1. Trang chủ
  2. » Luận Văn - Báo Cáo

Cực trị hàm số trong các hệ thống biểu đạt khác nhau của hàm số ở trung học phổ thông

127 23 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 127
Dung lượng 2,46 MB

Nội dung

BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC SƯ PHẠM THÀNH PHỐ HỒ CHÍ MINH Nguyễn Ngọc Hân CỰC TRỊ HÀM SỐ TRONG CÁC HỆ THỐNG BIỂU ĐẠT KHÁC NHAU CỦA HÀM SỐ Ở TRUNG HỌC PHỔ THÔNG LUẬN VĂN THẠC SĨ KHOA HỌC GIÁO DỤC Thành phố Hồ Chí Minh – 2019 BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC SƯ PHẠM THÀNH PHỐ HỒ CHÍ MINH Nguyễn Ngọc Hân CỰC TRỊ HÀM SỐ TRONG CÁC HỆ THỐNG BIỂU ĐẠT KHÁC NHAU CỦA HÀM SỐ Ở TRUNG HỌC PHỔ THÔNG Chuyên ngành: Lý luận phương pháp dạy học mơn Tốn Mã số : 8140111 LUẬN VĂN THẠC SĨ KHOA HỌC GIÁO DỤC NGƯỜI HƯỚNG DẪN KHOA HỌC: TS TRẦN LƯƠNG CÔNG KHANH Thành phố Hồ Chí Minh – 2019 LỜI CAM ĐOAN Tơi tên Nguyễn Ngọc Hân, học viên cao học chuyên ngành Lý luận phương pháp dạy học mơn Tốn khóa 28 Trường Đại học Sư phạm Thành phố Hồ Chí Minh Tôi xin cam đoan luận văn công trình nghiên cứu cá nhân, thơng tin tài liệu tham khảo cho việc thực luận văn hồn tồn xác đáng tin cậy Người thực Nguyễn Ngọc Hân LỜI CẢM ƠN Trong suốt thời gian học tập, nghiên cứu hoàn thành luận văn tốt nghiệp, nhận hướng dẫn, giúp đỡ lời động viên chân tình, quý báu cấp lãnh đạo, quý thầy cô, gia đình, bạn bè anh, chị, em đồng nghiệp tơi xin bày tỏ lịng kính trọng, tri ân sâu sắc lời cảm ơn chân thành đến: TS Trần Lương Công Khanh, tận tâm giúp đỡ, hướng dẫn, dạy bảo động viên suốt qt trình tơi thực hoàn thành đề tài luận văn “Cực trị hàm số hệ thống biểu đạt khác hàm số Trung học phổ thông” Quý lãnh đạo phòng, ban chức năng, phòng Sau Đại Học khoa Khoa Toán – Tin Trường Đại học Sư phạm Thành phố Hồ Chí Minh; thầy, khóa 28 (2017 – 2019) tận tình dìu dắt, truyền đạt cho kiến thức, kinh nghiệm vô quý báu tạo điều kiện thuận lợi suốt q trình tơi học tập nghiên cứu Q lãnh đạo, cán quản lí, thầy em học sinh trường Trung học phổ thông Chê Ghê – va – huyện Mỏ Cày Nam trường THPT Bến Cát huyện Bến Cát tạo điều kiện giúp đỡ, dành thời gian để hỗ trợ, cung cấp thông tin cần thiết giúp cho tơi hồn thàn luận văn Cuối cùng, xin cảm ơn gia đình động viên, khích lệ tơi suốt trình học tập thực luận văn Tuy có nhiều cố gắng suốt thời gian thực luận văn tốt nghiệp tất nhiên luận văn khơng thể tránh khỏi thiếu sót Tơi mong nhận góp ý quý thầy, cô, chị em đồng nghiệp bạn Xin trân trọng cảm ơn./ Bến Tre, tháng 12 năm 2019 Tác giả luận văn Nguyễn Ngọc Hân