1. Trang chủ
  2. » Luận Văn - Báo Cáo

(Sáng kiến kinh nghiệm) kinh nghiệm dạy học giải bài tập bất đẳng thức hướng khắc phục sai lầm tạo lập mới hệ thống bài tập

23 3 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 23
Dung lượng 1,02 MB

Nội dung

KINH NGHIỆM DẠY- HỌC: GIẢI BÀI TẬP “BẤT ĐẲNG THỨC” HƯỚNG KHẮC PHỤC SAI LẦM - TẠO LẬP MỚI HỆ THỐNG BÀI TẬP Họ tên : Phạm Thị Vỹ Giáo viên trường trung học sở Bn Trấp Trình độ chuyên môn : ĐẠI HỌC SƯ PHẠM – CHUYÊN NGÀNH TỐN I/ LÍ DO CHỌN ĐỀ TÀI: Tốn học môn khoa học tự nhiên, phát sinh từ nhu cầu thực tế người Dạy toán dạy hoạt động toán học cho học sinh, giải tập hình thức chủ yếu, dạy học giải tập có vị trí vơ quan trọng Đặc trưng tập mơn tốn nói chung, thể loại tốn “bất đẳng thức” nói riêng vơ rộng lớn phong phú thể loại, nội dung mức độ yêu cầu thể loại Nó ln sở, tảng vững cho mơn tốn học mơn khoa học tự nhiên khác Loại tập vận dụng cho nhiều đối tượng học sinh lớp, khối nhiều cấp học Đặc biệt dạng tập bất đẳng thức đánh giá loại nhằm phát triển tư trí tuệ học sinh Nó thường đóng vai trị làm câu khống chế điểm 9, điểm 10 đề kiểm tra, đề thi năm Nhằm giúp giáo viên chúng ta dễ dàng phát hiện, phân loại đối tượng học sinh, chọn lựa học sinh khá, giỏi trình dạy học Nếu học sinh biết giải giải thành thạo loại tốn việc học mơn tốn khơng cịn rào cản hay thách thức đối với học sinh Thế nhưng, theo nhận định chủ quan thân khả nhận thức, vận dụng kiến thức mơn tốn vào thực tiễn niềm đam mê toán học học sinh cịn q khiêm tớn Tốn học mơn học ln mang tính kế thừa, có nắm kiến thức “bất đẳng thức” biết vận dụng thành thạo kiến thức việc giải tập may có thể mở rộng nâng cao kiến thức sau Đó hội để bước vào trường chuyên, lớp chọn, tương lai vào trường đại học theo mong ước Người ta thường nói ( móng có tường vững ) Qua nhiều năm dạy học, qua nhiều kì kiểm tra khơng lần chọn bồi dưỡng học sinh giỏi, thân nhận thấy khả tiếp thu vận dụng kiến thức học sinh việc đề kiểm tra mảng kiến thức “bất đẳng thức” sớ khơng học sinh giáo viên nhiều lúng túng Đề thường mang tính khn mẫu hay chép từ nhiều tài liệu khác Kết làm học sinh cịn đặt nặng tính may rủi Nếu giáo viên chúng ta nhìn thấy tầm quan trọng loại toán này, biết dựa vào phong phú tính đa dạng chắn đứng lớp chúng ta có thể tự tin chủ động kiến thức Khôn khéo lựa chọn phương pháp giải phù hợp đối với loại tập cụ thể Hơn thế, giáo viên chúng ta có thể linh hoạt việc giúp học sinh khắc phục sai lầm giải tập Tự cải biên đề bài, đề phù hợp với khả nhiều học sinh Có thể mở rộng, nâng cao kiến thức tiết học Việc làm phù hợp với nhiều đối tượng học sinh, tạo cho không khí lớp học thêm phần sinh động mà cịn phát huy tớ chất tốn học tiềm ẩn học sinh Đáp ứng nhu cầu đổi phương pháp dạy học toán Thuận lợi cho giáo viên việc phụ đạo học sinh yếu kém, đồng thời bồi dưỡng học sinh giỏi Vậy làm để giáo viên chúng ta tự tin hơn, làm chủ mảng kiến thức “Bất đẳng thức” truyền tải đến với học sinh, hướng dẫn giúp học sinh biết tránh sai - lầm thường mắc giải loại tập Từ biết cải biên đề bài, tạo hệ thống tập, biết vận dụng khả mở rộng kiến thức nhằm dễ dàng đạt điểm tối đa kiểm tra, thi Giáo viên thực thi tiết dạy, khơng cịn lệ thuộc vào sách giáo khoa Đặc biệt hơn, việc đề thi, đề kiểm tra có, hoặc khơng có trùng lặp đề năm với đề năm trước, đề kì với đề kì trước Chấm dứt ỉ lại hay mong chờ may rủi thi cử, kiểm tra học sinh Đó lí mà đề tài cần quan tâm II/ ĐỐI TƯỢNG, CƠ SỞ VÀ PHƯƠNG PHÁP NGHIÊN CỨU: 1) Đối tượng nghiên cứu : Học sinh sớ giáo viên dạy tốn trường trung học sở Buôn Trấp trường lân cận huyện Krông Ana, Tỉnh Đắc Lắc 2) Cơ sở nghiên cứu : Căn vào chất lượng học sinh từ lớp đến lớp học sinh lớp thi vào lớp 10 trường THPT, trường THPT chuyên năm 1996-1997; 1997 -1998; 2001- 2002; 2002 - 2003; 2005 - 2006 năm học 3) Phương pháp nghiên cứu : Phối hợp đồng loạt tất phương pháp: “trò chuyện”, “đàm thoại”, “phỏng vấn trực tiếp, gián tiếp”, “điều tra phiếu học tập, thông qua kết kiểm tra 15 phút, 45phút, 90 phút, đề thi học sinh giỏi cấp, đề thi vào lớp 10 THPT qua nhiều năm,v v Tài liệu nghiên cứu: Sách giáo khoa, sách giáo viên toàn cấp học Các đầu sách tham khảo xuất giáo dục đào tạo nói Bất đẳng thức Sách nói phương pháp dạy học – dạy học giải tập ( trường đại học sư phạm) v v III/ NỘI DUNG VÀ KẾT QUẢ NGHIÊN CỨU : 1) Nhiệm vụ đề tài : Thực ra, loại tốn có dạng “bất đằng thức” em tiếp cận từ cấp tiểu học Tuy nhiên mức độ yêu cầu tập chỉ dừng lại phạm vi: quan sát so sánh, điền dấu ( >; < ) vào ô trống hoặc biểu thức lớn ? ? Đới với học sinh lớp 6, lớp dạng tập bất đẳng thức tăng dần với mức độ từ thấp đến cao, nhiên cụm từ “bất đẳng thức” cịn bí mật Có chỉ dạng bài: so sánh biểu thức A biểu thức B; khẳng định sau đúng hay sai? Vì sao? ; chứng minh biểu thức A > B hoặc A < B Lên đến lớp lớp 9, yêu cầu mức độ nhận thức vận dụng kiến thức có địi hỏi cao Các em biết vận dụng định nghĩa, tính chất số phương pháp thông thường để giải tập bất đẳng thức, biết tìm điều kiện chữ để biểu thức dương, âm, hay biểu thức lớn biểu thức Vấn đề mà đề tài cần quan tâm là: Mức độ hiểu biết, nhận thức khả vận dụng kiến thức “bất đẳng thức” đối với giáo viên học sinh cần phải đạt mức cao hơn, linh hoạt, sáng tạo Đối với học sinh, người lĩnh hội kiến thức vận dụng kiến thức nhằm phát huy lực, phát triển trí tuệ Để việc tiếp thu vận dụng có hiệu mảng kiến