàm Hamilton . ( ) ( ) ( ) uxfuxLuxH T ,,,, λλ += (1.22) Vi n R∈ λ là tha s Lagrange cha xác đnh . Mun chn x , u , λ đ có đc đim dng , ta tin hành các bc sau . bin thiên ca H theo các đ bin thiên ca x , u , λ đc vit nh sau : λ λ dHduHdxHdH TT u T x ++= (1.23) Lu ý rng : ),( uxf H H = ∂ ∂ = λ λ (1.24) Gi s chúng ta chn các giá tr ca u tha mãn : 0 = λ H (1.25) Sau đó ta xác đnh x vi giá tr ca u đã có bng phng trình điu kin ràng buc () 0, =uxf . Trong trng hp này hàm Hamilton tng đng vi hàm ch tiêu cht lng: