Ôn thi đại học
Nguyễn Phú Khánh – Đà Lạt Chương ŀ Tài Liệu ôn thi Tú Tài Đại học theo cấu trúc BGD ỨNG DỤNG CỦA ĐẠO HÀM ĐỂ KHẢO SÁT VÀ VẼ ĐỒ THỊ CỦA HÀM SỐ Bài 1: TÍNH ĐƠN ĐIỆU CỦA HÀM SỐ 1.1 TÓM TẮT LÝ THUYẾT Định nghĩa : Giả sử K khoảng , đoạn nửa khoảng Hàm số f xác định K gọi • Đồng biến K với x 1, x ∈ K , x < x ⇒ f x < f x ; • Nghịch biến K với x 1, x ∈ K , x < x ( ) ( ) ⇒ f ( x ) > f (x ) 2 Điều kiện cần để hàm số đơn điệu : Giả sử hàm số f có đạo hàm khoảng I ( ) biến khoảng I f ' ( x ) ≤ với x ∈ I • Nếu hàm số f đồng biến khoảng I f ' x ≥ với x ∈ I ; • Nếu hàm số f nghịch Điều kiện đủ để hàm số đơn điệu : Giả sử I khoảng nửa khoảng đoạn , f hàm số liên tục I có đạo hàm điểm I ( tức điểm thuộc I đầu mút I ) Khi : • Nếu f ' x > với x ∈ I hàm số f đồng biến khoảng I ; • • ( ) Nếu f ' ( x ) < với x ∈ I hàm số f Nếu f ' ( x ) = với x ∈ I hàm số f nghịch biến khoảng I ; không đổi khoảng I Chú ý : • Nếu hàm số f liên tục a;b có đạo hàm f ' x > khoảng ( ) (a;b ) hàm số f đồng biến a;b ( ) • Nếu hàm số f liên tục a;b có đạo hàm f ' x < khoảng (a;b ) hàm số f nghịch biến a;b • Giả sử hàm số f liên tục đoạn a;b ( ) * Nếu hàm số f đồng biến khoảng a;b đồng biến đoạn a;b Nguyễn Phú Khánh – Đà Lạt Tài Liệu ôn thi Tú Tài Đại học theo cấu trúc BGD ( ) * Nếu hàm số f nghịch biến khoảng a;b nghịch biến đoạn a;b ( ) * Nếu hàm số f không đổi khoảng a;b khơng đổi đoạn a;b Định lý mở rộng Giả sử hàm số f có đạo hàm khoảng I • Nếu f '(x ) ≥ với ∀x ∈ I f '(x ) = số hữu hạn điểm thuộc I hàm số f đồng biến khoảng I ; • Nếu f '(x ) ≤ với ∀x ∈ I f '(x ) = số hữu hạn điểm thuộc I hàm số f nghịch biến khoảng I 1.2 DẠNG TOÁN THƯỜNG GẶP Dạng : Xét chiều biến thiên hàm số ( ) Xét chiều biến thiên hàm số y = f x ta thực bước sau: • Tìm tập xác định D hàm số ( ) • Tính đạo hàm y ' = f ' x ( ) ( ) • Tìm giá trị x thuộc D để f ' x = f ' x không xác định ( ta gọi điểm tới hạn hàm số ) • Xét dấu y ' = f ' x khoảng x thuộc D ( ) • Dựa vào bảng xét dấu điều kiện đủ suy khoảng đơn điệu hàm số Ví dụ 1: Xét chiều biến thiên hàm số sau: x +2 −x + 2x − 1 y = y = x −1 x +2 Giải: x +2 x −1 * Hàm số cho xác định khoảng −∞;1 ∪ 1; +∞ y = ( * Ta có: y ' = - ( x −1 * Bảng biến thiên: x −∞ y' y ) ) ( ) < 0, ∀x ≠ 1 − +∞ − +∞ −∞ Nguyễn Phú Khánh – Đà Lạt Tài Liệu ôn thi Tú Tài Đại học theo cấu trúc BGD ( ) ( ) Vậy hàm số đồng biến khoảng −∞;1 1; +∞ −x + 2x − x +2 * Hàm số cho xác