thức này, địi hỏi em phải có cần cù, chịu khó, biết liên tướng, ghép nới kiến thức học cách liên tục, lơgic, có hệ thớng Kiến thức có trước tiền đề cho kiến thức có sau Và ngược lại, kiến thức có sau kế thừa hoặc mở rộng từ kiến thức có trước Chính học sinh phải có đam mê việc tự học, tự nghiên cứu vận dụng Việc làm này, yêu cầu đối với học sinh thật không dễ chút - Đối với giáo viên, người trực tiếp truyền tải kiến thức đến với học sinh, người chịu trách nhiệm việc đề thi, kiểm tra, đánh giá chất lượng học sinh Chất lượng day học thầy đánh giá cân, đo, đong, đếm qua đam mê, tự giác nghiên cứu hiệu vận dụng kiến thức học sinh thơng qua kì thi Do đó, ngồi việc chăm lo trang bị cho có nghiệp vụ sư phạm vững vàng, hành trang kiến thức vững - chắc, người giáo viên chúng ta cần phải thường xuyên học hỏi, tự trau dồi cho kĩ nghệ thuật sư phạm bục giảng Đặc biệt đối với loại tập “bất đẳng thức”, mệnh danh loại tập khó dạy, khó học Như chúng ta biết, việc giải tập yêu cầu quan trọng đối với học sinh Hơn nữa, loại tập chứng minh “bất đẳng thức” khó nêu lên phương pháp tổng quát để chứng minh, tính đa dạng bất đẳng thức phải chứng minh phương pháp chứng minh Vì vậy, dạy tập loại tốn này, người dạy không chỉ đơn cung cấp kiến thức mà dạy cho học sinh biết cách suy nghĩ, tìm đường giải Từ rèn luyện kĩ vận dụng kiến thức cách linh hoạt, sáng tạo để cải biên đề bài, tạo hệ thống tập Nhằm hình thành tư duy, phát triển lực trí tuệ cho học sinh Đó nhiệm vụ không thể xem nhẹ đối với giáo viên chúng ta A: GIẢI BÀI TẬP “BẤT ĐẲNG THỨC” Là giáo viên dạy toán, hẳn thấy việc dạy học sinh biết giải giải thành thạo tập đẳng thức khó việc dạy giải tập “bất đẳng thức” lại khó Bởi lẻ khái niệm bất đẳng thức thức vô phức tạp, bất đẳng thức có thể đúng, lại có thể sai, đúng miền xác định lại sai miền xác định khác Ví dụ : 3x +1 > 2x + có giá trị chân lí đúng với x > , lại sai với x �4 ; ; lớn , Ngôn ngữ bất đẳng thức lại diễn đạt theo nhiều nghĩa khác ( >; < ; �� hơn, bé hơn, không lớn hơn, không nhỏ hơn) Nếu học sinh khơng nắm vững định nghĩa, tính chất bất đẳng thức e việc giải tập dạng thật khó khăn Để đạt nhiệm vụ chung nói trên, giáo viên học sinh cần phải hiểu cách sâu sắc nắm vững định nghĩa, tính chất bất đẳng thức *Định nghĩa1:Hai biểu thức A B nối với quan hệ( ; �) ta nói có bất đẳng thức chẳng hạn: (A>B ; A < B ; A �B ; A �B) bất đẳng thức * Định nghĩa 2: A>B � A – B>0; A < B � A – B < 0; A �B � A – B �0 ; A �B � A – B �0 * Tính chất quan hệ: Trong quan hệ ( < ; >) có tính chất bắc cầu Trong quan hệ ( �; �) có tính chất phản xạ, phản xứng, bắc cầu * Một sớ định lí thường dùng a > b � b b � a > b – c a > b � a �m > b �m a  b� �� a  c  b  d c  d� a1  b1 � a2  b2 � � Tổng quát �� a1  a2   an  b1  b2   bn (không trừ vế theo vế) � an  bn � � a.c  b.cc  � a  b � � đặc biệt –a < -b � a > b a.c  b.cc  � a  b �0 � �� a.c  b.d c  d �0 � - -a1  b1 �0 � a2  b2 �0 � � * Tổng quát : ( Không chia vế theo vế ) �� a1 a2 an  b1 b2 bn � an  bn �0 � � n n a>b �0 � a  b , n �Z  a>b �0 � n a  n bn  Z  ; n 1 a>b ab>0 �  a b Chú ý: a �0 với  a �R a2>0 với  a�R a �0 * Một số bất đẳng thức thường dùng giải tập + Bất đẳng thức ( a �b)2 �0 với  a, b + Bất đẳng thức Côsi ( cauchy) : với a �0, b �0 a + b �2 ab hoặc ab � ab Dấu “=” xảy chỉ a = b 2 2 + Bất đẳng thức bunhiacôpxki :  ac  bd  � a  b   c  d  Dấu “=” xảy chỉ a b  c d Bài tập toán loại “Bất đẳng thức” đa dạng phong phú Nó phong phú thể loại nội dung mức độ yêu cầu nên dạy loại toán chúng ta cần nghiên cứu kĩ nội dung đề bài, mức độ yêu cầu đề bài, tìm hiểu xem, người học thuộc đới tượng Từ tìm chọn lựa phương pháp giảng dạy phù hợp cho loại bài, đáp ứng phần lớn nhu cầu đối tượng cần học Cho dù sử dụng phương pháp dạy học trước dạy giải tập, giáo viên chúng ta cần phải cho học sinh ôn lại kiến thức lí thuyết bổ trợ cho tập Nắm lý thuyết, hiểu biết vận dụng, chắn thành công phần lớn việc giải tập Mặc dầu chưa có phương pháp tổng quát nói chứng minh: “Bất đẳng thức” Song từ tập cụ thể yêu cầu cụ thể ta có thể đưa “Một sớ” phương pháp đại cương sau dùng để giải tập dạng + Phương pháp so sánh +Phương pháp xét hiệu (dựa vào định nghĩa) + Phương pháp biến đổi tương đương (phương pháp biến đổi trực tiếp ) + Phương pháp dùng bất đẳng thức có sẵn + Phương pháp phân tích sớ hạng Để giúp giáo viên học sinh thuận lợi, dễ dàng việc dạy việc học giải tập bất đẳng thức, Ta có thể tạm chia tập dạng thành hai loại ( Loại có sẵn thuật tốn loại chưa có sẵn thuật tốn ) Sau số tập cụ thể minh họa cho nhận định A.1/ Loại tập có sẵn thuật tốn : Đới với loại tập có thuật tốn, dạy giáo viên chúng ta yêu cầu học sinh không xem nhẹ sở quan trọng để tiến tới giải tập có nội dung khó hơn, phức tạp Do học sinh cần hiểu rõ thuật toán là: + Năm vững quy tắc giải học + Nhận dạng đúng toán - + Giải theo quy tắc cách thành thạo Đối với học sinh lớp 6, lớp tập “bất đẳng thức” chỉ dạng bài: so sánh biểu thức A biểu thức B; khẳng định sau đúng hay sai? Vì sao? Chứng minh sớ A > số B hoặc số A < số B, cụm từ “ bất đẳng thức” cịn bí mật Ví dụ 1: a) so sánh : 200300 với 300200 hoặc chứng minh 200300 > 300200 b) So sánh : -200300 với -300200 hoặc chứng minh -200300 < -300200 c)So sánh : 200-300 với 300-200 hoặc chứng minh 1 p 300 200 300200 Để dạy loại tập giáo viên chúng ta nên cho học sinh ôn lại kiến thức lũy thừa, nâng lũy thừa lên lũy