BiÕt r»ng sè häc sinh ®i thi cña trêng thø nhÊt lín h¬n 2 lÇn sè häc sinh thi V¨n cña trêng thø hai vµ sè häc sinh ®i thi cña trêng thø hai lín h¬n 9 lÇn sè häc sinh thi To¸n cña trêng[r]
(1)§Ị sè
Thêi gian: 150 phút Câu I ( điểm) Giải phơng trình
1 x2 6x 9 x210x25 8
2 y2 – 2y + =
6
2
x x
Câu II (4 điểm) Cho biÓu thøc : A =
2
2
( 2)
x x
x
Tìm giá trị nhỏ nhÊt cđa biĨu thøc A Cho a>0; b>0; c>0
Chứng minh bất đẳng thức ( a+b+c)
1 1 a b c
Câu III (4,5 điểm)
1 Giải toán cách lập phơng trình
Tỡm s t nhiờn cú hai chữ số biết chữ số hàng chục lớn chữ số hàng đơn vị số lớn tổng bình phơng chữ số ca nú l
2 Cho phơng trình: x2 (m+1)x+2m-3 =0 (1)
+ Chứng minh phơng trình có nghiệm phân biệt với giá trÞ cđa m
+ Tìm giá trị m để phơng trình (1) có nghiệm
C©u IV (4 ®iĨm)
Cho hình thang cân ABCD, (AB//CD; AB > CD) Hai đờng chéo AC BD cắt I Góc ACD = 600; gọi E; F; M lần lợt trung điểm đoạn thẳng IA; ID;
BC
1 Chứng minh tứ giác BEFC nội tiếp đợc đờng tròn Chứng minh tam giác MEF tam giác
Câu V. (3,5 điểm)
Cho hỡnh chúp tam giác S ABC có mặt tam giác Gọi O trung điểm đờng cao SH hình chóp
Chøng minh r»ng:AOB BOC COA 900
Đề số 2
Bài (2đ): Cho biÓu thøc:
A = ( √x+1 √xy+1+
√xy+√x
1−√xy +1):(1−
√xy+√x
√xy−1 −
√x+1
(2)a Rót gän biÓu thøc b Cho
√x+
1
√y=6 T×m Max A
2 Chøng minh r»ng với số nguyên dơng n ta có:
n+1¿2 ¿ ¿
1+
n2+
1
¿
từ tính tổng:
S = √1+1
12+ 22+√1+
1 22+
1
32+ +√1+ 20052+
1 20062
Bài 2 (2đ): Phân tích thành nh©n tư: A = (xy + yz + zx) (x + y+ z) xyz
Bài 3 (2đ):
1 Tìm giá trị a để phơng trình sau có nghiệm: x+6a+3
x+a+1 =
5a(2a+3) (x a)(x+a+1)
2 Giả sử x1,x2 nghiệm phơng trình: x2+ 2kx+ =
Tìm tất giá trị k cho có bất đẳng thức: (x1
x2)
+(x2 x1)
2 ≥3
Bµi 4: (2đ) Cho hệ phơng trình:
¿
1
x −1+
m y −2=2
y −2− 3m x −1=1
¿{ ¿
1 Giải hệ phơng trình với m = Tìm m để hệ cho có nghiệm
Bài 5 (2đ) :
1 Giải phơng trình: 3x2
+6x+7+5x2+10x+14=42x x2
2 Giải hệ phơng trình:
3
3
3
9 27 27
9 27 27
9 27 27
y x x
z y y
x z z
Bài 6 (2đ): Trên mặt phẳng toạ độ cho đờng thẳng (d) có phơng trình: 2kx + (k – 1)y = (k tham số)
1 Tìm k để đờng thẳng (d) song song với đờng thẳng y = √3.x ? Khi tính góc tạo (d) tia Ox
2 Tìm k để khoảng cách từ gốc toạ độ đến đờng thẳng (d) lớn nhất?
Bài 7 (2đ): Giả sử x, y số dơng thoả mãn đẳng thức: x+y=√10
Tìm giá trị x y để biểu thức:
P=(x4+1)(y4+1) đạt giá trị nhỏ Tìm giá trị nhỏ
Bài 8 (2đ): Cho ABC với BC = 5cm, AC= 6cm; AB = 7cm Gọi O giao điểm đờng phân giác, G trọng tâm tam giác
(3)Bài 9(2đ) Gọi M điểm đờng thẳng AB Vẽ phía AB hình vng AMCD, BMEF
a Chøng minh r»ng AE vu«ng gãc víi BC
b Gọi H giao điểm AE BC Chứng minh ba điểm D, H, F thẳng hàng
c Chứng minh đờng thẳng DF luôn qua điểm cố định M chuyển động đoạn thẳng AB cố định
d Tìm tập hợp trung điểm K đoạn nối tâm hai hình vuông M chuyển động đờng thẳng AB cố định
Bài 10 (2đ): Cho xOykhác góc bẹt điểm M thuộc miền góc Dựng đờng thẳng qua M cắt hai cạnh góc thành tam giác có diện tích nhỏ
(4)Đế số 3
Bài 1: (2 điểm)
Chøng minh:
3
√3
√2 -1 = √3
9 -
3
√2
9 +
3
√4
Bài 2: (2 điểm)
Cho 4a2 + b2 = ab (2a > b > 0)
TÝnh sè trÞ biĨu thøc: M = ab
4b2 b2
Bài 3: (2 điểm)
Chứng minh: a, b nghiệm phơng trình: x2 + px + = c,d
là nghiệm phơng trình: x2 + qx + = th× ta cã:
(a – c) (b – c) (a+d) (b +d) = q2 – p2
Bài 4: (2 điểm)
Giải toán cách lập phơng trình
Tui anh em cộng lại 21 Hiện tuổi anh gấp đôi tuổi em lúc anh tuổi em Tính tuổi anh, em
Bµi 5: (2 điểm)
Giải phơng trình: x4 +
x2+2006 = 2006
Bài 6: (2 điểm)
Trong cựng hệ trục toạ độ vng góc, cho parapol (P): y = - x
2
4 vµ
đ-ờng thẳng (d): y = mx 2m 1 VÏ (P)
2 T×m m cho (d) tiÕp xóc víi (P)
3 Chứng tỏ (d) ln qua điểm cố định A (P)
Bµi 7: (2 ®iĨm).
