Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 18 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
18
Dung lượng
320,04 KB
Nội dung
6.002 CIRCUITS AND ELECTRONICS Sinusoidal Steady State 6.002 Fall 2000 Lecture 16 1 Review We now understand the why of: 5V C R L v Today, look at response of networks to sinusoidal drive. Sinusoids important because signals can be represented as a sum of sinusoids. Response to sinusoids of various frequencies -- aka frequency response -- tells us a lot about the system 6.002 Fall 2000 Lecture 16 2 Motivation For motivation, consider our old friend, the amplifier: S V v O v i C v + – + – GS C R V BIAS Observe v o amplitude as the frequency of the input v i changes. Notice it decreases with frequency. Also observe v o shift as frequency changes (phase). Need to study behavior of networks for sinusoidal drive. Demo 6.002 Fall 2000 Lecture 16 3 Sinusoidal Response of RC Network Example: + – R i C + v I v C – v I ( t ) = V i cos ω t for t ≥ 0 ( V i real) = 0 for t < 0 v C (0) = 0 for t = 0 I v 0 t 6.002 Fall 2000 Lecture 16 4 1 1 1 1 e c t u r Example: + – R Our Approach i C + v I v C – Determine v C (t) I nd u l g e m e ! Effort l e c t u r e sneaky approach very sneaky Usual approach agony easy t e 0 : 0 : 0 0 2 1 0 : 2 l s hi T t x e N 6.002 Fall 2000 Lecture 16 5 Let’s use the usual approach… 1 Set up DE. 2 Find v p . 3 Find v H . 4 v C = v P + v H , solve for unknowns using initial conditions 6.002 Fall 2000 Lecture 16 6 Usual approach… 1 Set up DE RC dv C + v C = v I dt = V i cos ω t That was easy! 6.002 Fall 2000 Lecture 16 7 2 Find v p RC dv P + dt v P = V i cos ω t First try: v P = A Æ nope Second try: v P = A cos ω t Æ nope Third try: v P = A cos( amplitude φ ω + t frequency ) phase − RCA ω sin( ω t + φ ) + A cos( ω t + φ ) = V i cos ω t − RCA ω sin ω t cos φ − RCA ω cos ω t sin φ + A cos ω t cos φ − A sin ω t sin φ = V i cos ω t . . gasp ! . works, but trig nightmare! 6.002 Fall 2000 Lecture 16 8 6.002 ll 2000 Lecture 9 16 Let’s get sneaky! Try solution st pPS eVv = st i st p st p eVeV d t edV RC =+ st i st p st p eVeVesRCV =+ ip VV)1sRC( =+ sRC1 V V i p + = Nice property of exponentials ISPS PS vv d t dv RC =+ ( S : sneaky :-)) st i eV = Find particular solution to another input… p V complex amplitude Thus, st i PS e sR C1 V v ⋅ + = st i eV is particular solution to easy! where we replace s = jω ly tj i eV ω solution for tj i e RCj V ω ω ⋅ +1 Fa 2 Fourth try to find v P … using the sneaky approach Fact 1: Finding the response to V i e j ω t was easy. Fact 2: v I = V i cos ω t = real [ V i e j ω t ] = real [ v IS ] from Euler relation, j I v P v response IS v PS v response real part real part e j ω t = cos ω t + sin ω t an inverse superposition argument, assuming system is real, linear. 6.002 Fall 2000 Lecture 16 10 . 6.002 CIRCUITS AND ELECTRONICS Sinusoidal Steady State 6.002 Fall 2000 Lecture 16 1 Review. – R i C + v I v C – v I ( t ) = V i cos ω t for t ≥ 0 ( V i real) = 0 for t < 0 v C (0) = 0 for t = 0 I v 0 t 6.002 Fall 2000 Lecture 16 4 1 1 1 1 e