định khoảng −∞; −2 ∪ −2; +∞ y = ( * Ta có: y ' = −x − 4x + ( x +2 ) x = −5 y' = ⇔ x = * Bảng biến thiên : x −∞ −5 y' − +∞ y ) ( ) , ∀x ≠ −2 −2 +∞ + + − +∞ −∞ −∞ Vậy, hàm số đồng biến khoảng −5; −2 −2;1 , nghịch biến ( ( ) ( ) ( ) ) khoảng −∞; −5 1; +∞ Nhận xét: ax + b (a.c ≠ 0) đồng biến nghịch cx + d biến khoảng xác định * Đối với hàm số y = ax + bx + c * Đối với hàm số y = ln có hai khoảng đơn điệu a 'x + b ' * Cả hai dạng hàm số đơn điệu ℝ Bài tập tương tự : Xét chiều biến thiên hàm số sau: 2x − 3x y = y = x +1 x +1 x + 4x + x − 4x + y = y = x +2 2x − 2x − x +1 x + 2x + y = y = x 2x + x + Ví dụ 2: Xét chiều biến thiên hàm số sau: y = − x − 3x + 24x + 26 y = x − 6x + 8x + Nguyễn Phú Khánh – Đà Lạt Tài Liệu ôn thi Tú Tài Đại học theo cấu trúc BGD Giải: y = − x − 3x + 24x + 26 * Hàm số cho xác định ℝ * Ta có : y ' = −3x − 6x + 24 x = −4 y ' = ⇔ −3x − 6x + 24 = ⇔ x = * Bảng xét dấu y ' : x −∞ −4 y' − + +∞ ( − ) ( ) + Trên khoảng ( −∞; −4 ) , ( 2; +∞ ) : y ' < ⇒ y nghịch biến khoảng ( −∞; −4 ) , ( 2; +∞ ) + Trên khoảng −4;2 : y ' > ⇒ y đồng biến khoảng −4;2 , Hoặc ta trình bày : * Hàm số cho xác định ℝ * Ta có : y ' = −3x − 6x + 24 x = −4 y ' = ⇔ −3x − 6x + 24 = ⇔ x = * Bảng biến thiên : x −∞ −4 y' − + +∞ y +∞ − −∞ Vậy, hàm số đồng biến khoảng −4;2 , nghịch biến khoảng ( ) ( −∞; −4 ) (2; +∞ ) y = x − 6x + 8x + * Hàm số cho xác định ℝ * Ta có: y ' = 4x − 12x + = 4(x − 1)2 (x + 2) x = −2 y ' = ⇔ 4(x − 1)2 (x + 2) = ⇔ x = * Bảng xét dấu: x −∞ −2 y' − + +∞ + Nguyễn Phú Khánh – Đà Lạt Tài Liệu ôn thi Tú Tài Đại học theo cấu trúc BGD Vậy,hàm số đồng biến khoảng (−2; +∞) nghịch biến khoảng (−∞; −2) Nhận xét: * Ta thấy x = y = , qua y ' khơng đổi dấu * Đối với hàm bậc bốn y = ax + bx + cx + dx + e có khoảng đồng biến khoảng nghịch biến Do với hàm bậc bốn đơn điệu ℝ Bài tập tương tự : Xét chiều biến thiên hàm số sau: y = − x + x + 3 y = x − 2x + x − 2x 7 y = 9x − 7x + x + 12 y = x − 3x + 2 y = x + 3x + 3x + x + 2x − 4 y = x + 2x − 3 y = − Ví dụ : Xét chiều biến thiên hàm số sau: y = x − 2x y = x − x 2 y = 3x − x y = x + − x + 3x + Giải: y = x − 2x ( ) * Hàm số cho xác định nửa khoảng −∞; ∪ 2; +∞ x −1 * Ta có: y ' = , ∀x ∈ −∞; ∪ 2; +∞ x − 2x Hàm số khơng có đạo hàm điểm x = 0, x = Cách : ( ) ( ) ( ) ( ) + Trên khoảng ( 2; +∞ ) : y ' > ⇒ hàm số đồng biến khoảng ( 2; +∞ ) + Trên khoảng −∞; : y ' < ⇒ hàm số nghịch biến khoảng −∞; , Cách : Bảng biến