MỤC LỤC Trang phụ bìa Lời cam đoan Lời cảm ơn Mục lục Danh mục chữ viết tắt Danh mục bảng MỞ ĐẦU Chương CỰC TRỊ HÀM SỐ TRONG CÁC HỆ THỐNG BIỂU ĐẠT KHÁC NHAU CỦA HÀM SỐ Ở LỚP 12 1.1 Các hệ thống biểu đạt khác hàm số vai trò chúng 1.2 Cực trị hàm số lớp 10 lớp 11 11 1.3 Cực trị hàm số với hệ thống biểu đạt khác hàm số câu hỏi tự luận sách Giải tích 12 13 1.3.1 Phân tích sách Giải tích 12 chương trình chuẩn 14 1.3.2 Phân tích sách Giải tích 12 nâng cao 33 1.4 Cực trị hàm số với hệ thống biểu đạt khác hàm số câu hỏi trắc nghiệm sách Giải tích 12 38 1.4.1 Phân tích sách Giải tích 12 chương trình chuẩn 38 1.4.2 Phân tích sách Giải tích 12 chương trình nâng cao 45 Kết luận chương 51 Chương CỰC TRỊ HÀM SỐ TRONG CÁC HỆ THỐNG BIỂU ĐẠT KHÁC NHAU CỦA HÀM SỐ Ở CÁC ĐỀ THI CỦA KÌ THI TỐT NGHIỆP THPT 2017, 2018 VÀ 2019 54 2.1 Phân tích đề thi tham khảo kì thi tốt nghiệp THPT 2017, 2018 2019 54 2.2 Phân tích đề thi thức kì thi tốt nghiệp THPT 2017, 2018 2019 63 Kết luận chương 77 Chương THỰC NGHIỆM 79 3.1 Mục đích thực nghiệm 79 3.2 Hình thức tổ chức thực nghiệm 79 3.3 Thực nghiệm giáo viên 79 3.3.1 Câu hỏi thực nghiệm 79 3.3.2 Phân tích tiên nghiệm 81 3.3.3 Phân tích hậu nghiệm 83 3.4 Thực nghiệm học sinh 85 3.4.1 Các câu hỏi thực nghiệm mục tiêu 85 3.4.2 Phân tích tiên nghiệm 86 3.4.3 Phân tích hậu nghiệm 96 Kết luận chương 104 KẾT LUẬN 105 TÀI LIỆU THAM KHẢO 107 PHỤ LỤC DANH MỤC CÁC CHỮ VIẾT TẮT Chữ viết tắt Diễn giải BBT Bảng biến thiên CT Công thức ĐT Đồ thị GTLN Giá trị lớn GTNN Giá trị nhỏ HTBĐ Hệ thống biểu đạt HTBĐ ĐS Hệ thống biểu đạt đại số HTBĐ HH Hệ thống biểu đạt hình học HTBĐ DL Hệ thống biểu đạt liệu SGK10C Sách giáo khoa Đại số 10 chuẩn SGK10N Sách giáo khoa Đại số 10 nâng cao SGK11C Sách giáo khoa Đại số Giải tích 11 chuẩn SGK11N Sách giáo khoa Đại số Giải tích 11 nâng cao SBT12N Sách tập Giải tích 12 nâng cao SGK12C Sách giáo khoa Giải tích 12 chuẩn SGK12N Sách giáo khoa Giải tích 12 nâng cao SGV12C Sách giáo viên Giải tích 12 chuẩn SGV12N Sách giáo viên Giải tích 12 nâng cao THPT Trung học phổ thông Tr Trang TNKQ Trắc nghiệm khách quan DANH MỤC CÁC BẢNG Bảng 1.1 Vai trò hệ thống biểu đạt 11 Bảng 1.2 Khái niệm cực trị hàm số hệ thống biểu đạt hàm số 18 Bảng 1.3 Thống kê hệ thống biểu đạt hàm số tập thuộc 𝑇𝐶𝑇 sách Giải tích 12 Chuẩn 22 Bảng 1.4 Thống kê hệ thống biểu đạt hàm số tập thuộc 𝑇𝐿𝑁𝑁𝑁_𝐾 sách Giải tích 12 Chuẩn 25 Bảng 1.5 Thống kê hệ thống biểu đạt hàm số tập thuộc 𝑇𝐿𝑁𝑁𝑁_Đ sách Giải tích 12 Chuẩn 28 Bảng 1.6 Thống kê hệ thống biểu đạt hàm số tập thuộc 𝑇𝐵𝐿 sách Giải tích 12 Chuẩn 29 Bảng 1.7 Thống kê hệ thống biểu đạt hàm số tập thuộc 𝑇𝐾𝑆 sách Giải tích 12 Chuẩn 30 Bảng 1.8 Thống kê hệ thống biểu đạt hàm số tập thuộc 𝑇𝑇𝑆 sách Giải tích 12 Chuẩn 32 Bảng 1.9 Thống kê hệ thống biểu đạt hàm số tập thuộc 𝑇𝐶𝑇 sách Giải tích 12 Nâng cao 34 Bảng 1.10 Thống kê hệ thống biểu đạt hàm số tập thuộc 𝑇𝐿𝑁𝑁𝑁_𝐾 sách Giải tích 12 Nâng cao 35 Bảng 1.11 Thống kê hệ thống biểu đạt hàm số tập thuộc 𝑇𝐿𝑁𝑁𝑁_Đ sách Giải tích 12 Nâng cao 37 Bảng 1.12 Thống kê hệ thống biểu đạt hàm số tập thuộc 𝑇𝐾𝑆 sách Giải tích 12 Nâng cao 37 Bảng 1.13 Thống kê hệ thống biểu đạt hàm số câu hỏi trắc nghiệm sách Giải tích 12 Chuẩn 44 Bảng 1.14 Thống kê hệ thống biểu đạt hàm số câu hỏi trắc nghiệm sách Giải tích 12 Nâng cao 49 Bảng 2.1 Bảng tổng kết HTBĐ hàm số đề thi MH 62 Bảng 2.2 Bảng tổng kết HTBĐ hàm số đề thi thức 2017 74 Bảng 2.3 Bảng tổng kết HTBĐ hàm số đề thi thức 2018 75 Bảng 2.4 Bảng tổng kết HTBĐ hàm số đề thi thức 2019 75 Bảng 3.1 Bảng tổng kết chiến lược giáo viên sử dụng toán 84 Bảng 3.2 Bảng tổng kết chiến lược giáo viên sử dụng toán 84 Bảng 3.3 Giá trị biến toán toán 95 Bảng 3.4 Dự kiến câu trả lời học sinh chiến lược 95 Bảng 3.5 Dự kiến câu trả lời học sinh việc sử dụng hệ thống biểu đạt hàm số 95 Bảng 3.6 Bảng tổng kết kỹ thuật HTBĐ hàm số câu câu toán 96 Bảng 3.7 Bảng tổng kết chiến lược HTBĐ hàm số câu câu toán 99 MỞ ĐẦU Ghi nhận ban đầu câu hỏi xuất phát 1.1 Lí chọn đề tài Cực trị khái niệm đưa vào giảng dạy chương trình lớp 12 Các kiểu nhiệm vụ liên quan đến cực trị xuất chương trình lớp 12 đề thi tốt nghiệp trung học phổ thông, đề thi đại học cao đẳng Trong sách giáo khoa giải tích 12 chương trình chuẩn, trước đưa vào khái niệm cực trị, sách giáo khoa (SGK) trình bày Hoạt động sau: Dựa vào đồ thị (H.7, H.8), điểm hàm số sau có giá trị lớn (nhỏ nhất): a) 𝑦 = −𝑥 + khoảng (−∞; +∞); 𝑥 3 2 b) 𝑦 = (𝑥 − 3)2 khoảng ( ; ) 𝑣à ( ; 4) ; Hình Hình Xét dấu đạo hàm hàm số cho điền vào bảng 𝑥 𝑦′ -∞ +∞ 𝑥 𝑦′ -∞ 𝑦 -∞ −∞ 𝑦 +∞ +∞ -∞ Đối với hoạt động này, sách giáo viên giải tích 12 yêu cầu sau “…cần điểm cực đại, cực tiểu cách quan sát trực quan hình vẽ (đồ 104 Kết luận chương Thông qua 14 thực nghiệm dành cho giáo viên 56 thực nghiệm dành cho học sinh lớp 12 kiểm chứng tính hợp thức giả thuyết H1 H2 Bên cạnh chúng tơi nhận thấy: - Đa số học sinh sử dụng công thức để giải câu hỏi yêu cầu nhiều cách làm, điều cho thấy học sinh ưu tiên lựa chọn sử dụng công thức hàm số để giải toán bị đặt vào trường hợp phải “lựa chọn” - Mặc dù