1. Trang chủ
  2. » Khoa Học Tự Nhiên

Tài liệu Bất đẳng thức luyện thi ppt

27 604 1

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 27
Dung lượng 170,32 KB

Nội dung

www.batdangthuc.net 5 Inequalities From 2007 Mathematical Competition Over The World  Example 1 (Iran National Mathematical Olympiad 2007). Assume that a, b, c are three different positive real numbers. Prove that     a + b a − b + b + c b − c + c + a c − a     > 1. Example 2 (Iran National Mathematical Olympiad 2007). Find the largest real T such that for each non-negative real numbers a, b, c, d, e such that a + b = c + d + e, then  a 2 + b 2 + c 2 + d 2 + e 2 ≥ T ( √ a + √ b + √ c + √ d + √ e) 2 . Example 3 (Middle European Mathematical Olympiad 2007). Let a, b, c, d be positive real numbers with a + b + c + d =4. Prove that a 2 bc + b 2 cd + c 2 da + d 2 ab ≤ 4. Example 4 (Middle European Mathematical Olympiad 2007). Let a, b, c, d be real num- bers which satisfy 1 2 ≤ a, b, c, d ≤ 2 and abcd =1. Find the maximum value of  a + 1 b  b + 1 c  c + 1 d  d + 1 a  . Example 5 (China Northern Mathematical Olympiad 2007). Let a, b, c be side lengths of a triangle and a + b + c =3. Find the minimum of a 2 + b 2 + c 2 + 4abc 3 . Example 6 (China Northern Mathematical Olympiad 2007). Let α, β be acute angles. Find the maximum value of  1 − √ tan α tan β  2 cot α + cot β . Example 7 (China Northern Mathematical Olympiad 2007). Let a, b, c be positive real numbers such that abc =1. Prove that a k a + b + b k b + c + c k c + a ≥ 3 2 , for any positive integer k ≥ 2. 6 www.batdangthuc.net Example 8 (Croatia Team Selection Test 2007). Let a, b, c > 0 such that a + b + c =1. Prove that a 2 b + b 2 c + c 2 a ≥ 3(a 2 + b 2 + c 2 ). Example 9 (Romania Junior Balkan Team Selection Tests 2007). Let a, b, c three pos- itive reals such that 1 a + b +1 + 1 b + c +1 + 1 c + a +1 ≥ 1. Show that a + b + c ≥ ab + bc + ca. Example 10 (Romania Junior Balkan Team Selection Tests 2007). Let x, y, z ≥ 0 be real numbers. Prove that x 3 + y 3 + z 3 3 ≥ xyz + 3 4 |(x − y)(y − z)(z − x)|. Example 11 (Yugoslavia National Olympiad 2007). Let k be a given natural number. Prove that for any positive numbers x, y, z with the sum 1 the following inequality holds x k+2 x k+1 + y k + z k + y k+2 y k+1 + z k + x k + z k+2 z k+1 + x k + y k ≥ 1 7 . Example 12 (Cezar Lupu & Tudorel Lupu, Romania TST 2007). For n ∈ N,n ≥ 2,a i ,b i ∈ R, 1 ≤ i ≤ n, such that n  i=1 a 2 i = n  i=1 b 2 i =1,  n i=1 a i b i =0. Prove that  n  i=1 a i  2 +  n  i=1 b i  2 ≤ n. Example 13 (Macedonia Team Selection Test 2007). Let a, b, c be positive real numbers. Prove that 1+ 3 ab + bc + ca ≥ 6 a + b + c . Example 14 (Italian National Olympiad 2007). a) For each n ≥ 2, find the maximum constant c n such that 1 a 1 +1 + 1 a 2 +1 + .