Cho biểu thức A = x – 2√xy + 3y - 2√x + Tìm giá trị nhỏ mà A đạt đợc
Bài 8: (4 điểm).
Cho hai ng trũn (O) (O’) Kẻ tiếp tuyến chung AB tiếp tuyến chung EF, A,E (O); B, F (O’)
a Gäi M lµ giao ®iĨm cđa AB vµ EF Chøng minh:
∆ AOM ∾∆ BMO’
b Chøng minh: AE BF
c Gọi N giao điểm AE BF Chứng minh: O,N,O thẳng hàng
Bài 9: (2 điểm).
Dựng hình chữ nhật biết hiệu hai kích thớc d góc nhọn đờng chéo
Đế sô 4
Câu 1(2đ) : Giải PT sau :
a, x4 - 3x3 + 3x2 - 3x + =
b, √x+2+2√x+1+√x+2−2√x+1 = Câu 2(2đ): a, Thực phép tính :
1310053+490
(5)B = a
2 a2− b2−c2+
b2 b2− c2−a2+
c2
c2− a2− b2 Víi a + b + c =
Câu 3(3đ) : a, Chứng minh : √2<1+
√2+
√3+ +
√50<10√2
b, T×m GTNN cđa P = x2 + y2+ z2
BiÕt x + y + z = 2007
Câu 4(3đ) : Tìm số HS đạt giải nhất, nhì, ba kỳ thi HS giỏi tốn K9 năm 2007 Biết :
Nếu đa em từ giải nhì lên giải số giải nhì gấp đôi giải
Nếu giảm số giải xuống giải nhì giải số giải 1/4 số giải nhì Số em đạt giải ba bng 2/7 tng s gii
Câu 5 (4đ): Cho Δ ABC : Gãc A = 900 Trªn AC lÊy ®iĨm D VÏ CE BD.
a, Chøng minh r»ng : Δ ABD ∞ Δ ECD
b, Chứng minh tứ giác ABCE tứ giác nội tiếp đợc c, Chứng minh FD BC (F = BA CE)
d, Góc ABC = 600 ; BC = 2a ; AD = a Tính AC, đờng cao AH Δ ABC
và bán kính đờng trịn ngoại tiếp tứ giác ADEF
Câu 6 (4đ): Cho đờng tròn (O,R) điểm F nằm đờng tròn (O) AB A'B' dây cung vng góc với F
a, Chøng minh r»ng : AB2 + A'B'2 = 8R2 - 4OF2
b, Chøng minh r»ng : AA'2 + BB'2 = A'B2 + AB'2 = 4R2
c, Gọi I trung điểm AA' Tính OI2 + IF2
Đế số 5
Câu1: Cho hµm sè: y = √x2
−2x+1 + √x2−6x+9
a.V th hm s
b.Tìm giá trị nhỏ y giá trị x tơng ứng c.Với giá trị x y
Câu2: Giải phơng trình: a 912x+4x2 = 4
b √3x2−18x
+28 + √4x2−24x+45 = -5 – x2 + 6x
c √x
2
+2x −3
√x+3 + x-1 C©u3: Rót gän biĨu thøc:
(6)b B =
2√1+1√2 +
1
3√2+2√3 + +
1
2006√2005+2005√2006 +
20072006+20062007
Câu4: Cho hình vẽ ABCD với điểm M bên hình vẽ thoả mÃn
MAB =MBA=150
Vẽ tam giác ABN bên ngồi hình vẽ a Tính góc AMN Chứng minh MD=MN b Chứng minh tam giác MCD
Câu5: Cho hình chóp SABC có SA SB; SA SC; SB SC
Biết SA=a; SB+SC = k Đặt SB=x
a TÝnh Vhchãptheo a, k, x
b Tính SA, SC để thể tích hình chóp lớn
Đế số 6 I - Phần trắc nghiệm :
Chọn đáp án :
a) Rót gän biÓu thøc : 3−a¿
2 a4
¿
√¿
với a ta đợc : A : a2(3-a); B: - a2(3-a) ; C: a2(a-3) ; D: -a2(a-3)
b) Một nghiệm phơng trình: 2x2-(k-1)x-3+k=0 lµ
A - k −1
2 ; B
k −1
2 ; C
-k −3
2 ; D
k −3
c) Phơng trình: x2- |x| -6=0 có nghiệm là:
A X=3 ;B X=3 ; C=-3 ; D X=3 X=-2 d) Giá trị biểu thức:
2(√2+√6)
3√2+√3 b»ng :
A 2√3
3 ; B ; C
3 ; D 2√2
3
II - PhÇn tù luËn :
Câu : a) giải phơng trình : x2
(7)b) giải hệ phơng trình :
¿