thừa, so sánh hai lũy thừa có số hoặc số mũ So sánh số nguyên âm, so sánh nghịch đảo số nguyên dương Từ hướng dẫn em biến đổi sớ cho mục đích cần so sánh mình, dùng phép biến đổi vế: A = A1=A2 = = An B = B1 = B2 = = Bn Nếu An > Bn A > B Giải:   =   300   Câu a) 200300 =  200  300200 100 100  8000000100  90000100 Vậy 200300 > 300200 Câu b câu c: Từ kết câu a quy tắc so sánh hai số hai số nguyên âm, so sánh nghịch đảo hai số nguyên dương ta suy : b) -200300 < -300200 c) 1 p 300 200 300200 Với loại tập này, giáo viên lưu ý cho học sinh nên tạo lập đề bài, xây dựng thành hệ thống tập ( cách thay đổi số hoặc số mũ ) Việc làm tạo cho học sinh thói quen ln nghiên cứu, mở rộng khả hiểu biết Nhằm rèn luyện kĩ tư duy, phát triển trí tuệ cho học sinh Ví dụ 2: Chứng minh biểu thức sau : A = 1    1 2  a  b  ab b) a2 + b2 � với a + b �1 c) a3 + b3 > a2b+ab2 với a>0; b>0 d) a4 + b4 > a3b + ab3 với a>0; b>0 e) ( a10 + b10)(a2 +b2) �(a8 + b8)( a4+b4) Đối với loại tập này, giáo viên cho học sinh quan sát kĩ đề bài, tìm hiểu xem tốn cho biết điều gì, u cầu ta phải làm ? Để giải tập dạng ta cần liên hệ cho cải phải tìm, dùng phương pháp phân tích để biết vận dụng kiến thức ? Nếu khó quá, học sinh khơng thể trả lời giáo viên chúng ta nên có sớ câu hỏi phụ, nhằm gợi ý, giúp học sinh xây dựng chương trình giải Sau giáo viên phối hợp với học sinh thực chương trình giải theo hướng định Xét hiệu, biến đổi biểu thúc dạng phân thức ( phép tốn thơng thường ) Sau lí luận dấu tử mẫu dẫn tới phân thức không âm kết luận Cụ thể : câu a) Xét hiệu : 1   2  a  b  ab 1 1  ab   a  ab   b 1        = 2 2  a  b  ab  a  ab  b  ab   a    ab    b    ab  a  b  a b  a  b ba � a b � b  a a  ab  b  ba    �=  a  b �  ab   a    b  �   a    ab    a    ab   ab �  b  a   ab  a  b    a    b2    ab   a  b   ab  1    a    b    ab   a  b   ab  1 Vì ab >1 � ab - 1>0; (a –b) �0 mẫu thức >0 nên   a    b2    ab  2 Vậy �0 1   với ab >1.dấu “ = “ xảy � a = b 2  a  b  ab Tương tự với câu c, câu d: Giáo viên cho học sinh xét hiệu, phân tích đa hức thành nhân tử ( phương pháp nhóm, đặt nhân tử chung ) Lưu ý nhân tử phải có dạng theo mong ḿn ( khơng âm hoặc ln dương ) Sau lập để suy điều cần chứng minh Giáo viên nhấn mạnh cho học sinh, phải xét điều kiện để dấu “ = “ xảy Chẳng hạn : Câu c: a3 + b3 - a2b - ab2 =  a  b   a  b  �0 a>0; b>0 ; (a-b)2 �0 Vậy a3 + b3 > a2b+ab2 với a>0; b>0 dấu “ = “ xảy � a = b Câu d: (a4 + b4) – (a3b + ab3) =  a  b   a  ab  b  �0 (a-b)2 �0; (a2+ab+b2)>0 Vậy a4 + b4 > a3b + ab3 với a>0; b>0 dấu “ = “ xảy � a = b Câu e:( a10 + b10)(a2 +b2) - (a8 + b8)( a4+b4) = a 2b  a  b   a  a 2b  b  �0 a2b2 �0; ( a2 –b2 ) �0; (a4 +a2b2 +b4) > � a  b2 a  �b � �� Vậy ( a + b )(a +b ) �(a + b )( a +b ) Dấu “ = ” xảy � �2 a  0; b  a b 0 � � 10 10 2 8 4 b)Phương pháp biến đổi tương đương (phương pháp biến đổi trực tiếp ) Để giải loại tập chứng minh bất đẳng thức phương pháp biến đổi tương đương, trước tiên giáo viên cho học sinh hiểu rõ nắm vững quy trình biến đổi tương đương bất đẳng thức sau: Để chứng minh A �B ta biến đổi tương đương sau: A �B � � C �D Cuối bất đẳng thức C �D đúng Khi ta kết luận A �B đúng ( đpcm) Ví dụ 1: Chứng minh : với  a,b,c,d,e, �R : a2 + b2 + c2 + d2 + e2 �a ( b+c+d+e) Muốn giải tập phương pháp trên, giáo viên cho học sinh nhận xét hạng tử vế trái hạng tử sau khai triển vế phải, từ giúp em thấy cần thiết phải nhân thêm số vào hai vế Khai triển, chuyển vế đưa dạng tổng bình phương biểu thức Sau dùng lập luận kết luận toán Cụ thể toán giải sau a2 + b2 + c2 + d2 + e2 �a( b+c+d+e) � 2(a2 + b2 + c2 + d2 + e2) �2a( b+c+d+e) � 4(a2+b2+c2+d2+e2) - 4a(b+c+d+e) �0 �  a  4ab  4b    a  4ac  4c    a  4ad  4d    a  4ac  4c  �0 2 2 �  a  2b    a  2c    a  2d    a  2e  �0 Bất đẳng thức đúng Vậy a2 + b2 + c2 + d2 + e2 �a( b+c+d+e) với  a,b,c,d,e, �R Dấu “=” xảy chỉ a = 2b = 2c = 2d = 2e hay b = c = d = e = a ab � ab ( Bất đẳng thức Cơsi) Vì a �0 ; b �0 � a + b �0 ab �0 � ab �0 Ví dụ 2: Cho a �0 ; b �0 chứng minh : ab ab � � ab � � �ab �  a  b  �4ab � a  2ab  b �4ab � a  2ab  b �0 Ta có � � �2 � �  a  b  �0 bất đẳng thức đúng với a, b không âm ab � ab với a �0 ; b �0 2 a  b2 �a  b � �� Ví dụ : Chứng minh : a) � �2 � Vậy a  b  c �a  b  c � �� b) � � � Đới với ví dụ này, giáo viên u cầu học sinh biến đổi trực tiếp, khai triển đẳng thức vế trái, quy đồng, chuyển vế, phân tích đa thức thành nhân tử nhận xét Minh họa câu b cụ thể sau: a  b  c �a  b  c � a  b  c a  b2  c  2ab  2ac  2bc �� � �� 3 � � � 3a2 + 3b2 +3c2 �a2 + b2 + c2 +2ab + 2ac +2bc �  a  b    a  c    b  c  �0 đúng Vậy 2 2 a  b  c �a  b  c � �� Vậy �với a,b không âm Dấu”=” xảy chỉ a = b = c � � Ví dụ 4: Chứng minh : a2 + 4b2 + 4c2 �4ab - 4ac + 8bc Ta nhận thấy hạng tử vế trái có dạng bình phương sớ hoặc biểu thức, hạng tử vế phải số chẵn ln có dạng hai lần tích hai biểu thức, chuyển - vế nhóm hạng tử cách thích hợp có thể viết dạng bình phương biểu thức Sau lí luận biểu thức khơng âm ta có điều phải chứng minh, Cụ thể cách giải sau: Ta có : a2 + 4b2 + 4c2 �4ab - 4ac + 8bc � : a2 + 4b2 + 4c2 - 4ab + 4ac - 8bc a  4ab  4b   4c   4ac  8bc �0  �  a  2b   2.2c  a  2b    2c  �  a  2b  2c  �0 2 Ví bất đẳng thức sau đúng nên a2 + 4b2 + 4c2 �4ab - 4ac + 8bc đúng dấu “=” xảy chỉ a +2c = 2b * Ưu điểm : Với ví dụ hai phương pháp giải trên, vận dụng phép biến đổi đẳng thức, nhân đơn đa thức, phân tích thành nhân tử