+ 1 a n +1 ≥ c n , for all positive reals a 1 ,a 2 , .,a n such that a 1 a 2 ···a n =1. b) For each n ≥ 2, find the maximum constant d n such that 1 2a 1 +1 + 1 2a 2 +1 + .+ 1 2a n +1 ≥ d n for all positive reals a 1 ,a 2 , .,a n such that a 1 a 2 ···a n =1. www.batdangthuc.net 7 Example 15 (France Team Selection Test 2007). Let a, b, c, d be positive reals such taht a + b + c + d =1. Prove that 6(a 3 + b 3 + c 3 + d 3 ) ≥ a 2 + b 2 + c 2 + d 2 + 1 8 . Example 16 (Irish National Mathematical Olympiad 2007). Suppose a, b and c are positive real numbers. Prove that a + b + c 3 ≤  a 2 + b 2 + c 2 3 ≤ 1 3  ab c + bc a + ca b  . For each of the inequalities, find conditions on a, b and c such that equality holds. Example 17 (Vietnam Team Selection Test 2007). Given a triangle ABC. Find the minimum of cos 2 A 2 cos 2 B 2 cos 2 C 2 + cos 2 B 2 cos 2 C 2 cos 2 A 2 + cos 2 C 2 cos 2 A 2 cos 2 B 2 . Example 18 (Greece National Olympiad 2007). Let a,b,c be sides of a triangle, show that (c + a − b) 4 a(a + b − c) + (a + b − c) 4 b(b + c − a) + (b + c − a) 4 c(c + a− b) ≥ ab + bc + ca. Example 19 (Bulgaria Team Selection Tests 2007). Let n ≥ 2 is positive integer. Find the best constant C(n) such that n  i=1 x i ≥ C(n)  1≤j<i≤n (2x i x j + √ x i x j ) is true for all real numbers x i ∈ (0, 1),i =1, ., n for which (1 − x i )(1 − x j ) ≥ 1 4 , 1 ≤ j<i≤ n. Example 20 (Poland Second Round 2007). Let a, b, c, d be positive real numbers satisfying the following condition: 1 a + 1 b + 1 c + 1 d =4. Prove that: 3  a 3 + b 3 2 + 3  b 3 + c 3 2 + 3  c 3 + d 3 2 + 3  d 3 + a 3 2 ≤ 2(a + b + c + d) − 4. Example 21 (Turkey Team Selection Tests 2007). Let a, b, c be positive reals such that their sum is 1. Prove that 1 ab +2c 2 +2c + 1 bc +2a 2 +2a + 1 ac +2b 2 +2b ≥ 1 ab + bc + ac . 8 www.batdangthuc.net Example 22 (Moldova National Mathematical Olympiad 2007). Real numbers a 1 ,a 2 , .,a n satisfy a i ≥ 1 i , for all i = 1,n. Prove the inequality (a 1 +1)  a 2 + 1 2  ·····  a n + 1 n  ≥ 2 n (n + 1)! (1 + a 1 +2a 2 + ···+ na n ). Example 23 (Moldova Team Selection Test 2007). Let a 1 ,a 2 , .,a n ∈ [0, 1]. Denote S = a 3 1 + a 3 2 + .+ a 3 n , prove that a 1 2n +1+S − a 3 1 + a 2 2n +1+S − a 3 2 + .+ a n 2n +1+S − a 3 n ≤ 1 3 . Example 24 (Peru Team Selection Test 2007). Let a, b, c be positive real numbers, such that a + b + c ≥ 1 a + 1 b + 1 c . Prove that a + b + c ≥ 3 a + b + c + 2 abc . Example 25 (Peru Team Selection Test 2007). Let a, b and c be sides of a triangle. Prove that √ b + c − a √ b + √ c − √ a + √ c + a − b √ c + √ a − √ b + √ a + b − c √ a + √ b − √ c ≤ 3.  Example 26 (Romania Team Selection Tests 2007). If a 1 ,a 2 , .,a n ≥ 0 satisfy a 2 1 + ···+ a 2 n =1, find the maximum value of the product (1 − a 1 )···(1 − a n ). Example 27 (Romania Team Selection Tests 2007). Prove that for n, p integers, n ≥ 4 and p ≥ 4, the proposition P(n, p) n  i=1 1 x i p ≥ n  i=1 x i p for x i ∈ R,x i > 0,i=1, .,n , n  i=1 x i = n, is false. Example 28 (Ukraine Mathematical Festival 2007). Let a, b, c be positive real numbers and abc ≥ 1. Prove that (a).  