|x+2|+|y −3|=8 |x+2|−5y=1
¿{ ¿ C©u 2: Cho biĨu thøc : A = (√x
2 −
1 2√x)(
x −√x
√x+1 − x+√x
√x −1)
a) Rót gän biĨu thøc A
b) Tìm giá trị x A > -6
Câu 3: Cho phơng trình : x2 - 2(m-1)x +2m -5 =0
a) Chøng minh phơng trình có nghiệm với giá trÞ cđa m
b) Nếu gọi x1, x2 nghiệm phơng trình Tìm m để x1 + x2 =6 Tìm nghiệm
đó
Câu 4: Cho a,b,c số dơng Chøng minh r»ng 1< a
a+b+ b b+c+
c a+c <2 Câu 5: Cho Δ ABC nội tiếp đờng tròn tâm O , H trực tâm tam giác , I trung điểm cạnh AC phân giác góc A cắt đờng trịn M , kẻ đờng cao AK tam giác Chng minh :
a) Đờng thẳng OM qua trung ®iĨm N cđa BC b) Gãc KAM = gãc MAO
c) Δ AHM Δ NOI vµ AH = 2ON
Câu : Cho Δ ABC có diện tích S , bán kính đờng trịn ngoại tiếp l R v
ABC có cạnh tơng øng lµ a,b,c Chøng minh S = abc
4R
Đề số 8 Câu I :
Tính giá trị biểu thức:
A =
√3+√5 +
1
√5+√7 +
1
√7+√9 + +
1
√97+√99
B = 35 + 335 + 3335 + + 3333 35⏟
99sè
C©u II :
Phân tích thành nhân tử :
1) X2 -7X -18
2) (x+1) (x+2)(x+3)(x+4)+3 3) 1+ a5 + a10
C©u III :
1) Chøng minh : (ab+cd)2 (a2+c2)( b2 +d2)
2) ¸p dơng : cho x+4y = T×m GTNN cđa biĨu thøc : M= 4x2 + 4y2
C©u :
Cho tam giác ABC nội tiếp đờng tròn (O), I trung điểm BC, M điểm đoạn CI ( M khác C I ) Đờng thẳng AM cắt (O) D, tiếp tuyến đờng tròn ngoại tiếp tam giác AIM M cắt BD DC P Q
a) Chøng minh DM.AI= MP.IB b) TÝnh tØ sè : MP
MQ
(8)Cho P = √x
2
−4x+3
√1− x
Tìm điều kiện để biểu thức có nghĩa, rút gọn biểu thức.
§Ị sè 9 C©u I :
1) Rót gän biĨu thøc :
A= √4+√10+2√5+√4−√10+2√5 2) Chøng minh :
√5√2+7−√35√2−7=2
Câu II : Chứng minh bất đẳng thức sau:
1) a2
+b2+c2>(ab+bc+ca)
2) 18
a+b+c≤
2
a+
2
b+
2
c víi a, b ; c d¬ng
C©u III :
Cho đờng trịn (O) đờng kính AB vẽ hai tiếp tuyến Ax By; gọi M điểm tuỳ ý cung AB vẽ tiếp tuyến M cắt Ax By tai C D
a) Chøng minh : AC.BD=R2
b) Tìm vị trí M để chu vi tam giác OCD bé Câu IV.
Tìm giá trị nhỏ
A = x2
+y2+xy−5x −4 y+2002
C©u V: TÝnh
1) M= (1−1
2)(1− 3)(1−
1
4) .(1−
n+1)
2) N= 75( 41993
+41992+ +42+5¿+25
C©u VI :
Chøng minh : a=b=c vµ chØ a3
(9)Đề số 10
Câu I : Rút gọn biÓu thøc
A = √√5−√3−√29−12√5 B= x
8
+3x4+4 x4+x2+2
Câu II : Giải phơng tr×nh
1) (x+4)4 +(x+10)4 = 32
2) x2
+x+2004=2004
Câu III : Giải bất phơng trình
(x-1)(x-2) > C©u IV :
Cho tam giác ABC có góc nhọn Dựng phía ngồi tam giác vng cân đỉnh A ABD ACE Gọi M;N;P lần lợt trung điểm BC; BD;CE
a) Chøng minh : BE = CD vµ BE víi CD b) Chứng minh tam giác MNP vuông cân
Câu V :
1) Cho a−1
2 =
b+3
4 =
c −5
6 5a- 3b -4 c = 46 Xác định a, b, c
2) Cho tØ lÖ thøc : a
b= c
d Chøng minh :
2a2−3 ab +5b2
2b2+3 ab =
2c2−3 cd +5d2
2d2+3 cd
Với điều kiện mẫu thức xác định.