thiên : x −∞ y' − || || + +∞ y Nguyễn Phú Khánh – Đà Lạt Tài Liệu ôn thi Tú Tài Đại học theo cấu trúc BGD ( ) ( Vậy , hàm số nghịch biến khoảng −∞; đồng biến khoảng 2; +∞ ) y = 3x − x * Hàm số cho xác định nửa khoảng (−∞; 3] 3(2x − x ) * Ta có: y ' = ( ) ( ) , ∀x ∈ −∞; ∪ 0; 3x − x Hàm số khơng có đạo hàm điểm x = 0, x = ( ) ( ) Suy ra, khoảng −∞; 0; : y ' = ⇔ x = Bảng biến thiên: x −∞ y' − || + − +∞ || y Hàm số đồng biến khoảng (0;2) , nghịch biến khoảng (−∞; 0) (2; 3) y = x − x * Hàm số cho xác định đoạn −1;1 * Ta có: y ' = − 2x ( ) , ∀x ∈ −1;1 − x2 Hàm số khơng có đạo hàm điểm x = −1, x = ( ) Trên khoảng −1;1 : y ' = ⇔ x = ± Bảng biến thiên: x −∞ y' −1 || − − 2 2 + 2 − +∞ || y 2 , nghịch biến khoảng Hàm số đồng biến khoảng − ; 2 2 −1; − ;1 10 Nguyễn Phú Khánh – Đà Lạt Tài Liệu ôn thi Tú Tài Đại học theo cấu trúc BGD y = x + − x + 3x + * Hàm số cho xác định ℝ 2x + * Ta có: y ' = − x + 3x + x ≥ − y ' = ⇔ x + 3x + = 2x + ⇔ x + 3x + = 2x + Bảng biến thiên : x −∞ −1 y' + − ( ) ⇔ x = −1 +∞ y Hàm số đồng biến khoảng (−∞; −1) , nghịch biến khoảng (−1; +∞) Bài tập tương tự : Xét chiều biến thiên hàm số sau: y = 2x − x 2 y = x + − x − 4x + 3 y = 3x − y = x − 2x ( y = − 3x y = y = ) 6x + 2x − x + 3x + x +2 x2 − x + Ví dụ :Xét chiều biến thiên hàm số sau: y =| x − 2x − | Giải: x − 2x − x ≤ −1 ∨ x ≥ y =| x − 2x − | = −x + 2x + − < x < * Hàm số cho xác định ℝ 2x − x < −1 ∨ x > * Ta có: y ' = −2x + − < x < Hàm số khơng có đạo hàm x = −1 x = ( ) + Trên khoảng ( −∞; −1) : y ' < ; + Trên khoảng ( 3; +∞ ) : y ' > + Trên khoảng −1; : y ' = ⇔ x = ; 11 Nguyễn Phú Khánh – Đà Lạt Bảng biến thiên: x −∞ y' Tài Liệu ôn thi Tú Tài Đại học theo cấu trúc BGD −1 || − + − || + +∞ y Hàm số đồng biến khoảng (−1;1) (3; +∞) , nghịch biến khoảng (−∞; −1) (1; 3) Bài tập tương tự : Xét chiều biến thiên hàm số sau: y = x − 5x + y = −x + − 2x + 5x − y = −3x + + x − 6x + y = x + x − 7x + 10 Ví dụ : Xét chiều biến thiên hàm số sau: y = sin x + cos 2x đoạn 0; π Giải : * Hàm số cho xác định đoạn 0; π ( ) * Ta có: y ' = cos x − sin x , x ∈ 0; π x ∈ 0; π π π 5π cos x = Trên đoạn 0; π : y ' = ⇔ ⇔x = ∨x = ∨x = 6 sin x = Bảng biến thiên: x π π 5π π 6 + − + − y' y π Dựa vào bảng biến thiên suy : hàm số đồng biến khoảng 0; 6 π 5π π π 5π ; , nghịch biến khoảng ; ; π 2 6 2 Bài tập tương tự : Xét chiều biến thiên hàm số sau: 12 Nguyễn Phú Khánh – Đà Lạt Tài Liệu ôn thi Tú Tài Đại học theo