đơn giản, dể hiểu Phù hợp nhiều đối tượng học sinh Thỏa mãn nhu cầu người học Gây nhiều hứng thú cho học sinh học Học sinh tích cực xây dựng bài, đáp ứng đổi phương pháp dạy học giai đoạn * Hạn chế: Một sớ khó nhìn đẳng thức, địi hỏi phải phân tích kĩ học sinh có thể hiểu, mặt khác đới tượng học không đồng nên giáo viên không chủ động thời gian Nề nếp lớp học không theo ý muốn c)Phương pháp dùng bất đẳng thức có sẵn : Trong giải tập, bất đẳng thức có sẵn đóng vai trị vơ quan trọng Nó cơng cụ sắc bén giúp ta giải nhanh, xác nhiều tập mà ta tưởng chừng khơng thể giải Vì trước giải loại tập này, giáo viên chúng ta cần cho học sinh hiểu nắm vững số bất đẳng thức thơng dụng đới với chương trình thực học + Bất đẳng thức có dạng bình phương :  a �b  �0 với a, b +Bất đẳng thức Côsi(cau chy): Với hai số không âm a b ta có a b � ab hay a + b � ab Dấu “ =” xảy chỉ a = b 2 2 +Bất đẳng thức Bunhiacôpxki:  ac  bd  � a  b   c  d  Dấu “=” xảy chỉ a b  c d Sau sớ ví dụ minh họa giải phương pháp dùng bất đẳng thức có sẵn Ví dụ : loại bài dùng bất đẳng thức có “dạng bình phương” a) Mức độ thấp: Chứng minh : a2 + b2 +c2 �ab + bc + ca Bất đẳng thức dạng bình phương tổng hoặc hiệu phổ biến thơng dụng đới với chương trình cấp trung học sở Vận dụng phù hợp cho nhiều đối tượng học sinh Trước dạy giải tập này, giáo viên cho học sinh ơn lại tính chất mở rộng bất đẳng thức Yêu cầu học sinh nhận xét hạng tử hai vế bất đẳng thức, từ nêu hướng sử dụng bất đẳng thức Trả lời u cầu khơng khó đới với học sinh Do tập dễ dàng giải sau: Ta có:  a  b  �0 � a2 - 2ab + b2 �0 � a2 + b2 �2ab với  a,b Tương tự : b2 + c2 �0 ; c2 + a2 �0 Cộng vế theo vế bất đẳng thức ta : 2( a + b2 + c2 ) �2( ab + bc + ca ) � a2 + b2 + c2 �ab + bc + ca ( đpcm) dấu “ = “ xảy chỉ a = b = c b) Mức độ cao : Chứng minh: x2  x 1 � �3 x2  x 1 - Đây tập có hai yêu cầu, ta phải giải yêu cầu riêng lẻ, sau kết hợp ta yêu cầu cử Với tập này, chỉ có thể dùng bất đẳng thức dạng bình phương tổng hoặc hiệu  a �b  �0 với a, b Ta có ( x + 1)2 �0 với  x � 2( x + 1)2 �0 � 2x2 + 4x + �0 � 3x2 + 3x + �x2 – x +1 �0 � 3(x2 + x + 1) �x2 – x +1 (*) Vì x2 – x +1 = ( x - )2 + > , chia hai vế bất đảng thức (*) cho x2 – x +1 ta x2  x  1 � x2  x  (1) Ta lại có : ( x – 1)2 �0 � 2( x – 1)2 �0 � 2x2 - 4x + �0 � 3x2 - 3x + �x2 + x +1 � 3(x2 - x + 1) �x2 + x +1 (**) Vì x2 – x +1 = ( x - )2 + > Chia hai vế (**) cho x2 - x +1 ta x2  x  �3 (2 ) x2  x  1 x2  x  �3 Tử (1) (2) suy � x  x 1 * Loại dùng bất đẳng thức Cơsi Đới với chương trình trung học sở, Bất đẳng thức Côsi bất đẳng thông dụng thường xuất nhiều hai dạng tập.“chứng minh bất đẳng thức” Tìm giá trị nhỏ hoặc giá trị lớn nhất” biểu thức Mỗi loại tập có thể triển khai đồng thời cho nhiều đối tượng học sinh lớp, nhiều lớp khới Chính giáo viên chúng ta trước dạy loại tốn cần nghiên cứu kĩ, tìm hiểu nội dung, mức độ yêu cầu cần truyền thụ cho đối tượng học Để từ cân nhắc, chọn lọc, đặt sớ lượng tập từ dễ đến khó, phân chia tập theo nhiều mức độ, đảm bảo tính hệ thống, lôgic, phù hợp cho đối tượng học sinh Được học trở nên lí thú, cuốn hút học sinh Tạo thân thiện giữ thầy trò */ Dạng 1: Chứng minh bất đẳng thức Ví dụ1: Mức độ ( dành cho nhiều đối tượng ) Cho a,b,c �0 chứng minh : (a + b)( b +c )(c +a ) �8abc Với này, cho học sinh nhận xét cặp số đối chiếu điều kiện bất đẳng thức Cơsi, sau áp dụng cho cặp sớ Rồi dùng tính chất mở rộng nhân vế theo vế bất đẳng thức ta điều phải chứng minh Cụ thể Ta có: a + b �2 ab ; b +c �2 bc ; c + a �2 ca Nhân vế theo vế ta : (a +b)( b +c )( c + a ) �8 ab.bc.ca � (a +b)( b +c )( c + a ) �8abc Dấu “=” xảy chỉ a = b = c Ví dụ 2: Mức độ ( Dành cho học sinh lớp lớn , học sinh , giỏi ) Cho �x �3; �y �4 , Chứng minh   x    y   x  y  �36 Không phải tập cho sẵn biểu thức thỏa mãn điều kiện đề bài, có thể dùng bất đẳng thức Cơsi Mà địi hỏi học sinh phải có khơn khéo, tính tốn, biến đổi Với này, giáo viên cho học sinh dựa vào điều kiện toán, biến đổi - 10 biểu thức cho dạng biểu thức không âm dùng bất đẳng thức Côsi mở rộng cho ba biểu thức khơng âm Cụ thể: Vì �x �3 � - x �0 � – 2x �0 �y �4 � - y �0 � 12 -3y �0 (2x + 3y ) �0 Áp dụng bất đẳng thức Côsi cho số: – 2x ; 12 – 3y ; 2x + 3y ta có :  x  12  y  x  y �   x   12  y   x  y   x  12  y  x  y �( ) �  x   12  y   x  y  � 63 �6( 3- x)(4 – y)(2x +3y) � 62 �( 3- x)(4 – y)(2x +3y ) � 36 �( 3- x)(4 – y)(2x +3y ) Vậy (3-x)(4–y)(2x+3y) �36 Dấu “=” xảy chỉ  x  12  y 2x  3y  � � �x  �� �� thỏa mãn điều kiện ( đpcm) �  2x  2x  y 4x  3y  � � �y  Ví dụ 3: Cho a �4 ; ab �12 Chứng minh a + b �7 Đây chưa có biểu thức thỏa điều kiện bất đẳng thức Côsi, muốn sử dụng bất đẳng thức Côsi ta phải biến đổi tạo số không âm mà trung bình cộng phải chứa ( a +b), Trung bình nhân hai sớ khơng chứa a, b Để thỏa yêu cầu trên, ta cần cặp sớ sau: a b +1 Vì a �4 ; ab �12 nên a > , b > � b +1 > Áp dụng bất đẳng thức Côsi cho hai số a b + Ta có a + (b +1) �2 a (b  1) � a + (b +1) �2 ab  a � a + b +1 �2 12  =8 �a+b=7 Dấu “=” xảy chỉ a = b + � a = , b = */ Dạng 2: Tìm giá trị nhỏ nhất, giá trị lớn : Loại tập tìm giá trị nhỏ “min” hay giá trị lớn “max” gọi chung toán cực trị Để giải loại tập này, cần nhấn mạnh cho học sinh ngồi việc tìm , tìm max cần xét điều kiện dấu “=” xảy Ví dụ 1: Cho x �2 Tìm x  x Ḿn tìm biểu thức ta phải biến đổi biểu thức dạng lớn hoặc bằngmột số Xét điều kiện dấu “=” xảy ra, dùng lập luận chỉ giá trị nhỏ số xảy dấu “=” Đối với này, hai số x không thỏa điều kiện bất đẳng thức Côsi Do ḿn x dùng bất đẳng thức Cơsi ta phải tạo hai sớ khơng âm có giá trị nhau, dùng Cụ thể cho giải : x 3x x 3x 3x 3.2  =   �2    �1  x x 4 x 4 x 1 Dấu “=” xảy chỉ  � x  Vậy x  = x = x x 1 Cách 2: (Phân tích theo ): Ta có x  = x +  Dùng bất đẳng thức côsi cho số x x x x 4 3 � 4� x; ta �x  ��2 x  Suy x +  �4  �4   ( x �2 ) x x x x 2 x � x� Cách 1:( phân tích theo x) : Ta có : x  - 11 -� �x   � x  Vậy x  = Dấu “=” xảy chỉ � x x = x � �x �2 Ví dụ 2: b) Cho a +b = a; b �0 */ Tìm max a.b */ Tìm max a2b5 Do bất đẳng thức Cơ si có chiều “ �”, nên học sinh thường quen với loại tập tìm “min” Khi gặp yêu cầu tìm max, học sinh có thể lúng túng khơng tìm hướng giải Để giúp học sinh nhanh chóng ổn định tinh thần, giáo viên chúng ta gợi ý cho học sinh đọc yêu cầu toán theo hai chiều ( a �b b �a) Ḿn tìm max ta cần chiều “ �” Nghĩa chiều ngược lại bất đẳng thức Cơsi (Hay tìm max tốn ngược tồn tìm min) Một học sinh thơng śt lập luận việc giải tìm max khơng cịn khó khăn Có chỉ yêu cầu lập luận chặt chẽ mà thơi Cụ thể : */ Vì a +b = a; b �0 Áp dụng bất đẳng thức Côsi cho hai số a b khơng âm, ta có ab ab � 2 �a  b � �9 � 81 ab � � Do a +b = nên ab �� � �2 � �2 � �a  b �ab dấu “=” xảy chỉ � �a  b  81 Vậy max a.b = a = b = �a a b b b b b � 5 */ Ta có a2.b5 = a.a.b.b.b.b.b = � � �2 5 5 � a + b �2 ab � Áp dụng bất đẳng thức Côsi cho số ta có : 7 �a a b b b b b � a  b � �9 � 5� �  � � � � �� �2 5 5 � �7 � �7 � � 2b � 45 a b �a b � � � � � �� Dấu “=” xảy chỉ �2 � � 18 � � bb  � ab  a � �5 � 7 �7 � �� Vậy max (a2.b5) = 22.55 � �khi a  18 45 ;b  7 Tóm lại: Bài tập dùng bất đẳng thức Côsi đa dạng phong phú Mỗi loại có nhiều dạng khác , dạng lại có nhiều mức độ yêu cầu phù hợp cho nhiều đối tượng học Nhờ có bất đẳng thức Cơsi mà chúng ta giải nhiều tập thời gian ngắn Chính mà giáo viên chúng ta dạy giải tập cần tìm tịi, nghiên cứu kĩ phương pháp giải cho dạng, loại cụ thể Làm điều này, khơng tự rèn luyện cho có hành trang kiến thức vững vàng, tự tin đứng bục giảng mà để lại ấn tượng tốt đẹp trước học sinh, cha mẹ em d) Phương pháp phân tích sớ hạng: Loại tập dùng phương pháp phân tích sớ hạng tập mệnh danh khó đới với học sinh, em khơng hiểu, khơng nắm cách phân tích sớ hạng gì, có chỉ dự đốn, mị mẫm, may kết đúng Vì - 12 mà học sinh giáo viên cảm thấy nản chí ḿn lùi bước gặp dạng toán Để giúp học sinh bớt chán nản, cam đảm, tự tin đối mặt với loại tập Người thầy phải làm để giúp cho học sinh biết liên tưởng, ghép nối kiến thức học, tìm dạng tập quen thuộc có cách giải từ dễ đến khó, khơn khéo gợi ý cho học sinh biết dựa vào học , tìm điều tương tự có thể vận dụng cho tập Làm nhiều lần, qua nhiều tập tương tự chắn học sinh khơng cịn cảm thấy chán nản hay lười biếng Nhiều em có hứng thú tìm tịi lời giải cho nhiều tập hay khó Ví dụ 1: Chứng minh A = 1 1     1 1.2 2.3 3.4 2009.2010 Đây tốn thơng dụng nhất, phổ biến nhất, em giải từ học phân số Ta nhận thấy phân sớ phân tích thành hiệu theo công thức sau: 1   với n �N Việc giải tập không khó đới với học sinh (ngay học n(n  1) n n  sinh diện đại trà ) Bởi em giải nhiều lần Nếu em biết liên tưởng kiến thức cũ vận dụng cơng thức việc giải tập dạng bớt phần trở ngại, khó khăn Cũng dạng tập này, ta thay đổi phần nhỏ dự kiện giữ nguyên dự kiện ta có nhiều tập dạng hay hơn, Đáp ứng nhu cầu nhiều đối tượng học Thuận lợi cho giáo viên việc phụ đạo học sinh yếu, bồi dưỡng học sinh giỏi Ví dụ 2:( Dành cho học sinh giỏi ) Chứng minh : 1 1      với  n >1 2 n Thực tập khó, mặc dầu phân sớ có gớng ( tử chung, mẫu sớ có dạng bình phương số tự nhiên liên tiếp) dạng Vậy làm để tách, tách ? Trả lời câu hỏi không dễ đối với học sinh với giáo viên Ḿn vậy, địi hỏi giáo viên chúng ta phải thường xuyên tham khảo tài liệu, sưu tầm phương pháp giải hay phù hợp đối tượng học sinh Minh học cách giải tập sau: Giải : Ta có với  k >1 :  2k   2k  1 4 2.2 � �  2     2�  �với k 4k 4k   2k  1  2k  1  2k  1  2k  1  2k  1  2k  1 �2 k  2k  � k = , 3, Cho k 2, 3, n ta : 1 1 � �1 � �1 1     �      � �  � 2 n 2n  2n  � �3 2n  � �3 5 1 1 Do        ( đpcm) n 3 Ví dụ 3: Chứng minh rằng:  Giải:Ta có   k k 1     2 n    n   với n �Z   k  k 1 2   2 k  k 1 k k k  k 1  k 1 k  với k =1,2,3 - 13 Khi k = 1,2 , 3, n ta   1     2        n   n = 2 n 1     n   với n �Z  Vậy  n 1    n 1 1  */ Bài tập tương tự :( Tham khảo ) 1 1       với n > 2 n n 1 1 b)      với n �Z  n Chứng minh :a) 1 1     c)   n  1 n < với n �Z � �1  � k 1 � �k Gợi ý giải câu c: Mỗi phân sớ có dạng cơng thức tổng qt :  � Thay k số 1, 2, 3, vào công thức tổng quát , ta có điều phải chứng minh 1 � � � �1 �1 �1  k  k�  � k �  � � �= k  k  1 k 1 � k 1 � �k k  �  k  1 k �k �k � k � � �1 � �1  � �  � �  �do � k 1 � � k 1 � � k k 1 � �k � � k 1 k 1 Khi k 1 1 1 1 1 1 �      �         � �  n  1 n 2 3 n n 1 � � � 1 = 2� � � � (đpcm) n 1 � */ Ưu điểm hạn chế :+ Dạng tập này, giúp giáo viên chọ học sinh giỏi xác cách tuyệt đối Học sinh giải tập chưa có gợi ý giáo viên, nhân tài thật +Hạn chế : Bài tập q khó, lực học lớp khơng đồng đều, dể đưa đến tình trạng học sinh chán nãn, bỏ bê học toán Dạng tập chứng minh bất đẳng thức không chỉ xuất phân mơn đại sớ mà cịn xuất phân mơn hình học mơn khoa học tự nhiên khác như: ( Mơn hóa học, mơn vật lý v v) Do dạy loại tốn này, giáo viên nên lấy thêm ví dụ thuộc