a + 1 a +1  b + 1 b +1  c + 1 c +1  ≥ 27 8 . (b). 27(a 3 +a 2 +a+1)(b 3 +b 2 +b+1)(c 3 +c 2 +c+1) ≥≥ 64(a 2 +a+1)(b 2 +b+1)(c 2 +c+1). Example 29 (Asian Pacific Mathematical Olympiad 2007). Let x, y and z be positive real numbers such that √ x + √ y + √ z =1. Prove that x 2 + yz  2x 2 (y + z) + y 2 + zx  2y 2 (z + x) + z 2 + xy  2z 2 (x + y) ≥ 1. www.batdangthuc.net 9 Example 30 (Brazilian Olympiad Revenge 2007). Let a, b, c ∈ R with abc =1. Prove that a 2 +b 2 +c 2 + 1 a 2 + 1 b 2 + 1 c 2 +2  a + b + c + 1 a + 1 b + 1 c  ≥ 6+2  b a + c b + a c + c a + c b + b c  . Example 31 (India National Mathematical Olympiad 2007). If x, y, z are positive real numbers, prove that (x + y + z) 2 (yz + zx + xy) 2 ≤ 3(y 2 + yz + z 2 )(z 2 + zx + x 2 )(x 2 + xy + y 2 ). Example 32 (British National Mathematical Olympiad 2007). Show that for all positive reals a, b, c, (a 2 + b 2 ) 2 ≥ (a + b + c)(a + b− c)(b + c− a)(c + a − b). Example 33 (Korean National Mathematical Olympiad 2007). For all positive reals a, b, and c, what is the value of positive constant k satisfies the following inequality? a c + kb + b a + kc + c b + ka ≥ 1 2007 . Example 34 (Hungary-Isarel National Mathematical Olympiad 2007). Let a, b, c, d be real numbers, such that a 2 ≤ 1,a 2 + b 2 ≤ 5,a 2 + b 2 + c 2 ≤ 14,a 2 + b 2 + c 2 + d 2 ≤ 30. Prove that a + b + c + d ≤ 10. 10 www.batdangthuc.net SOLUTION  Please visit the following links to get the original discussion of the ebook, the problems and solution. We are appreciating every other contribution from you! http://www.batdangthuc.net/forum/showthread.php?t=26 http://www.batdangthuc.net/forum/showthread.php?t=26&page=2 http://www.batdangthuc.net/forum/showthread.php?t=26&page=3 http://www.batdangthuc.net/forum/showthread.php?t=26&page=4 http://www.batdangthuc.net/forum/showthread.php?t=26&page=5 http://www.batdangthuc.net/forum/showthread.php?t=26&page=6  For Further Reading, Please Review:  UpComing Vietnam Inequality Forum's Magazine  Secrets in Inequalities (2 volumes), Pham Kim Hung (hungkhtn)  Old And New Inequalities, T. Adreescu, V. Cirtoaje, M. Lascu, G. Dospinescu  Inequalities and Related Issues, Nguyen Van Mau  We thank a lot to Mathlinks Forum and their member for the reference to problems and some nice solutions from them! www.batdangthuc.net 11 Problem 1 (1, Iran National Mathematical Olympiad 2007). Assume that a, b, c are three different positive real numbers. Prove that     a + b a − b + b + c b − c + c + a c − a     > 1. Solution 1 (pi3.14). Due to the symmetry, we can assume a>b>c. Let a = c + x; b = c + y, then x>y>0. We have     a + b a − b + b + c b − c + c + a c − a     = 2c + x + y x − y + 2c + y y − 2c + x x =2c  1 x − y + 1 y − 1 x  + x + y x − y . We have 2c  1 x − y + 1 y − 1 x  =2c  1 x − y + x − y xy  > 0. x + y x − y > 1. Thus     a + b a − b + b + c b − c + c + a c − a     > 1. Solution 2 (2, Mathlinks, posted by NguyenDungTN). Let a + b a − b = x; b + c b − c = y; a + c c − a = z; Then xy + yz + xz =1. By Cauchy-Schwarz Inequality (x + y + z) 2 ≥ 3(xy + yz + zx)=3⇒|x + y + z|≥ √ 3 > 1. We are done. ∇ Problem 2 (2, Iran National Mathematical Olympiad 2007). Find the largest real T such that for each non-negative real numbers a, b, c, d, e such that a + b = c + d + e, then  a 2 + b 2 + c 2 + d 2 + e 2 ≥ T ( √ a + √ b + √ c + √ d + √ e) 2 12 www.batdangthuc.net Solution 3 (NguyenDungTN). Let a = b =3,c= d = e =2, we find √ 30 6( √ 3+ √ 2) 2 ≥ T. With this value of T , we will prove the inequality. Indeed, let a + b = c + d + e = X.By Cauchy-Schwarz Inequality a 2 + b 2 ≥ (a + b) 2 2 = X 2 2 c 2 + d 2 + e 2 ≥ (c + d + e) 2 3 = X 2 3 ⇒  a 2 + b 2 + c 2 + d 2 + e 2 ≥ 5X 2 6 (1) By Cauchy-Schwarz Inequality, we also have √ a + √ b ≤  2(a + b)= √ 2X √ c + √ d + √ e ≤  3(c + d + e)=3X ⇒ ( √ a + √ b + √ c + √ d + √ e) 2 ≤ ( √ 2+ √ 3) 2 X 2 (2) From (1) and (2), we have √ a 2 + b 2 + c 2 + d 2 + e 2 ( √ a + √ b + √ c + √ d + √ e) 2 ≥ √ 30 6( √ 3+ √ 2) 2 . Equality holds for 2a 3 = 2b 3 = c = d = e. ∇ Problem 3 (3, Middle European Mathematical Olympiad 2007). Let a, b, c, d non- negative such that a + b + c + d =4. Prove that a 2 bc + b 2 cd + c 2 da + d 2 ab ≤ 4. Solution 4 (mathlinks, reposted by pi3.14). Let {p,q,r,s} = {a, b, c, d} and p ≥ q ≥ r ≥ s. By rearrangement Inequality, we have a 2 bc + b 2 cd + c 2 da + d 2 ab = a(abc)+b(bcd)+c(cda)+d(dab) ≤ p(pqr)+q(pqs)+r(prs)+s(qrs)=(pq + rs)(pr + qs) ≤  pq + rs + pr + qs 2  2 = 1 4 (p + s) 2 (q + r) 2 ≤ 1 4   p + q + r + s 2  2  2 =4. Equality holds for q = r =1vp + s =2. Easy to refer (a, b, c, d)=(1, 1, 1, 1), (2, 1, 1, 0) or permutations. www.batdangthuc.net 13 ∇ Problem 4 ( 5- Revised by VanDHKH). Let a, b, c be three side-lengths of a triangle such that a + b + c =3. Find the minimum of a 2 + b 2 + c 2 + 4abc 3 Solution 5. Let a = x + y, b = y + z, c = z + x, we have x + y + z = 3 2 . Consider a 2 + b 2 + c 2 + 4abc 3 = (a 2 + b 2 + c 2 )(a + b + c)+4abc 3 = 2((x + y) 2 +(y + z) 2 +(z + x) 2 )(x + y + z)+4(x + y)(y + z)(z + x) 3 = 4(x 3 + y 3 + z 3 +3x 2 y +3xy 2 +3y 2 z +3yz 2 +3z 2 x +3zx 2 +5xyz) 3 = 4((x + y + z) 3 − xyz) 3 = 4( 26 27 (x + y + z) 3 +( x+y+z 3 ) 3 − xyz) 3 ≥ 4( 26 27 (x + y + z) 3 ) 3 = 13 3 . Solution 6 (2, DDucLam). Using the familiar Inequality (equivalent to Schur) abc ≥ (b + c − a)(c + a − b)(a + b − c) ⇒ abc ≥ 4 3 (ab + bc + ca) − 3. Therefore P ≥ a 2 + b 2 + c 2 + 16 9 (ab + bc + ca) − 4 =(a + b + c) 2 − 2 9 (ab + bc + ca) − 4 ≥ 5 − 2 27 (a + b + c) 2 =4+ 1 3 . Equality holds when a = b = c =1. Solution 7 (3, pi3.14). With the conventional denotion in triangle, we have abc =4pRr , a 2 + b 2 + c 2 =2p 2 − 8Rr − 2r 2 . Therefore a 2 + b 2 + c 2 + 4 3 abc = 9 2 − 2r 2 . Moreover, p ≥ 3 √ 3r ⇒ r 2 ≤ 1 6 . Thus a 2 + b 2 + c 2 + 4 3 abc ≥ 4 1 3 . 