cấu trúc BGD π y = sin 3x khoảng 0; 3 cot x y = khoảng 0; π x π 1 − cos 2x khoảng 0; y = sin 4x − 2 π π y = sin x − + cos x + đoạn 0; π 6 3 ( ) ( ) Ví dụ 6: Chứng minh hàm số y = sin2 x + cos x đồng biến đoạn π π 0; nghịch biến đoạn ; π 3 3 Giải : * Hàm số cho xác định đoạn 0; π ( ) ( ) * Ta có: y ' = sin x cos x − , x ∈ 0; π π ⇔x = π π + Trên khoảng 0; : y ' > nên hàm số đồng biến đoạn 0; ; 3 3 π π + Trên khoảng ; π : y ' < nên hàm số nghịch biến đoạn ; π 3 3 ( ) ( ) Vì x ∈ 0; π ⇒ sin x > nên 0; π : y ' = ⇔ cos x = Bài tập tương tự : Chứng minh hàm số f x = x − sin x π − x − sin x đồng biến ( ) ( )( ) π đoạn 0; 2 Chứng minh hàm số y = cos 2x − 2x + nghịch biến ℝ Chứng minh hàm số y = t a n (π ;2π ) ( ) x đồng biến khoảng 0; π Chứng minh hàm số y = cos 3x + 3x đồng biến khoảng π 0; 18 π π nghịch biến khoảng ; 18 13 Nguyễn Phú Khánh – Đà Lạt Tài Liệu ôn thi Tú Tài Đại học theo cấu trúc BGD Dạng : Tùy theo tham số m khảo sát tính đơn điệu hàm số Ví dụ : Tùy theo m khảo sát tính đơn điệu hàm số: 1 y = x − m m + x + m 3x + m + Giải: * Hàm số cho xác định ℝ ( ) ( ) ( * Ta có y ' = x − m m + x + m ∆ = m m − ) + m = y ' = x ≥ 0, ∀x ∈ ℝ y ' = điểm x = Hàm số đồng ( ) biến nửa khoảng −∞; 0; +∞ Do hàm số đồng biến ℝ ( + m = y ' = x − ) ≥ 0, ∀x ∈ ℝ y ' = điểm x = Hàm số ( ) đồng biến nửa khoảng −∞;1 1; +∞ Do hàm số đồng biến ℝ x = m + m ≠ 0, m ≠ y ' = ⇔ x = m ⋅ Nếu m < m > m < m Bảng xét dấu y ' : x −∞ m m2 +∞ y' + − + ( ) Dựa vào bảng xét dấu, suy hàm số đồng biến khoảng −∞;m (m ; +∞ ) , giảm khoảng (m; m ) 2 ⋅ Nếu < m < m > m Bảng xét dấu y ' : x −∞ m2 y' + − m +∞ + ( ) Dựa vào bảng xét dấu, suy hàm số đồng biến khoảng −∞;m (m; +∞ ) , giảm khoảng (m ; m ) Bài tập tự luyện: Tùy theo m khảo sát tính đơn điệu hàm số: 1 y = x − mx + m 3x + m − 3 1 y = m − x − m − x + x + 2m + 3 ( ) ( ) 14 ... f ''(x ) = số hữu hạn điểm thuộc I hàm số f đồng biến khoảng I ; • Nếu f ''(x ) ≤ với ∀x ∈ I f ''(x ) = số hữu hạn điểm thuộc I hàm số f nghịch biến khoảng I 1.2 DẠNG TOÁN THƯỜNG GẶP Dạng : Xét... điểm x = Hàm số đồng ( ) biến nửa khoảng −∞; 0; +∞ Do hàm số đồng biến ℝ ( + m = y '' = x − ) ≥ 0, ∀x ∈ ℝ y '' = điểm x = Hàm số ( ) đồng biến nửa khoảng −∞;1 1; +∞ Do hàm số đồng biến... a < ∆ ≤ 2) Hàm đồng biến ℝ phải xác định ℝ Dạng : Hàm số đơn điệu tập ℝ Phương pháp: * Hàm số y = f (x , m ) tăng ∀x ∈ I ⇔ y '' ≥ ∀x ∈ I ⇔ y '' ≥ x ∈I * Hàm số y = f (x , m ) giảm