mơn học nói trên, nhằm tạo cho học sinh hứng thú, gây tị mị, ham tìm hiểu Đồng thời giúp học sinh thấy cần thiết phải học mơn Có giáo dục phát triển người toàn diện, phù hợp với mục tiêu giáo dục mà giáo dục đào tạo ban hành Toán học gắn liền với môn khoa học khác, gắn liền với đời sớng thực tế Chính lao động làm phát sinh tốn học, ngược lại tốn học bổ trợ cho đời sớng thực tế người Ví dụ: hình học : GT: Cho  ABC,AB =c ; BC = a; CA = b - 14 -M  ABC Khoảng cách từ M đến BC, AC, AB x,y,z KL: Xác định vị trí M để P = a b c   x y z A Đạt giá trị nhỏ GV: Ḿn tìm giá trị nhỏ nhất, ta phải biến đổi P dạng lớn hoặc số không đổi, xét điều kiện dấu “=” xảy Ta có : SABC = SMBC +SMCA + S MAB � S = �a b c �  ax  by  cz  � 2SP   ax  by  cz  �   �= �x y z � �x y� �y b c M y z x B a C z� �x z � � � � � � � x y y z x z Áp dụng bất đẳng thức Cơsi ta có :  �2;  �2;  �2 y x z y z x a2 +b2+c2 +ab �  � bc �  � ca �  � y x z y z x Do : 2SP �a  b  c  2ab  2bc  2ca   a  b  c  � P � a  b  c  Dấu “=” xảy chỉ x = y = z � M tâm đường tròn nội tiếp 2S tam giác , Vậy P nhỏ M tâm đường trịn nội tiếp tam giác Ví dụ 2: B Cho hai điểm A, B A A B hình vẽ Xác định vị trí điểm M d d d cho tổng khoảng cách M M AM + MB nhỏ Đây A' tốn có nội dung nhắc đến nhiều thực tế Để giúp học sinh giải toán này, giáo viên chúng ta cho học sinh ôn lại kiến thức bất đẳng thức tam giác, Gợi ý tạo hình, thay việc tính tổng AM +MB tổng hai đoạn thẳng khác(sao cho đảm bảo khơng tính tổng qt) Dùng tính chất đới xứng qua đường thẳng, tính chất bất đẳng thức tam giác Nếu học sinh nắm vững kiến thức việc giải tập khơng cịn khó khăn Cụ thể : Tạo điểm A đới xứng với A’ qua d M thuộc d nên AM = A’M( theo tính chất đới xứng ) AM + MB = A’M + MB Xét  A’MB có A’M + MB �A’B.( bất đẳng thức tam giác ) Dấu “=” xảy chỉ A’M + MB = A’B � M �A’B, mặt khác M �d Do M giao điểm d A’B ( A’ điểm đối xứng với A qua d ) Qua tập này, giáo viên có thể giáo dục cho học sinh thấy tầm quan trọng tốn học đời sớng thực tế Nhờ có tốn học mà chúng ta làm lợi kính tế cho người, nhà cho toàn xã hội * Ví dụ mơn hóa học : Cho 2,4 gam kim loại hoá trị tác dụng với dung dịch chứa 0,18 mol HCl sau phản ứng dư kim loại - 15 Lượng kim loại cho tác dụng với dung dịch chứa 0,22 mol HCl sau phản ứng dư axit Xác định kim loại Đây bất đẳng thức có nội dung hóa học Khi dạy loại tập giáo viên nên cho học sinh ơn lại cách giải tốn cách lập phương trình, lập bất phương trình, tính chất liên hệ thứ tự phép nhân Nếu học sinh nắm lí thuyết, biết vận dụng vào thực tế việc giải tốn khơng q khó khăn Từ giúp cho học sinh thấy mối quan hệ qua lại môn học, cần thiết phải học môn Sau lời giải toán Giải: Gọi kim loại cần xác định R , đ/k Theo ta có phương trình phản ứng : R + 2HCl RCl + H2 Theo phương trình phản ứng số mol HCl lần số mol kim loại R Số mol kim loại là: 2, R 2,  0, 09 R 2,  0,11 + Trường hợp 2:0,22 mol HCl phản ứng vừa đuur với 0,11 mol R � R 2,  0,11 � 21,8 0 , b >0 � a +1 >0 Áp dụng bất đẳng thức Cô si cho số b a + ta b + (a +1) � b  a  1  ab  b a.b = 20 b �5 nên ab  b �2 20   10 - 17 -� � hay b + (a +1) = 10 a + b �a   b b5 � � Dấu “=” xảy chỉ �a.b  20 � � Vậy a+b �9 b = a = a4 � � b �5 � a b  �2 với a,b dấu b a a b a b a b Cách giải sai: Áp dụng bất đẳng thức Côsi cho , ta  �2  b a b a b a Ví dụ 4: Chứng minh Đây sai lầm không chỉ dành cho học sinh mà giáo viên ( Sai sót kiến thức a b , hai số dương b a a b a b � Sai lầm thiếu điều kiện để dấu “=” xảy Người giải hiểu  b a b a thức ) chúng ta không cẩn thận dễ mắc phải , Mặc dầu Cách giải phải : Tùy thuộc vào phương pháp lựa chọn chứng minh ( tham khảo phần trên) Đơn cử cách giải sau : 2 a  b Ta có : a  b   a  b  2ab   Vì a,b dấu nên ab>0 (a-b)2 �0  a, b b a ab ab a b a  b Do  �0 Vậy  �2 với a,b dấu b a ab Chú ý : Khi giải tập dạng chứng minh bất đẳng thức hoặc tìm giá trị lớn hoặc nhỏ Ngồi việc tìm giá trị nhỏ hay lớn , cần chú ý thêm xét điều kiện để dấu “=” xảy Ví dụ 5: Đề yêu cầu, chứng minh a2 +b2 +c2 �ab +bc +ca (1) Cách giải sai : Khi giải , học sinh suy luận : 2 Từ (1) � 2a  2b  2c �2ab  2bc  2ca �  a  b    b  c    c  a  �0 (2 ) Học sinh kết luận : (2) đúng nên (1) đúng Đây phép phân tích x́ng nên từ (2) đúng ta chưa có quyền kết luận (1) đúng Sai lầm học sinh chưa nắm vững bất phương trình tương đương Cách giải Cũng phép biến đổi , song thay phép suy (kéo theo) phép biến đổi tương đương, ći kết luận (2) đúng nên (1) đúng xét trường hợp dấu “=” xảy Ví dụ : Giải phương trình x2 < hoặc phương trình : x2 > Cách giải sai: x2 < � x < �2 hoặc x2 > � x > � hai trường hợp này, học sinh mắc sai lầm (về kiến thức ) khơng nắm vững tính chất lũy thừa bậc chẵn bất đẳng thức Cách giải : x2 < � x  � -2 < x < x2 > x2 � � x 2�� x  2 � Là giáo viên, người trực tiếp truyền thụ kiến thức đến với học sinh Mỗi chúng ta cần chịu khó đầu tư nhiều việc tìm tịi, chọn lọc phương pháp dạy học phù hợp cho loại tập, phù hợp cho cách giải khác nhau, kịp thời chỉ sai lầm học sinh thường gặp, giúp em dễ dàng vượt đến đích kiểm tra, thi Để - 18 có tập hồn chỉnh, u cầu học sinh nên tập thói quen kiểm tra lại sau giải Đặc biệt chú ý ( sở lí luận, trình bày lời giải ) Một số tập vận dụng Bài Giải nhiều cách Cho x �3 a) Tìm x  x b) Tìm x + x3 1 1� � � � 1 1� � Bài Cho a, b, c > a + b + c � Tìm �a  b  c    � a b c� � 1 Hướng giải 3: để đảm bảo a = b =c =   ta phải tách sớ cho phù hợp a b c