Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 14 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
14
Dung lượng
341,61 KB
Nội dung
Đẳng thứclượnggiác Trong toán học, các đẳngthứclượnggiác là các phương trình chứa các hàm lượng giác, đúng với một dải lớn các giá trị của biến số. Các đẳngthức này hữu ích cho việc rút gọn các biểu thức chứa hàm lượng giác. Ví dụ trong việc tính tích phân với các hàm không phải là lượng giác: có thể thay chúng bằng các hàm lượnggiác và dùng các đẳng thứclượnggiác để đơn giản hóa phép tính. Định nghĩa Tuần hoàn, đối xứng và tịnh tiến Các đẳngthức sau có thể dễ thấy trên vòng tròn đơn vị: Tuần hoàn (k nguyên) Đối xứng Tịnh tiến Đẳngthức sau cũng đôi khi hữu ích: với Đẳngthức Pytago Các đẳngthức sau dựa vào định lý Pytago. Đẳngthức thứ 2 và 3 có thể suy ra từ đẳngthức đầu bởi chia nó cho cos²(x) và sin²(x). Tổng và hiệu của góc Cách chứng minh nhanh các công thức này là dùng công thức Euler. với và Công thức góc bội Bội hai Các công thức sau có thể suy ra từ các công thức trên. Cũng có thể dùng công thức de Moivre với n = 2. Công thức góc kép có thể dùng để tìm bộ ba Pytago. Nếu (a, b, c) là bộ ba Pytago thì (a 2 − b 2 , 2ab, c 2 ) cũng vậy. Tổng quát Nếu T n là đa thức Chebyshev bậc n thì công thức de Moivre: Hàm hạt nhân Dirichlet D n (x) sẽ xuất hiện trong các công thức sau: Hay theo công thức hồi quy: sin(nx) = 2sin((n − 1)x)cos(x) − sin((n − 2)x) cos(nx) = 2cos((n − 1)x)cos(x) − cos((n − 2)x) Bội ba Ví dụ của trường hợp n = 3: sin(3x) = 3sin(x) − 4sin (x) 3 cos(3x) = 4cos (x) − 3cos(x) 3 dinh van phu Công thức hạ bậc Giải các phương trình ở công thức bội cho cos 2 (x) và sin 2 (x), thu được: Công thức góc chia đôi Thay x/2 cho x trong công thức trên, rồi giải phương trình cho cos(x/2) và sin(x/2) để thu được: Dẫn đến: Nhân với mẫu số và tử số 1 + cos x, rồi dùng định lý Pytago để đơn giản hóa: Tương tự, lại nhân với mẫu số và tử số của phương trình (1) bởi 1 − cos x, rồi đơn giản hóa: Suy ra: Nếu thì: and and Phương pháp dùng t thay thế như trên hữu ích trong giải tích để chuyển các tỷ lệ thức chứa sin(x) và cos(x) thành hàm của t. Cách này giúp tính đạo hàm của biểu thức dễ dạng. Biến tích thành tổng Dùng công thức tổng và hiệu góc bên trên có thể suy ra. Biển tổng thành tích Thay x bằng (x + y) / 2 và y bằng (x – y) / 2 trong công thức trên, suy ra: Hàm lượnggiác nghịch đảo Dạng số phức với Tích vô hạn Trong các ứng dụng với hàm đặc biệt, các tích vô hạn sau có ích: Đẳngthức số Cơ bản Richard Feynman từ nhỏ đã nhớ đẳngthức sau: Tuy nhiên nó là trường hợp riêng của: Đẳngthức số sau chưa được tổng quát hóa với biến số: . Đẳngthức sau cho thấy đặc điểm của số 21: Một cách tính pi có thể sựa vào đẳngthức số sau, do John Machin tìm thấy: hay dùng công thức Euler: Một số đẳngthức khác: [...]...Dùng tỷ lệ vàng φ: Nâng cao • • • • • • • • • • • • • • • • Giải tích Các công thức trong giải tích sau dùng góc đo bằng radian Các đẳng thức sau có thể suy ra từ trên và các quy tắc của đạo hàm: Các biểu thức về tính tích phân có thể tìm tại danh sách tích phân với hàm lượng giác và danh sách tích phân với hàm lượng giác ngược . Đẳng thức lượng giác Trong toán học, các đẳng thức lượng giác là các phương trình chứa các hàm lượng giác, đúng với một dải lớn. tiến Đẳng thức sau cũng đôi khi hữu ích: với Đẳng thức Pytago Các đẳng thức sau dựa vào định lý Pytago. Đẳng thức thứ 2 và 3 có thể suy ra từ đẳng thức