giáo viên mong đợi học sinh kỹ thuật giải nhanh toán học sinh lựa chọn kỹ thuật giải mà học sinh cảm thấy “quen thuộc” “an tồn” hơn, kỹ thuật tốn - Đa số học sinh khơng ưu tiên sử dụng đồ thị để tìm cực trị hàm số Điều cho thấy kết Phan Quang Thắng (2012) nghiên cứu giai đoạn thi tự luận hợp thức giai đoạn thi theo hình thức trắc nghiệm khách quan 105 KẾT LUẬN Hình thức thi thay đổi từ hình thức tự luận sang trắc nghiệm khách quan trước hết làm làm cho hệ thống biểu đạt hàm số có thay đổi Nghiên cứu chương 1, hệ thống biểu đạt hàm số câu hỏi tự luân tắc nghiệm HTBĐ ĐS, khơng có xuất hệ thống biểu đạt khác Nguyên nhân do: - Hàm số cần cho công thức tường minh để thực hiên biến đổi giải tích - Mục tiêu giảng dạy cực trị hàm số quy định SGV Giải tích 12 - Hàm số cho biểu diễn đồ thị bảng liệu có tác dụng ví dụ minh họa, khơng phải cơng cụ sử dụng để xét tính cực trị hàm số Từ ưu tiên sách Giải tích 12 hàm số cho công thức, đưa giả thuyết nghiên cứu: H1: “Đa số học sinh ưu tiên sử dụng hàm số cho cơng thức đại số để tìm cực trị hàm số, tìm giá trị lớn giá trị nhỏ hàm số cách cho hàm số khác.” Ở chương 2, nghiên cứu đề thi tốt nghiệp THPT 2017, 2018 2019, câu hỏi cho theo hình thức trắc nghiệm khác quan Chúng nhân thấy hệ thống biểu đạt hàm số trở nên phong phú Xuất hàm số cho biểu diễn đồ thị bảng biến thiên, biểu diễn đồ thị bảng biến thiên trở thành công cụ xét tính cực trị hàm số giải tốn liên quan cực trị hàm số Vì lý đó, kỹ thuật giải kiểu nhiệm vụ phong phú hơn, số kỹ thuật hình thành kỹ thuật sử dụng máy tính bỏ túi, kỹ thuật đọc đồ thị hàm số cho, kỹ thuật quan sát bảng biến thiên Mặc dù có xuất hàm số cho bảng biến thiên hàm số cho biểu diễn đồ thị hàm số cho công thức ưu tiên kiểu nhiệm vụ liên quan đến cực trị hàm số đề thi tốt nghiệp THPT qua năm Vì vậy, chúng tơi đưa giải thuyết nghiên cứu: 106 H2: “Đối với câu hỏi liên quan đến tìm cực trị hàm số bao gồm câu hỏi tự luận câu hỏi trắc nghiệm, đa số học sinh ưu tiên sử dụng kỹ thuật giải tự luận đề cập sách Giải tích 12 để tìm cực trị hàm số” Ở chương 3, tiến hành thực nghiệm để quan sát mong đợi giáo viên ứng xử học sinh trước hệ thống biểu đạt hàm số Kết thực nghiệm giúp kiểm chứng tính hợp thức giả thuyết H1 H2, đồng thời trả lời cho vấn đề đặt phần mở đầu tính hợp thức kết Phan Quang Thắng (2012) giai đoạn đánh giá hình thức trắc nghiệm khác quan Hình thức thi thay đổi sang hình thức trắc nghiệm khác quan dẫn đến HTBĐ hàm số, kỹ thuật, tổ chức toán học trở nên phong phú so với sách Giải