C©u VI :TÝnh :
S = 42+4242+424242+ +424242 42
§Ị sè 11
Bài 1: (4đ) Cho biểu thức: P = xx 3
x −2√x −3−
2(√x −3) √x+1 +
√x+3 3−√x a) Rót gän biĨu thøc P
b) Tính giá trị P với x = 14 - 5
(10)Bài 2( 4đ) Giải phơng trình
a)
x2
+4x+3 +
1
x2
+8x+15+
1
x2
+12x+35+
1
x2
+16x+63=
1
b) √x+6−4√x+2+√x+11−6√x+2=1
Bài 3: ( 3đ) Cho parabol (P): y = x2 đờng thẳng (d) có hệ số góc k qua điểm
M(0;1)
a) Chứng minh với giá trị k, đờng thẳng (d) cắt (P) hai điểm phân biệt A B
b) Gọi hoành độ A B lần lợt x1 x2 Chứng minh : |x1 -x2| 2
c) Chứng minh :Tam giác OAB tam giác vuông
Bài 4: (3đ) Cho số dơng x, y tháa m·n x + y =1 a) T×m GTNN cđa biÓu thøc M = ( x2 +
y2 )( y2 +
1
x2 )
b) Chøng minh r»ng :
N = ( x + 1x )2 + ( y +
y )2
25
Bài ( 2điểm) Cho tam giác ABC vng A có AB = 6cm, AC = 8cm Gọi I giao điểm đờng phân giác, M trung điểm BC Tính góc BIM
Bài 6:( 2đ) Cho hình chữ nhật ABCD, điểm M BC Các đờng trịn đờng kính AM, BC cắt N ( khác B) BN cắt CD L Chứng minh : ML vng góc với AC
Bài 7 ( 2điểm) Cho hình lập phơng ABCD EFGH Gọi L K lần lợt trung điểm AD AB Khoảng cách từ G đến LK l 10
Tính thể tích hình lập phơng
Đề 12 (Lu ý)
Câu 1: (4 điểm)
Giải phơng trình: 1) x3 - 3x - = 0
2) √7 - x −+√x-5 = x2 - 12x + 38 C©u 2: ( điểm)
1) Tìm số thực dơng a, b, c biết chúng thoả mÃn abc = a + b + c + ab + bc + ca
2) Cho x > ; y > tho· m·n: x + y H·y tìm giá trị nhỏ biểu thức:
M = 3x + 2y +
x+
8
y
Câu 3: (3 điểm)
(11)CMR: x2 + y2 + z2 3 C©u 4: (5 ®iĨm)
Cho nửa đờng trịn tâm có đờng kính AB Vẽ tiếp tuyến Ax, By (Ax By nửa đờng tròn thuộc nửa mặt phẳng bờ AB) Gọi M điểm thuộc nửa đờng trịn Tiếp tuyến M cắt Ax; By theo thứ tự C; D
a) CMR: Đờng trịn đờng kính CD tiếp xúc với AB
b) Tìm vị trí M nửa đờng trịn (0) để ABDC có chu vi nhỏ c) Tìm vị trí C; D để hình thang ABDC có chu vi 14cm Biết AB = 4cm
Câu 5: (2 điểm)
Cho hỡnh vng ABCD , xác định hình vng có đỉnh thuộc cạnh hình vng ABCD cho hình vng có diện tích nhỏ nhất./
§Ị số 13
Phần I: Trắc nghiệm (4 điểm)
Khoanh tròn vào chữ đứng trớc câu trẻ lời Nghiệm nhỏ nghiệm phơng trình
(x −1
2)
2
+(x+1
2)(x+
5)=0 lµ
A −1
2 B −
2
5 C
1
2 D
1 20
2 Đa thừa số vào dấu a√b với b ta đợc A √a2b B −
√a2b C
√|a|b D Cả sai Giá trị biểu thức √5√3+5√48−10√7+4√3 bằng:
A 4√3 B C 7√3 D
4 Cho h×nh b×nh hành ABCD thoả mÃn
A Tt c cỏc gúc nhọn; B Góc A nhọn, góc B tù C Góc B góc C nhọn; D Â = 900, góc B nhọn
5 Câu sau
A Cos870 > Sin 470 ; C Cos140 > Sin 780
(12)y
x 00
3
1
6 Độ dài x, y hình vẽ bên Em khoanh tròn kết
A x = 30√2; y=10√3 ; B x = 10√3; y=30√2
C x = 10√2; y=30√3 ; D Một ỏp s khỏc
Phần II: Tự luận (6 điểm)
Câu 1: (0,5đ) Phân tích đa thức sau thõa sè a4 + 8a3 - 14a2 - 8a - 15
Câu 2: (1,5đ) Chứng minh biểu thức 10n + 18n - chia hÕt cho 27 víi n số tự nhiên
Câu 3 (1,0đ) Tìm sè trÞ cđa a+b
a− b nÕu 2a2 + 2b2 = 5ab; Vµ b > a >
Câu 4 (1,5đ) Giải phơng trình a 4y2
+x+4y2 x −√x2+2 ; b x4 + √x2+2006=2006
Câu 5 (0,5đ) Cho ABC cân A đờng cao AH = 10cm, đờng cao BK = 12cm Tính độ dài cạnh ABC
Câu 6 (1,0đ) Cho (0; 4cm) (0; 3cm) nằm OO’ = 10cm, tiếp tuyến chung tiếp xúc với đờng tròn (O) E đờng tròn (O’) F OO’ cắt đờng tròn tâm O A B, cắt đờng tròn tâm (O) C D (B, C nằm điểm A D) AE cắt CF M, BE cắt DF N
Chøng minh r»ng: MN AD
Đề số 14
Câu 1: (4,5 điểm) : Giải phơng trình sau: 1) X22X
+1+√X2−6X+9=5
2)
2− X (X+1)¿
3
X+1−
1
X −2=
¿ C©u 2: (4 ®iĨm)
1) Chøng minh r»ng:
1 2+
1 3√2+
1
4√3+ +
2007√2006 <2
2) Chøng minh r»ng nÕu a, b, c chiều dài cạnh tam giác thì: ab + bc a2 + b2 + c2 < (ab + bc + ca)
C©u 3: (4 điểm)
1) Tìm x, y, z biết:
x y+z+1=
y x+z+2=
z
(13)2) T×m GTLN cđa biĨu thøc :
√x −3+√y −4 biÕt x + y =
Câu 4: (5,5 điểm):
Cho ng trũn tõm (O) đờng kính AB, xy tiếp tuyến B với đờng trịn, CD đờng kính Gọi giao điểm AC AD với xy theo thứ tự M, N
a) Chứng minh rằng: MCDN tứ giác nội tiếp đờng tròn b) Chứng minh rằng: AC.AM = AD.AN
c) Gọi I đờng tâm tròn ngoại tiếp tứ giác MCDN Khi đờng kính CD quay quanh tâm O điểm I di chuyển đờng trịn ?