14 www.batdangthuc.net ∇ Problem 5 (7, China Northern Mathematical Olympiad 2007). Let a, b, c be positive real numbers such that abc =1. Prove that a k a + b + b k b + c + c k c + a ≥ 3 2 . for any positive integer k ≥ 2. Solution 8 (Secrets In Inequalities, hungkhtn). We have a k a + b + b k b + c + c k c + a ≥ 3 2 ⇔ a k−1 + b k−1 + c k−1 ≥ 3 2 + a k−1 b a + b + b k−1 c b + c + c k−1 a c + a By AM-GM Inequality, we have a + b ≥ 2 √ ab, b + c ≥ 2 √ bc, c + a ≥ 2 √ ca. So, it remains to prove that a k− 3 2 b 1 2 + b k− 3 2 c 1 2 + c k− 3 2 a 1 2 +3≤ 2  a k−1 + b k−1 + c k−1  . This follows directly by AM-GM inequality, since a k−1 + b k−1 + c k−1 ≥ 3 3 √ a k−1 b k−1 c k−1 =3 and (2k − 3)a k−1 + b k−1 ≥ (2k − 2)a k− 3 2 b 1 2 (2k − 3)b k−1 + c k−1 ≥ (2k − 2)b k− 3 2 c 1 2 (2k − 3)c k−1 + a k−1 ≥ (2k − 2)c k− 3 2 a 1 2 Adding up these inequalities, we have the desired result. ∇ Problem 6 (8, Revised by NguyenDungTN). Let a, b, c > 0 such that a + b + c =1. Prove that: a 2 b + b 2 c + c 2 a ≥ 3(a 2 + b 2 + c 2 ). [...]... c+a+1 a+b b+c c+a + + ≥2 a+b+1 b+c+1 c+a+1 By Cauchy-Schwarz Inequality, ⇔ LHS ≥ (a + b + b + c + c + a)2 = 2 cyc (a + b)(a + b + 1) We are done Comment This second very beautiful solution uses Contradiction method If you can't understand the principal of this method, have a look at Sang Tao Bat Dang Thuc, or Secrets In Inequalities, written by Pham Kim Hung Problem 8 (10, Romanian JBTST V 2007) Let x,... |xy(x − y)| 4 This last inequality can be checked easily Problem 9 (11, Yugoslavia National Olympiad 2007) Let k be a given natural number Prove that for any positive numbers x, y, z with the sum 1, the following inequality holds xk+2 yk+2 z k+2 1 + k+1 + k+1 ≥ xk+1 + yk + z k y + z k + xk z + xk + y k 7 When does equality occur? Solution 15 (NguyenDungTN) We can assume that x ≥ y ≥ z By this assumption,... NguyenDungTN) a) Let a1 = n−1 , ak = 1 ∀k = 1, then let → 0, we easily get cn ≤ 1 We will prove the inequality with this value of cn Without loss of generality, assume that a1 ≤ a2 ≤ · · · ≤ an Since a1 a2 ≤ 1, we have n k=1 1 1 1 1 a1 a1 1 ≥ + = + + = 1 ≥ ak + 1 a1 + 1 a2 + 1 a1 + 1 a2 + a1a2 a1 + 1 a1 + 1 This ends the proof b) Consider n = 2, it is easy to get d2 = becomes 2 3 Indeed, let a1 = a, a2 = 1 a The... ≥2 42 1 2( a + 1 + b 1 c + 1 ) d = 32 =4 8 This ends the proof Problem 17 (21, Turkey Team Selection Tests 2007) Let a, b, c be positive reals such that their sum is 1 Prove that: 1 1 1 1 + + ≥ ab + 2c2 + 2c bc + 2a2 + 2a ac + 2b2 + 2b ab + bc + ac Solution 25 (NguyenDungTN) First, we will prove that ab ab + ac + bc ≥ 2 + 2c ab + 2c ab + ac + bc Indeed, this