tích 12 Vì giáo viên cần cung cấp cho thêm cho học sinh kỹ giải toán liên quan đến cực trị hàm số bảng biến thiên biểu diễn đồ thị hàm số tìm cực trị hàm 𝑦 = |𝑓(𝑥)| với 𝑓(𝑥) cho bảng biến thiên biểu diễn đồ thị; tìm cực trị hàm 𝑦 = 𝑔(𝑥) đồ thị hàm 𝑔(𝑥) suy từ đồ thị hàm 𝑓(𝑥) cho, …từ giúp học sinh linh hoạt việc vận dụng hệ thống biểu đạt hàm số để việc giải toán liên quan đến cực trị hàm số 107 TÀI LIỆU THAM KHẢO Bộ Giáo dục Đào tạo (2018) Chương trình giáo dục phổ thơng mơn Tốn Bộ Giáo dục Đào tạo, Các đề thi minh họa đề thi thức kỳ thi tốt nghiệp THPT 2017, 2018 2019 Bessort A., Comiti C., Lê, Thị Hoài Châu Nguyễn, Văn Tiến (2009) Những yếu tố Diddactic Toán, NXB Đại học Quốc gia TP Hồ Chí Minh Lê Thị Hồi Châu (2007) Phương pháp dạy học Hình học trường phổ thơng, NXB Đại học quốc gia Hồ Chí Minh Lê Thị Hồi Châu Comiti C (2018) Thuyết nhân học Didactic Tốn, NXB Đại học Sư phạm TP Hồ Chí Minh Nguyễn Thị Hồng Duyên (2012) Sự chuyển đổi hệ thống biểu đạt dạy học hàm số lớp 12, Luận văn Thạc sĩ Trường Đại học Sư phạm Thành phố Hồ Chí Minh Nguyễn, Huy Đoan tác giả (2014) Sách tập Giải tích 12 Nâng cao, NXB Giáo dục Trần Văn Hạo tác giả (2008) Giải tích 12 bản, NXB Giáo dục Trần Văn Hạo tác giả ( 2014) Đại số 10 bản, NXB Giáo dục Trần Văn Hạo tác giả (2014) Đại số giải tích 11 bản, NXB Giáo dục Trần Văn Hạo tác giả (2014) Sách tập Giải tích bản2, NXB Giáo dục Trần Văn Hạo tác giả (2014) Sách giáo viên Giải tích 12 bản, NXB Giáo dục Trần Lương Công Khanh (2018) Chuyển đổi phạm vi hệ thống biểu đạt: Khái niệm, đặc điểm vận dụng giải toán, Sở Giáo dục Đào tạo Bình Thuận Trần Lương Cơng Khanh (2006) La notion d’intégrale dans l’enseignement des mathématiques au lycée: une étude comparative entre la France et le Vietnam Thèse Grenoble, Université Joseph Fourier Trần Lương Công Khanh (2005) So sánh thể chế khái niệm tích phân Riemann, Báo cáo Hội thảo lần thứ Didactic – Phương pháp dạy học Toán, Trường Đại học Sư phạm thành phố Hồ Chí Minh 108 Nguyễn Nhật Phương (2012) Thay đổi phạm vi hệ thống biểu đạt giải biện luận phương trình chứa tham số trường THPT, Luận văn Thạc sĩ Trường Đại học Sư phạm Thành phố Hồ Chí Minh Đồn Quỳnh (2008) Giải tích 12 nâng cao, NXB Giáo dục Đoàn Quỳnh (Tổng chủ biên, 2013) Sách giáo viên Đại số 10 nâng cao, NXB Giáo dục Đoàn Quỳnh (Tổng chủ biên, 2013) Sách giáo viên Giải Tích 12 nâng cao, NXB Giáo dục Đoàn Quỳnh (Tổng chủ biên, 2014) Đại số 10 nâng cao, NXB Giáo dục Lê Thị Bích Siêng (2017) Bài toán khảo sát biến thiên vẽ đồ thị