1. Trang chủ
  2. » Kỹ Thuật - Công Nghệ

Tài liệu Circuits & Electronics P15 docx

19 245 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 19
Dung lượng 186,8 KB

Nội dung

6.002 Fall 2000 Lecture 1 15 6.002 CIRCUITS AND ELECTRONICS Second-Order Systems 6.002 Fall 2000 Lecture 2 15 Second-Order Systems C A B 5V + – 5V C GS large loop 2KΩ 50Ω 2KΩ Demo Our old friend, the inverter, driving another. The parasitic inductance of the wire and the gate-to-source capacitance of the MOSFET are shown [Review complex algebra appendix for next class] S 6.002 Fall 2000 Lecture 3 15 Second-Order Systems C A B 5V + – 5V C GS large loop 2KΩ 50Ω 2KΩ Demo + – 5V C GS 2KΩ B L Relevant circuit: S 6.002 Fall 2000 Lecture 4 15 Now, let’s try to speed up our inverter by closing the switch S to lower the effective resistance t v A 5 0 v B 0 t v C 0 t Observed Output 2 kΩ 2kΩ 6.002 Fall 2000 Lecture 5 15 t v A 5 0 v B 0 t v C 0 t Observed Output ~50Ω 50 Ω Huh! 6.002 Fall 2000 Lecture 6 15 v , i state variables + – C L + – )( tv )(tv I )( ti Node method: dt dv Cti =)( dt dv Cdtvv L t I =− ∫ ∞− )( 1 2 2 )( 1 d t vd Cvv L I =− I vv d t vd LC =+ 2 2 time 2 dt di Lvv I =− idtvv L t I =− ∫ ∞− )( 1 Recall First, let’s analyze the LC network 6.002 Fall 2000 Lecture 7 15 Recall, the method of homogeneous and particular solutions: ( ) ( ) tvtvv HP += 1 2 3 Find the particular solution. Find the homogeneous solution. L 4 steps The total solution is the sum of the particular and homogeneous. Use initial conditions to solve for the remaining constants. Solving 6.002 Fall 2000 Lecture 8 15 And for initial conditions v(0) = 0 i(0) = 0 [ZSR] I v 0 V 0 t Let’s solve I vv d t vd LC =+ 2 2 For input 6.002 Fall 2000 Lecture 9 15 1 Particular solution 0 2 2 Vv d t vd LC P P =+ 0 Vv P = is a solution. 6.002 Fall 2000 Lecture 10 15 0 2 2 =+ H H v d t vd LC Solution to Homogeneous solution 2 Recall, v H : solution to homogeneous equation (drive set to zero) Four-step method: D tj 2 tj 1 H oo eAeAv ωω − += General solution, Roots C o js ω ±= LC 1 o = ω Assume solution of the form * A ?s,A,Aev st H == so , 0 2 =+ stst AeeLCAs * Differential equations are commonly solved by guessing solutions 1−=j LC js 1 ±= B LC s 1 2 −= characteristic equation [...]... 2 Total energy in the system is a constant, but it sloshes back and forth between the Capacitor and the inductor 6.002 Fall 2000 Lecture 15 18 RLC Circuits R L vI (t ) + – i (t ) C + v(t ) – v(t ) no R add R t Damped sinusoids with R – remember demo! See A&L Section 12.2 6.002 Fall 2000 Lecture 15 19 ... 2 2 CV0ωo 0 2π ωo t i (t ) π π 2 3π 2 2π ωo t − CV0ωo 6.002 Fall 2000 Lecture 15 13 Summary of Method 1 Write DE for circuit by applying node method 2 Find particular solution vP by guessing and trial & error 3 Find homogeneous solution vH A Assume solution of the form Aest B Obtain characteristic equation C Solve characteristic equation for roots si D Form vH by summing Ai esit terms 4 Total solution . 6.002 Fall 2000 Lecture 1 15 6.002 CIRCUITS AND ELECTRONICS Second-Order Systems 6.002 Fall 2000 Lecture 2 15 Second-Order. between the Capacitor and the inductor 6.002 Fall 2000 Lecture 19 15 RLC Circuits See A&L Section 12.2 add R no R + – C R L + – )( tv )(tv I )( ti )( tv

Ngày đăng: 12/12/2013, 22:15

w