is equivalent to a2b2 + b2c2 + c2 a2 +... www.batdangthuc.net 26 So it is enough to prove that 2 (a + b + c)2 ≥ 3 + (a + b + c)2 ⇔ (a + b + c)2 ≥ 9 3 This inequality is true due to a + b + c ≥ 3 Solution 30 (2, DDucLam) We have a+b+c ≥ 2 1 1 1 1 2 3 (a + b + c) + ( + + ) ≥ (a + b + c) + 3 3 a b c 3 a+b+c We only need to prove that a+b+c ≥ 3 , abc but this inequality is always true since (a + b + c)2 ≥ 1 1 1 + + a b c 2 ≥3 1 1 1 + + ab bc ca = 3 (a... Solution 10 (2, By Zaizai) a2 b2 c2 + + ≥ 3(a2 + b2 + c2 ) b c a a2 − 2a + b b ⇔ ≥ 3(a2 + b2 + c2 ) − (a + b + c)2 (a − b)2 ≥ (a − b)2 + (b − c)2 + (c − a)2 b ⇔ ⇔ ⇔ (a − b)2 1 −1 b ≥0 (a − b)2(a + c) ≥ 0 b This ends the solution, too Problem 7 (9, Romania Junior Balkan Team Selection Tests 2007) Let a, b, c be three positive reals such that 1 1 1 + + ≥ 1 a+b+1 b+c+1 c+a+1 Show that a + b + c ≥ ab + bc +... 2007) Real numbers a1 , a2, · · · , an satisfy ai ≥ 1 , for all i = 1, n Prove the inequality i (a1 + 1) a2 + 1 2 · · · · · an + 1 n ≥ 2n (1 + a1 + 2a2 + · · · + nan ) (n + 1)! Solution 26 (NguyenDungTN) This inequality is equivalent to (a1 + 1)(2a2 + 1) · · (nan + 1) ≥ 2n (1 + a1 + 2a2 + + nan ) n+1 It is clearly true when n = 1 Assume that it si true for n = k, we have to prove it for n = k + 1 Indeed,... xyz z3 3 k=1 9 a1 a3 , z= a2 2 9 a1 a2 a2 3 = 1 Thus x3 y3 z3 1 ≥ 3 + 3 + 3 ak + 1 x +2 y +2 z +2 x2 y2 z2 + 2 + 2 x2 + 2yz y + 2xz z + 2xy x2 y2 z2 + 2 + 2 = 1 x2 + y 2 + z 2 x + y 2 + z 2 x + y2 + z 2 This ends the proof Problem 12 (15, France Team Selection Test 2007) Let a, b, c, d be positive reals such that a + b + c + d = 1 Prove that: 1 6(a3 + b3 + c3 + d3) ≥ a2 + b2 + c2 + d2 + 8 www.batdangthuc.net... − y)(x − z) 2 By AM-GM inequality, we have √ √ b+c−a √ √ = b+ c− a 1− (x − y)(x − z) (x − y)(x − z) ≤ 1− 2 2x 4x2 We will prove that x−2(x − y)(x − z) + y−2 (y − z)(y − z) + z −2(z − x)(z − y) ≥ 0 But this immediately follows the general Schur inequality, with the assumption that x ≥ y ≥ z ⇒ x−2 ≤ y−2 ≤ z −2 We are done! www.batdangthuc.net 27 Problem 22 (26, Romania Team Selection Tests 2007) If a1... that x1 ≤ x2 ≤ thus x2 + x3 + x2 + x3 ≥ 2k2/3 + k4/3 = 1.07 ≥ 1 Similarly, we have f(x1 , x2, , xn) ≤ f(x1 , x2x3, 1, x4, , xn) ≤ f(x1 , x2x3 x4, 1, 1, x5, , xn) ≤ ≤ f(x1 , x2x3 xn, 1, 1, , 1), From this, easy to get the final result Problem 23 (28, Ukraine Mathematic Festival 2007) Let a, b, c > 0 và abc ≥ 1 Prove that a) a+ 1 a+1 b+ 1 b+1 c+ 1 c+1 ≥ 27 8 b) 27(a3 + a2 + a + 1)(b3 + b2 + b + 1)(c3 . We are done Comment. This second very beautiful solution uses Contradiction method. If you can't understand the principal of this method, have a look. 2 b 1 2 + b k− 3 2 c 1 2 + c k− 3 2 a 1 2 +3≤ 2  a k−1 + b k−1 + c k−1  . This follows directly by AM-GM inequality, since a k−1 + b k−1 + c k−1 ≥ 3 3

Ngày đăng: 15/12/2013, 01:16

TỪ KHÓA LIÊN QUAN

w