C©u 5: (2 điểm):
Cho M thuộc cạnh CD hình vuông ABCD Tia phân giác góc ABM cắt AD I Chøng minh r»ng: BI 2MI
PhÇn I: Trắc nghiệm khách quan Đề 15
Câu 1: Víi a>0, b>0; biĨu thøc a−√2a√ab:a+√2a√ab b»ng
A: B: a-4b C: √a −2√b D: √a+2√b
Câu 2: Cho bất đẳng thức:
(I):3+√5 <2 √2 + √6 (II): √3 +4> √2 + √10 (III): √30
2 >
√2
Bất đẳng thức
A: ChØ I B: ChØ II C: Chỉ III D: Chỉ I II
Câu 3:
Trong câu sau; câu sai Ph©n thøc x
2 − y2
(x3− y3)(x3+y3) b»ng ph©n thøc a/
x+y
(x2+xy+y2)(x3+y3)
b/
x − y
(x3− y3)(x2−xy+y2) c/
x2+y2¿2
x2y2
¿
1
¿
d/ x4 +x2y2+y4
Phần II: Bài tập tự luận C©u 4: Cho ph©n thøc:
M= x
5
−2x4+2x3−4x2−3x+6 x2+2x −8
a/ Tìm tập xác định M b/ Tìm giá trị cảu x đê M=0 c/ Rút gọn M
C©u 5:
Giải phơng trình : a/
x+2(3 x)
5
14 −
5x −4(x −1)
24 =
7x+2+9−3x
5
12 +
2
(14)b/ 5941− x+5743− x+5545− x +5347− x+5149− x=−5 (2)
Câu 6: Cho hai đờng tròn tâm O tâm O’ cắt A B Một cát tuyến kể qua A cắt đờng tròn (O) C (O’) D gọi M N lần lợt trung điểm AC AD
a/ Chøng minh : MN= 12 CD
b/ Gọi I trung điểm MN chứng minh đờng thẳng vng góc với CD I qua điểm cố định cát tuyến CAD thay đổi
c/ Trong số cát tuyến kẻ qua A , cát tuyến có độ dài lớn
C©u 7: (
Cho hình chóp tứ giác SABCD AB=a; SC=2a
a/ TÝnh diÖn tÝch xung quanh diện tích toàn phần hình chóp b/ Tính thể tích hình chóp
Đề 16
Câu I: Cho đờng thẳng y = (m-2)x + (d)
a) Chứng minh đờng thẳng (d) qua điểm cố định với m b) Tìm m để khoảng cách từ gốc tọa độ đến đờng thẳng (d)
c) Tìm giá trị m để khoảng cách từ gốc tọa độ đến đờng thẳng (d) có giá trị lớn
CâuII: Giải phơng trình: a) 2x2
+2x+1+x26x+9=6
b) x+2x 1+x 2x 1=1 Câu III:
a) Tìm giá trị nhỏ của: A= xy
z +
yz
x +
zx
y víi x, y, z số dơng x + y +
z=
b) Giải hệ phơng trình:
¿ {x −51=
y −2
3 =
z−2 3x −2y+z=12
¿{ ¿
c) B = x+√x
2 −2x x −√x2−2x−
x −√x2−2x x+√x2−2x
1 Tìm điều kiện xác định B Rút gọn B
3 Tìm x để B<2
C©u IV:
Cho tam giác vng ABC vuông A, với AC < AB; AH đờng cao kẻ từ đỉnh A Các tiếp tuyến A B với đờng tròn tâm O ngoại tiếp tam giác ABC cắt M Đoạn MO cắt cạnh AB E Đoạn MC cắt đờng cao AH F K o dàið CA cho cắt đờng thẳng BM D Đờng thẳng BF cắt đờng thẳng AM N
a) Chøng minh OM//CD vµ M lµ trung ®iĨm cđa BD b) Chøng minh EF // BC
c) Chứng minh HA tia phân giác góc MHN d) Cho OM =BC = 4cm TÝnh chu vi tam giác ABC
(15)Đề 17
.C©u Rót gän biĨu thøc
A=
2√1+1√2+ 3√2+2√3+
1
4√3+3√4+ +
1
20062005+20052006 .