hàm số bối cảnh đánh giá hình thức trắc nghiệm khách quan, Luận văn Thạc sĩ Trường Đại học Sư phạm Thành phố Hồ Chí Minh Trần Trường Sinh (2012) Bảng biến thiên dạy học hàm số Trung học phổ thông, Luận văn Thạc sĩ Trường Đại học Sư phạm Thành phố Hồ Chí Minh Phan Quang Thắng (2012) Nghiên cứu didactic khái niệm cực trị hàm số dạy học Toán lớp 12, Luận văn Thạc sĩ Trường Đại học Sư phạm Thành phố Hồ Chí Minh Nguyễn Hồng Tú (2012) Giá trị lớn giá trị nhỏ dạy học Tốn phổ thơng, Luận văn Thạc sĩ Trường Đại học Sư phạm Thành phố Hồ Chí Minh Nguyễn Quốc Tuấn (2013) Nghiên cứu giá trị lớn giá trị nhỏ hàm số Trung học phổ thông, Luận văn Thạc sĩ Trường Đại học Sư phạm Thành phố Hồ Chí Minh Nguyễn Thị Thùy Trang (2012) Một nghiên cứu Didactic hàm số phương trình lượng giác dạy học Tốn 11, Luận văn Thạc sĩ Trường Đại học Sư phạm Thành phố Hồ Chí Minh PL1 PHỤ LỤC PHIẾU THỰC NGHIỆM ĐỐI VỚI GIÁO VIÊN Trường: Kính thưa q thầy cơ! Tờ phiếu mà quý thầy cô giữ soạn thảo nhằm khảo sát thay đổi qua trình dạy học khái niệm cực trị hàm số toán liên quan đến cực trị hàm số bối cảnh hình thức thi thay đổi theo hình thức trắc nghiệm khách quan Đồng thời tìm hiểu cách cho hàm số giáo viên sử dụng cách học sinh sử dụng cách cho hàm số giải toán liên quan đến cực trị hàm số nào? Các thông tin câu trả lời quý thầy cô giữ bí mật Chúng tơi biết ơn q thầy dành chút thời gian để hồn thành câu hỏi này! Câu 1: Khi hình thức thi thay đổi sang hình thức trắc nghiệm khách quan, thời gian thầy (cô) giảng dạy khái niệm cực trị hàm số có tăng lên hay giảm đi? Vì có thay đổi vậy? Câu 2: Trong giai đoạn thi theo hình thức trắc nghiệm khách quan, hàm số thầy (cô) cho cách mức độ sử dụng cách nào? (mức độ sử dụng thể số từ đến 4, theo mức độ sử dụng tăng dần) Cách cho hàm số Công thức Đồ thị Bảng biến thiên Bằng lời Khác Mức độ ưu tiên Nguyên nhân gì? PL2 Theo thầy (cô), ngồi hàm số cho cơng thức, hàm số cho cách khác (đồ thị, bảng biến thiên,…) làm cho HS gặp khó khăn giải toán liên quan đến cực trị hàm số? PL3 BÀI TỐN THỰC NGHIỆM GIÁO VIÊN Đối với hai tốn sau, theo thầy (cô), học sinh giải cách (Thầy (cô) cần nêu cách làm, không cần giải chi tiết) 1 Bài toán 1: Cho hàm số 𝑓(𝑥 ) = 𝑥 − 𝑥 − 𝑥 có bảng biến thiên sau: 𝑥 −2 −∞ 𝑓′(𝑥) + +∞ _ + 22 81 𝑓(𝑥) −∞ +∞ −1 Dựa vào bảng biến thiên, xác định khoảng mà hàm số đồng biến, nghịch biến Xác định cực trị hàm số 𝑦 = 𝑓(𝑥) hai cách Theo thầy cơ, học sinh giải cách nào? −2 Xác định giá trị lớn nhất, giá trị nhỏ hàm số [ ; 1] Theo thầy cô, học sinh giải