Bài Cho a, b, c > a + b + c �3 Tìm �a  b  c    � a b c điều kiện áp dụng bất đẳng thức Côsi C1/ Tách a +b +c = 4a + ab +4c -3a -3b -3c C2/ Tách 1 1 1 �1 1 �       �  � a b c 4a 4b 4c �a b c � Dùng bất đẳng thức Côsi cho số bất đẳng thức Côsi cho số ta điều cần tìm Đặc biệt đới với đới tượng học sinh giỏi, giáo viên chú trọng mức độ đề, đề địi hỏi học sinh cần có sáng tạo Phải khôn khéo, linh hoạt biến đổi làm xuất sớ đủ điều kiện có thể dùng bất đẳng thức Cơsi Vì u cầu học sinh khơng nên tự thỏa mãn trước đạt mà phải thật cần cù, chăm chỉ hơn, đam mê nghiên cứu C/ MỞ RỘNG TÍNH ĐA DẠNG, PHONG PHÚ CỦA BẤT ĐẲNG THỨC ĐỂ TẠO LẬP ĐỀ MỚI ĐỀ BÀI : Như chúng ta biết: Kiến thức ln mang tính kế thừa, Việc nắm vững kiến thức đồng nghĩa với cần cù, chăm chỉ tích góp kiến thức học tập Việc hiểu sâu sắc tính chất bất đẳng thức, giúp người dạy, người học dễ dàng xoay chuyển tình thế, giải nhiều dạng tập Đặc biệt, đới với người thầy dễ dàng hướng dẫn học tránh sai lầm thường gặp Tự cải biên, tạo nhiều dạng tập hay bổ ích dạy Phát huy tính tích cực, tự giác, động, khích lệ tính đam mê sáng tạo nhiều học sinh Giờ học trở nên sinh động lí thú, phù hợp với đổi phương pháp dạy học Trên sở đó, giáo viên tạo nhiều đề kiểm tra, đề thi có nhiều mức độ yêu cầu đơn vị kiến thức mà khơng có trùng lặp tránh mong chờ may rủi kiểm tra học sinh Sau sớ ví dụ dạng tập có thể cải biên tạo hệ thớng tập + Dạng hình học: Nếu thay hai điểm A, B hai khu dân cư Điểm M trạm thủy điện d bờ sơng ta có tốn Bài tốn giúp ta làm lợi kinh tế (do tiết kiệm dây điện ) + Dạng bài tìm min, tìm max: Đới với tập tìm , max, việc dạy cho học sinh cách giải tập, giáo viên chúng ta cần gợi ý, hướng dẫn tạo cho em biết vận dụng tính chất đặc biệt bất đẳng thức Cơsi ( Tính bình đẳng a b ) Từ biết cách tách sớ cho thành sớ mà tích hai, hay nhiều số cho ta số để tạo lập hệ thống đề tập Học sinh biết đề đồng nghĩa với học sinh biết giải tập Làm tớt điều chắn khơng kiến thức em có thực mà cịn gây hứng thú, khích lệ đam mê, ham tìm tịi, khơi dậy tiềm ẩn tớ chất tốn học - 19 em Phù hợp với xu đổi phương pháp dạy học Sau ví dụ minh họa hướng tạo đề bài, hệ thống đề giúp cho giáo viên khơng cịn lệ thuộc vào sách giáo khoa mà tự tin, làm chủ kiến thức ( loại phù hợp với đối tượng học sinh thuộc diện đại trà, lớp đại trà) Cụ thể : Ví dụ 1: Cho x �2 Tìm x  tập sữa phần x + Nếu cố định giả thiết (x �2) , thay đổi kết luận tìm ( x  1 x  v v) ta hoặc x x có loạt tập dạng x + Nếu Cớ định kết luận ( tìm x  ) , thay dự kiện giả thiết ( Số số nguyên dương khác) ta lại có loạt tập dạng + Nêú thay đổi đồng thời giả thiết kết luận ta lại có hệ thớng tập Ví dụ 2: Xét lại ví dụ1: Chứng minh A = 1 1     1 1.2 2.3 3.4 2009.2010 Cũng dạng tập này, ta thay đổi phần nhỏ dự kiện giữ ngun dự kiện ta có nhiều tập dạng hay hơn, Đáp ứng nhu cầu nhiều đối tượng học Thuận lợi cho giáo viên việc phụ đạo học sinh yếu, bồi dưỡng học sinh giỏi Ví dụ :C1: Nếu thay số tử số khác giữ nguyên mẫu C2: Giữ nguyên tử thay đổi mẫu tích hai sớ ngun chẵn liên tiếp hoặc tích hai sớ ngun lẻ liên tiếp , hoặc tích hai sớ cách C3: Thay đổi cá tử mẫu ta có loạt tập mới, có nhiều mức độ u cầu khác Ví dụ 3: Cho a.b �20 ; b �5 Chứng minh a +b �9 ( Đã sửa) Giáo viên gợi ý cho học sinh , yêu cầu học sinh nêu hướng có thể tạo lập hệ thớng tập tương tự khơng ? lập cách ? C1/ Cố định giả thiết a.b �20 , thay b �5 a �5 giữ nguyên kết luận a +b �9 , ta có tốn tương tự C2/ Thay giả thiết a.b �20 a +b �9 cịn giữ ngun b �5 ta có tương tự Chẳng hạn : a.b �31 , b �5 Chứng minh a +b �5 C3/ Thay đổi đồng thời giả thiết kết luận ta lại có thêm nhiều tập có nội dung Ví dụ ( giành cho học sinh giỏi ) Cho a +b = a; b �0 Tìm max a2b5 Trên sơ sở có giải sẵn, học sinh có thể cải biên đề cách : C1/ cố định giả thiết a +b = a; b �0 , thay yêu cầu kết luận ( đổi số mũ a , b hoặc a b) ta có nhiều tập tương tự cách giải C2/ Cố định kết luận, thay đổi dự kiện giả thiết a +b số tự nhiên khác ta lại có hàng loạt tập Tóm lại: Khơng phải tập dạy giáo viên chúng ta bắt buộc học sinh tạo lập đề mà tùy cụ thể, tùy thuộc đối tượng học Tuy nhiên, tiết dạy đưa yêu cầu vào tiết học trở nên lí thú bổ ích Thu hút chý ý học sinh 2) Kết nghiên cứu : Loại toán bất đẳng thức phổ biến rộng rãi nội dung đề tài trình bày Phần lớn học sinh hiểu vận dụng tớt kiểm tra định kì, học kì Đặc biệt loại tốn có sử dụng bất đẳng thức phần lớn thường đề kì - 20 thi học sinh giỏi cấp, kì thi vào trường chuyên, lớp chọn Qua công tác điều tra nhiều phương pháp:cụ thể như: “Trò chuyện”, “vấn đáp”, điều tra phiếu học tập (Thông qua kiểm tra) Dựa kết thi vào trường chuyên, lớp chọn hàng năm Bản thân tự đánh giá mức độ tiếp thu vận dụng kiến thức “bất đẳng thức” học sinh ngày cao Mức độ đề kiểm tra ngày khó hơn, năm sau cao năm trước Với kĩ đổi việc đề, đề khơng có trùng lặp, khơng có tượng chép mà sớ lượng học sinh làm câu khó ngày nhiều hơn, chất lượng đạt học sinh cao năm trước - Thông qua ghi chép theo dõi kết thực mãng kiến thức học sinh đại trà kết thi học sinh giỏi cấp, thi vào trường THPT, trường THPT chuyên hàng năm, thân thu kết sau : */ Kết ba lớp ba lớp hai năm liền thuộc ba mốc thời gian thực dạy Khối Khối Năm học 1996-1997 ( SS:90) Số lượng 3 Năm học 2000-2001 (SS: 135) % 3,3%  5,6% Năm học 1997 -1998 ( SS:90) Số lượng 5 Số lượng  11 Năm học 2004-2005 ( SS:135) % 5,2%  8,1% Năm