Câu Tính giá trị biểu thøc
B=√3 x
−3x+(x2−1)√x2−4
2 +
3
√x3−3x −(x2−1)√x2−4
2
t¹i x =
2005
3 Cho phơng trình:
(m + 2)x2 - (2m - 1)x - + m = 0 (1)
a) Chứng minh phơng trình (1) cã nghiƯm víi mäi m
b) T×m tÊt giá trị m cho phơng trình có nghiệm phân biệt x1, x2
khi tìm giá trị m để nghiệm gp hai ln nghim
4 Giải hệ phơng tr×nh:
¿
x+y=√4z −1
y+z=√4x −1 z+x=√4y 1
{ { 5 Giải phơng trình: 6x −3
√x −√1− x =3+2 √x − x
6 Cho parabol (P): y = x2
2
a) Viết phơng trình đờng thẳng (D) có hệ số góc m qua điểm A (1 ; 0) b) Biện luận theo m số giao điểm (P) (D)
c) Viết phơng trình đờng thẳng (D) tiếp xúc với (P) tìm toạ độ tiếp điểm d) Tìm (P) điểm mà (D) khơng qua với m
7 Cho a1, a2, , an số dơng có tích
Tìm giá trị nhỏ P = 1+ a1
+√1+ a2
+ +√1+ an
8. Cho điểm M nằm ABC AM cắt BC A1, BM cắt AC B1, CM cắt AB
tại C1 Đờng thẳng qua M song song với BC cắt A1C1 A1B1 thứ tự E F So
sánh ME MF
9. Cho đờng tròn (O; R) nội tiếp tam giác ABC tiếp xúc với BC D Gọi M N lần lợt trung điểm AD BC
Chứng minh M, O, N thẳng hàng
10. Cho tam giác ABC nhọn Đờng thẳng d vng góc với mặt phẳng ABC A Lấy điểm M đờng thẳng d Kẻ BK vng góc với AC, kẻ BH vng góc với MC; HK cắt đờng thẳng d N
a) Chøng minh BN MC; BM NC
(16)Rót gän biĨu thøc : A = 2 3 2 12 18 128 Câu 2: (2đ)
Giải phơng trình : x2 +3x +1 = (x+3) x21
C©u 3: (2 đ) Giải hệ phơng trình
2
3
1
x y xy x y x y
Câu 4: (2đ)
Cho PT bËc hai Èn x :
X2 - (m-1) x + m2 - 3m + = 0
c/m : PT cã nghiƯm vµ chØ m Gäi x1 , x2 lµ nghiƯm cđa PT c/m
x x x x1 2
9
Câu 6: (2đ) : Cho parabol y =
2
1
4x đờn thẳng (d) : y =
2 2x
a/ Vẽ (P) (d)trên hệ trục toạ độ
b/ Gọi A,B giao điểm (P) (d) hệ toạ trục toạ độ Oxy Tìm M AB (P) cho SMAB lớn nht
Câu 7: (2đ)
a/ c/m : Với số dơng a
2
2
2
1 1
1
1 1
a a a a
b/ TÝnh S = 2 2 2
1 1 1
1
1 2 2006 2007
Câu ( điểm): Cho đoạn thẳng AB = 2a có trung điểm O Trên nửa mặt phẳng bờ AB , dựng nửa đờng tròn (O,AB) ( O’,AO) , Trên (O’) lấy M ( M
≠ A, M O ) Tia OM cắt (O) C Gọi D giao điểm thứ hai CA với (O) a/ Chứng minh tam giác AMD cân
b/ Tiếp tuyến C (O) cắt tia OD E Xác định vị trí tơng đối đơng thẳng EA (O) (O’)
c/ Đờng thẳng AM cắt OD H, đờng tròn ngoại tiếp tam giác COH cắt (O) điểm thứ hai N Chứng minh ba điểm A, M, N thẳng hàng
d/ Tại vị trí M cho ME // AB h·y tÝnh OM theo a
Câu ( điểm ): Cho tam giác có số đo đờng cao số nguyên , bán kính đờng trịn nội tiếp tam giác Chứng minh tam giác tam giác
Đề 19
CâuI- (4đ) : Tính giá trị biÓu thøc : 1, √√5−√3−√29−12√5
2, √2+√3 + √14−5√3
(17)1, x
x −1 +
x+1 =
2
x2−1
2, √x2
−2x+1 + √x2−4x+4 =
3, x4 – 3x3 + 4x2 –3x +1 = 0 C©u III- (3đ) :
1, Cho a,b,c số dơng , chøng minh r»ng :
a2 +1
1
b2 +2
1
c2 +
32 abc
2, Chøng minh r»ng víi mäi sè tù nhiªn n ta cã : √n+1 - √n >
2n+1
Câu III (3đ) : Tìm giá trị nhá nhÊt cđa hµm sè :
a, y = x
2
+2x −1
2x2+4x+9
b, y =
2 |x+3| -
Câu VI (5đ) : Cho tam giác ABC vuông A ,đờng cao AH Gọi D E lần lợt hình chiếu điểm H AB AC Biết BH = 4(cm) ; HC = 9(cm)
a, Tính độ dài đoạn DE
b, Chøng minh r»ng AD AB = AE.AC
c, Các đờng thẳng vng góc với DE D E lần lợt cắt BC M N Chứng minh M trung điểm BH ; N trung điểm CH
d, TÝnh diƯn tÝch tø gi¸c DENM
-&*& -đề 20
C©u I: (1,5 điểm) Rút gọn biểu thức sau.