cách nào? PL4 Bài toán 2: Cho hàm số 𝑦 = 4𝑥 − 2𝑥 + 1 Đồ thị đồ thị hàm số A B Cực trị hàm số A Hàm số cực trị B 𝑥𝐶𝑇 = ± , 𝑦𝐶𝑇 = 𝑥𝐶Đ = 0, 𝑦𝐶Đ = 1 C Hàm số khơng có cực đại, 𝑥𝐶𝑇 = ± , 𝑦𝐶𝑇 = D 𝑥𝐶𝑇 = , 𝑦𝐶𝑇 = 𝑥𝐶Đ = 0, 𝑦𝐶Đ = Chọn đáp án…… Theo thầy cô, học sinh giải cách để đưa đáp án? PL5 3 Trên đoạn [−1, ] A Hàm số đạt giá trị lớn 𝑥 = −1 2 Hàm số đạt giá trị nhỏ 𝑥 = 𝑥 = −1 2 B Hàm số đạt giá trị nhỏ 𝑥 = 𝑥 = Hàm số đạt giá trị lớn 𝑥 = −3 𝑥 = C Hàm số đạt giá trị lớn 𝑥 = −1 −1 2 Hàm số đạt giá trị nhỏ 𝑥 = 𝑥 = D Hàm số đạt giá trị lớn 𝑥 = −1 hàm số đạt giá trị nhỏ 𝑥 = Chọn đáp án…… Theo thầy cô, học sinh giải cách nào? Lý khác CHÂN THÀNH CẢM ƠN SỰ THAM GIA CỦA QUÝ THẦY CÔ! PL6 PHIỂU THỰC NGHIỆM HỌC SINH Trường: Lớp: Họ tên: Các em thân mến! Các em trình bày lời giải phía tập cho Lời giải không nhằm để đánh giá em mà để phục vụ cho việc nghiên cứu dạy học Toán Các em trả lời sau câu hỏi nháp vào phần nháp bên cạnh Cảm ơn tham gia nhiệt tình em! 1 Bài toán 1: Cho hàm số 𝑓(𝑥 ) = 𝑥 − 𝑥 − 𝑥 có bảng biến thiên sau: 𝑥 −2 −∞ 𝑓′(𝑥) + _ −∞ + 22 81 𝑓(𝑥) +∞ Dựa vào bảng biến thiên, xác định khoảng mà hàm số đồng biến, nghịch biến Trả lời +∞ −1 Phần nháp PL7 Xác định cực trị hàm số 𝑦 = 𝑓(𝑥) cách Trả lời Xác định giá trị lớn nhất, giá trị nhỏ −2 hàm số [ ; 1] Trả lời PL8 Bài toán 2: Cho hàm số 𝑦 = 4𝑥 − 2𝑥 + 1 Đồ thị sau đồ thị hàm số A B Cực trị hàm số 𝑦 = 4𝑥 − 2𝑥 + Phần nháp A Hàm số khơng có cực trị B 𝑥𝐶𝑇 = ± , 𝑦𝐶𝑇 = 𝑥𝐶Đ = 0, 𝑦𝐶𝑇 = C Hàm số cực đại, Hàm số có cực tiểu 𝑥𝐶𝑇 = ± , 𝑦𝐶𝑇 = 𝑥𝐶Đ = 0, 𝑦𝐶𝑇 = D 𝑥𝐶𝑇 = , 𝑦𝐶𝑇 = Chọn đáp án…… Vì PL9 Trên đoạn [−1, ] Lý khác A Hàm số đạt giá trị lớn 𝑥 = 0, hàm số đạt −1 2 giá trị nhỏ 𝑥 = 𝑥 = B Hàm số đạt giá trị nhỏ 𝑥 = 𝑥 = −1 , ……………………… C Hàm số đạt giá trị lớn 𝑥 = −1 hàm số đạt hàm số đạt giá trị lớn 𝑥 = −3 𝑥 = −1 2 giá trị nhỏ 𝑥 = 𝑥 = D Hàm số đạt giá trị lớn 𝑥 = −1 hàm số đạt giá trị nhỏ 𝑥 = Chọn đáp án……vì CẢM ƠN SỰ THAM G IA CỦA CÁC EM PL2 ... bảng MỞ ĐẦU Chương CỰC TRỊ HÀM SỐ TRONG CÁC HỆ THỐNG BIỂU ĐẠT KHÁC NHAU CỦA HÀM SỐ Ở LỚP 12 1.1 Các hệ thống biểu đạt khác hàm số vai trò chúng 1.2 Cực trị hàm số lớp... đến cực trị hàm số nào? Từ trả lời CH3 8 Chương CỰC TRỊ HÀM SỐ TRONG CÁC HỆ THỐNG BIỂU ĐẠT KHÁC NHAU CỦA HÀM SỐ Ở LỚP 12 Trong chương làm rõ hệ thống biểu đạt hàm số đề cập đến tổ chức toán học. .. khái niệm cực trị hàm số, hệ thống biểu đạt khác hàm số đề cập tổ chức toán học liên quan đến cực trị hàm số chương tình tốn bậc trung học phổ thông 1.1 Các hệ thống biểu đạt khác hàm số vai trò

Ngày đăng: 18/06/2021, 14:54

w