học 2001 – 2002 ( SS: 135) % 5,6%  10% Số lượng 11  18 Số lượng 11  19 % 8,1%  14,1% Năm học 2005 -2006 ( SS:135) % 8,1%  13,3% Số lượng 26  42 % 19,3%  31,1% */ Phần lớn học sinh thi học sinh giỏi, thi vào lớp 10 THPT, THPT chuyên trường vận dụng cách tương đối giải dạng “ bất đẳng thức” Vì sớ lượng học sinh giỏi hàng năm tương đối cao Cấp huyện Cấp tỉnh Năm học 1999 -2000 Năm học 2002 - 2003 Năm học 2005 -2006 Số lượng em Năm học 1999-2000 Số lượng em Năm học 2001 - 2002 Số lượng em Năm học 2005 -2006 Số lượng Số lượng Số lượng em Không thi em */ Kết thi vào trường chuyên hàng năm : Năm học 1997 -1998 Số lượng em Năm học2001 - 2002 Số lượng em Năm học 2005 -2006 Số lượng em Đối với năm học 2009-2010: Mặc dầu chưa kết thúc năm học song thân nhận định chất lượng mơn tốn học sinh năm học có nhiều tiến so với năm học trước Chất lượng mũi nhọn đạt tương đối cao Học sinh giỏi cấp huyện:Giải nhất- giải ba - 21 IV/ NHỮNG ĐỀ XUẤT VÀ KIẾN NGHỊ : 1) Một số đề xuất : Từ thực tế, trải nghiệm qua nhiều năm dạy học, rút học cho thân tầm quan trọng loại toán “Bất đẳng thức” mơn khoa học nói chung mơn tốn học nói riêng Nhờ có “bất đẳng thức” mà ta giải nhiều dạng tốn nhiều lĩnh vực, đời sớng hàng ngày Vì mà đề tài tơi ln chú trọng việc không ngừng khai thác kiến thức, vận dụng hiểu biết kiến thức, truyền thụ xây dựng mở rộng hệ thống kiến thức đến với học sinh Giúp em thấy được, nhiệm vụ người học sinh thời đại là: “Học, học nữa, học mãi” Để đạt mục tiêu, nội dung nhiệm vụ mà đề tài nêu trên, thân cần có sớ đề xuất sau : - Duy trì giáo viên dạy nhiều năm lớp cấp học ( Giúp cho học sinh làm quen với phương pháp dạy học, thuận lợi cho giáo viên việc phụ đạo yếu, kém củng cố kiến thức bồi dưỡng học sinh khá, giỏi Phát huy vai trò học sinh giỏi, hỗ trợ giúp đỡ học sinh yếu - Biên chế số lượng học sinh lớp cần so với thực tế ( Thuận lợi cho giáo viên dễ bao quát lớp, quan tâm, theo dõi giúp đỡ em tiết học ) - Mỗi gia đình cần thật quan tâm “đúng cách” nhiều đến em Trang bị đầy đủ đồ dùng học tập từ đầu năm học cho em ( Giúp cho em có nề nếp ngồi học tớt hơn, nhằm nâng cao hiệu học tập ) - Bên đoàn , đội : Nên thường xuyên phát động phong trào thi đua xây dựng hệ thống tập theo mảng kiến thức môn học Mỗi học sinh phải tích cực, tự giác, chịu khó, say mê nghiên cứu tìm tịi kiến thức (Giúp em động thực sự, sáng tạo, tự tin lĩnh hội vận dụng kiến thức ) 2) Một vài kiến nghị : * Đối với lãnh đạo cấp : - Thường xuyên tổ chức, triển khai chuyên đề đổi phương pháp dạy học cụ thể, sát thực Chẳng hạn ( Kinh nghiệm hướng dẫn học sinh sử dụng đồ dùng học tập Kinh nghiệm hướng dẫn học sinh tạo lập hệ thống đề tâp.v.v) -Tạo điều kiện thuận lợi tối đa thời gian để cho giáo viên, cán công chức viên chức mở rộng, nâng cao trình độ chuyên môn nghiệp vụ */ Đối với giáo viên : Tận tâm với nghề dạy học (Đi sâu vào việc tìm tịi biện pháp để truyền thụ kiến thức đến học sinh đạt hiệu hơn, quan tâm thực đến chất lượng học tập học sinh, đồng nghĩa với chăm lo cho thành dạy học Tơn trọng thành đạt học sinh dù nhỏ V/ KẾT LUẬN : Trên vài kinh nghiệm nhỏ dạy học sinh giải tập mảng kiến thức “Bất đẳng thức”, việc vận dụng tính đa dạng phong phú “bất đẳng thức” việc cải biên đề bài, làm đề kiểm tra, đề thi hàng năm giáo viên Tuy chưa đem lại hiệu cao, mĩ mãn cho thân toàn thể học sinh song đới với thân q trình tìm tịi, đúc rút qua nhiều năm thực dạy, ôn luyện học sinh giỏi Tôi nghĩ rằng, với kinh nghiệm nhỏ nhoi không chỉ dành riêng cho mảng kiến thức “Bất đẳng thức” mà vận dụng cho nhiều mảng kiến thức khác mơn tốn nói riêng mơn khoa học khác nói chung Nếu giáo viên chúng ta đồng lòng, nhiệt huyết với phong trào “Xây dựng trường học thân thiện, học sinh tích cực” Tận tâm với nghề dạy học Xem học sinh em Xem học trị giỏi, đồng nghiệp - 22 bạn đồng hành Cùng cởi mở, chia sẽ, thảo luận, xây dựng, mở rộng kiến thức Ắt kinh nghiệm dạy học ngày dày dặn Đặc biệt là, giáo viên chúng ta biết thường xun tích lũy, gom nhặt, đặt cách có hệ thống kiến thức Biết vận dụng kiến thức cách đúng lúc, phù hợp, linh hoạt sáng tạo hiệu dạy học mơn tốn chắn nhân lên Việc đề thi khơng cịn có trùng lặp hay chép Chất lượng làm học sinh khơng cịn mong chờ may rủi Được ngày khơng xa chất lượng mơn tốn khơng chỉ ngang tầm với môn khoa học khác mà cịn có khả dẫn đầu mơn khoa học tự nhiên Kinh nghiệm thân phiến diện, nặng tính chủ quan, khơng tránh khỏi thiếu sót Rất mong nhận ý kiến đóng góp bổ sung bạn bè, đồng nghiệp để kịp thời điều chỉnh, mong kinh nghiệm dạy học ngày hoàn thiện Xin chân thành cảm ơn Buôn Trấp tháng 2/2010 Người viết Phạm Thị Vỹ Nhận xét hội đồng chấm cấp trường : Chủ tịch HĐ( Ký tên, đóng dấu) - 23 ... đề đổi phương pháp dạy học cụ thể, sát thực Chẳng hạn ( Kinh nghiệm hướng dẫn học sinh sử dụng đồ dùng học tập Kinh nghiệm hướng dẫn học sinh tạo lập hệ thống đề tâp.v.v) -Tạo điều kiện thuận... đạt học sinh dù nhỏ V/ KẾT LUẬN : Trên vài kinh nghiệm nhỏ dạy học sinh giải tập mảng kiến thức ? ?Bất đẳng thức? ??, việc vận dụng tính đa dạng phong phú ? ?bất đẳng thức? ?? việc cải biên đề bài, ... đẳng thức khó việc dạy giải tập ? ?bất đẳng thức? ?? lại khó Bởi lẻ khái niệm bất đẳng thức thức vơ phức tạp, bất đẳng thức có thể đúng, lại có thể sai, đúng miền xác định lại sai miền xác định

Ngày đăng: 15/06/2021, 14:56

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w