1 A = √21−1 - 3√+22+√12 ; B = 223 - 23
Câu II: (3,5 điểm) giải phơng trình sau.
1 |2x+1| + x -1 = ; 2) 3x2 + 2x = √x2
+x + – x
3 √x −2+√2x −5 + √x+2+3√2x −5 = √2
C©u III: (6 ®iĨm).
(18)x - (m-1)y =
Có nghiệm thoả mản điều kiện x + y đạt giá trị nhỏ
2 Cho Parabol (P): y = x2 - 4x + điểm A(2;1) Gọi k hệ số góc
đ-ờng thẳng (d) qua A
a Viết phơng trình đờng thẳng (d)
b Chứng minh (d) luôn cắt (P) hai điểm phân biệt M; N c Xác định giá trị k để MN có độ dài bé
Câu IV (4,5 điểm).
Cho ng trũn (O;R) I điểm nằm đờng tròn, kẻ hai dây MIN EIF Gọi M’; N’; E’; F’ thứ tự trung điểm IM; IN; IE; IF.
1 Chøng minh: IM.IN = IE.IF
2 Chứng minh tứ giác M’E’N’F’ nội tiếp đờng tròn.
3 Xác định tâm bán kính đờng trịn ngoại tiếp tứ giác M’E’N’F'.
4 Giả sử dây MIN EIF vng góc với Xác định vị trí MIN EIF để diện tích tứ giác M’E’N’F’ lớn tìm giá trị lớn Biết OI = R
2
C©u V Cho tam gi¸c ABC cã B = 200
C = 1100 phân giác BE Từ C, kẻ đờng thẳng vng góc với BE cắt BE M v
cắt AB K Trên BE lấy điểm F cho EF = EA
Chứng minh : 1) AF vng góc với EK; 2)CF = AK F tâm đờng tròn nội tiếp Δ BCK
3) CKAF = BCBA
C©u VI (1 điểm)
Cho A, B, C góc nhọn tho¶ m·n Cos2A + Cos2B + Cos2C 2
Chøng minh r»ng: (tgA.tgB.tgC)2
8
Đề 21 *
Câu I: a) Giải phơng trình:
4x212x+9=x 1
b) Giải biện luận phơng trình theo tham số a:
a x a+
1
x+1= a − x x − a+
a+1 x+1 C©u II:
1) Cho biÕt: ax + by + cz = Vµ a + b + c =
2006
Chøng minh r»ng:
x − y¿2 ¿
x − z¿2+ab¿
y − z¿2+ac¿
bc¿
ax2+by2+cz2 ¿
(19)Tính giá trị biểu thức:
P=2006a
ab+2006a+2006+
b
bc+b+2006+ c
ac+c+1 C©u III: )
1) Cho x, y lµ hai sè dơng thoà mÃn: x+y 1
Tìm giá trị nhỏ nhÊt cđa biĨu thøc: A= x2+y2+
2 xy
2) Rót gän biĨu thøc sau:
A=
√1+√2+
1
√2+√3+
1
√3+√4+ +
1
n1+n Câu IV: (5,0 điểm)
Cho tứ giác ABCD có B = D = 900 Trên đờng chéo AC lấy điểm E sao
cho ABE = DBC Gọi I trung điểm AC BiÕt: BAC = BDC; CBD = CAD
a) Chøng minh CIB = BDC; b) ABE ~ DBC c) AC.BD = AB.DC + AD.BC
Câu V: (2,0 điểm) Cho hình chóp tứ giác SABCD có độ dài cạnh đáy 12 cm, độ dài cạnh bên 18 cm
a) TÝnh diÖn tÝch xung quanh hình chóp b) Tính diện tích toàn phần hình chóp
Câu VI: (2,0 điểm) Cho biểu thức: M=√a+6
√a+1
Tìm số nguyên a để M số nguyên Đề 22
C©u 1: (4,5 điểm) : Giải phơng trình sau: 1) X22X
+1+√X2−6X+9=5
2)
2− X (X+1)¿
3
X+1−
1
X −2=
¿ C©u 2: (4 ®iĨm)
1) Chøng minh r»ng:
1 2+
1 3√2+
1
4√3+ +
2007√2006 <2
2) Chøng minh r»ng nÕu a, b, c chiều dài cạnh tam giác thì: ab + bc a2 + b2 + c2 < (ab + bc + ca)
C©u 3: (4 điểm)
1) Tìm x, y, z biết:
x y+z+1=
y x+z+2=
z
(20)2) T×m GTLN cđa biĨu thøc :
√x −3+√y −4 biÕt x + y =
Câu 4: (5,5 điểm):
Cho ng trũn tõm (O) đờng kính AB, xy tiếp tuyến B với đờng trịn, CD đờng kính Gọi giao điểm AC AD với xy theo thứ tự M, N
a) Chứng minh rằng: MCDN tứ giác nội tiếp đờng tròn b) Chứng minh rằng: AC.AM = AD.AN
c) Gọi I đờng tâm tròn ngoại tiếp tứ giác MCDN Khi đờng kính CD quay quanh tâm O điểm I di chuyển đờng trịn ?
