1. Trang chủ
  2. » Kỹ Thuật - Công Nghệ

Tài liệu Circuits & Electronics P17 docx

14 137 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 14
Dung lượng 172,96 KB

Nội dung

6.002 Fall 2000 Lecture 1 17 6.002 CIRCUITS AND ELECTRONICS The Impedance Model 6.002 Fall 2000 Lecture 2 17  Sinusoidal Steady State (SSS) Reading 13.1, 13.2 + – O v tVv iI ω cos= + – R C  Focus on steady state, only care about v P as v H dies away.  Focus on sinusoids. Reading: Section 13.3 from course notes. SSS Review  Sinusoidal Steady State (SSS) Reading 13.1, 13.2 6.002 Fall 2000 Lecture 3 17 3 4 H v total Review V p contains all the information we need: p p V V ∠ Amplitude of output cosine phase sneak in V i e jωt drive complex algebra take real part The Sneaky Path p V tV i ω cos [] pp VtV ∠+ ω cos set up DE usual circuit model nightmare trig. 1 v P tj p eV ω RCj V i ω +1 2 6.002 Fall 2000 Lecture 4 17 i p V V transfer function () ω ω jH RCjV V i p = + = 1 1 ( ) ppO VtVv ∠+= ω cos 222 1 1 CR ω + break frequency Bode plot ω RC 1 = ω 1 RC 1 ω 2 1 remember demo ω RC 1 = ω 4 π − 2 π − 0 i p V V ∠ ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ − − 1 RC tan 1 ω The Frequency View Review 6.002 Fall 2000 Lecture 5 17 Is there an even simpler way to get V p ? RCj V V i p ω + = 1 Divide numerator and denominator by jωC . R Cj Cj V V ip + = ω ω 1 1 Let’s explore further… Hmmm… looks like a voltage divider relationship. RZ Z VV C C ip + = 6.002 Fall 2000 Lecture 6 17 The Impedance Model Is there an even simpler way to get V p ? Consider: tj rR eIi ω = tj rR eVv ω = RR Riv = tj r tj r eRIeV ωω = rr RIV = R R i + – R v Resistor tj CC eIi ω = tj CC eVv ω = C C i + – C v Capacitor CC I Cj 1 V ω = dt dv Ci C C = tj C tj C ejCVeI ωω ω = C Z L L i + – L v tj lL eIi ω = tj lL eVv ω = dt di Lv L L = tj l tj l ejLIeV ωω ω = Inductor ll ILjV ω = L Z 6.002 Fall 2000 Lecture 7 17 In other words, For a drive of the form V c e jωt , complex amplitude V c is related to the complex amplitude I c algebraically, by a generalization of Ohm’s Law. inductor LjZ l ω = lll IZV = l I + – l V L Z resistor rrr IZV = RZ r = R Z r I + – r V capacitor Cj 1 Z C ω = cCc IZV = impedance c I + – c V C Z The Impedance Model 6.002 Fall 2000 Lecture 8 17 Impedance model: All our old friends apply! KVL, KCL, superposition… Back to RC example… i RC C ic V ZZ Z V R Cj 1 Cj 1 V + = + = ω ω ic V RCj1 1 V ω + = Done! + – C v I v + – R C + – c V i V + – RZ R = Cj Z C ω 1 = c I 6.002 Fall 2000 Lecture 9 17 Another example, recall series RLC: We will study this and other functions in more detail in the next lecture. R Cj Lj RV V i r ++ = ω ω 1 RCL Ri r ZZZ ZV V ++ = CRjLC CR jV V i r ωω ω ++− = 1 2 + – L r I C R + – r V i V tj r eV ω () rr VtV ∠+ ω cos tj i eV ω tV i ω cos Remember, we want only the steady-state response to sinusoid 6.002 Fall 2000 Lecture 10 17 The Big Picture… tV i ω cos [] pp VtV ∠+ ω cos set up DE usual circuit model nightmare trig. . 6.002 Fall 2000 Lecture 1 17 6.002 CIRCUITS AND ELECTRONICS The Impedance Model 6.002 Fall 2000 Lecture 2 17  Sinusoidal

Ngày đăng: 22/12/2013, 19:17

w