C©u 5: (2 điểm):
Cho M thuộc cạnh CD hình vuông ABCD Tia phân giác góc ABM cắt AD I Chøng minh r»ng: BI 2MI
§Ị sè 13 Câu 1( 2đ). Phân tích đa thức sau thõa sè
a4 + 8a3 + 14a2 8a 15
Câu 2( 2đ) Chứng minh r»ng biÓu thøc 10n + 18n - chia hÕt cho 27 với n số tự
nhiên
Câu 3( 2đ). Tìm số trị a+b
a− b NÕu 2a2 + 2b2 = 5ab , b > a >
Câu 4( 4đ) Giải phơng trình. a) 4y2
+x=4 y2 x −√x2+2
b) x4
+√x2+2006=2006
C©u 5( 3đ). Tổng số học sinh giỏi Toán , giỏi Văn cđa hai trêng THCS ®i thi häc sinh Giái lớn 27 ,số học sinh thi văn trờng thứ 10, số học sinh thi toán trờng thứ hai 12 Biết sè häc sinh ®i thi cđa trêng thø nhÊt lín lần số học sinh thi Văn trờng thứ hai số học sinh thi trờng thứ hai lớn lần số học sinh thi Toán trờng thứ Tính số học sinh thi trờng
Cõu 6( 3) Cho tam giác ABC cân A đờng cao AH = 10 cm dờng cao BK = 12 cm Tính độ dài cạnh tam giác ABC
Câu 7(4đ). Cho (O;4cm) (O’;3cm) nằm , OO’=10cm Tiếp tuyến chung tiếp xúc với đờng tròn tâm O E đờng tròn O’ F, OO’ cắt đờng tròn tâm O A B, cắt đờng tròn tâm O’ C D (B,C nằm điểm A D) AE cắt CF M, BE cắt DF N
(21)Đề 24 Bài 1 (5đ)
Giải phơng trình sau: a, x21 x2
+1=0
b, x+34x 1+x+8+6x 1=4
Bài 2 (5đ) Cho biÓu rhøc P= (√x −2
x −1 − √
x+2 x+2√x+1)(
1− x
√2 )
2
a, Rót gän P
b, Chøng minh r»ng nÕu 0< x<1 th× P > c , Tìm giá trị lớn P
Bi 3: (5đ ) Chứng minh bất đẳng thức sau a , Cho a > c , b >c , c >
Chøng minh : √c(a− c)+√c(b − c)≤√ab
b, Chøng minh
2005
√2006+ 2006
2005 2005+2006
Bài 4: (5đ)
Cho Δ AHC có góc nhọn , đờng cao HE Trên đoạn HE lấy điểm B cho tia CB vng góc với AH , hai trung tuyến AM BK Δ ABC cắt I Hai trung trực đoạn thẳng AC BC cắt O
a, Chøng minh Δ ABH ~ Δ MKO b, Chøng minh √IO3+IK3+IM3
IA3
+IH3+IB3 =
(22)§Ị 25
Câu I ( điểm ) Giải phơng trình:
1 x3 + 4x2 - 29x + 24 = 0
2 √x −1+4√x −5+√11+x+8√x −5=4
CâuII (3 điểm ) Tính
P = √1+19992+1999
20002+
1999 2000
2 T×m x biÕt
x = √5+√13+√5+√13+ .
Trong dấu chấm có nghĩa lặp lặp lại cách viết thức có chứa 13 cách vô hạn
Câu III ( điểm )
1 Chứng minh r»ng sè tù nhiªn A = 1.2.3 2005.2006 (1+1
2+ 3+ .+
1 2005+
1
2006) chia hÕt cho 2007
2 Gi¶ sư x, y số thực dơng thoả mÃn : x + y = Tìm giá trị nhỏ cđa biĨu thøc:
A =
x3+y3+
1 xy
3 Chứng minh bất đẳng thức:
a3+b3+c3
2 abc +
a2+b2 c2+ab+
b2+c2 a2+bc+
c2+a2 b2+ac≥
9
Câu IV ( điểm )
Cho tam giác ABC vuông tai A, đờng cao AH Đờng trịn đờng kính AH cắt cạnh AB, AC lần lợt E F
1 Chøng minh tø giác AEHF hình chữ nhật; Chứng minh AE.AB = AF AC;
3.Đờng rhẳng qua A vuông góc với EF cắt cạnh BC I Chứng minh I trung điểm đoạn BC;
4 Chng minh diện tích tam giác ABC gấp đơi diện tích hình chữ nhật AEHF tam giác ABC vng cõn
Câu V ( điểm)
(23)Đề 26
Câu 1 (6 điểm): Giải phơng trình a x6 - 9x3 + = 0
b √x2
−6x+9=√4+2√3
c √x2
2x+1+x24x+4=3 Câu 2 (1 điểm): Cho abc = TÝnh tæng
1 1+a+ab+
1 1+b+bc+
1 1+c+ac
Câu 3 (2 điểm): Cho số dơng a, b, c, d BiÕt
a
1+a+ b
1+b+ c
1+c+ d
1+d≤1
Chøng minh r»ng abcd
81
C©u 4 (4 điểm): Tìm a, b, c Biết
a 2(a+b −1+√c −2)−(a+b+c)=0
b (a2 + 1)(b2 + 2)(c2 + 8) - 32abc = 0
Câu 5 (5 điểm): Cho nửa đờng trịn tâm O có đờng kính AB = 2R, vẽ tiếp tuyến Ax, By với nửa đờng trịn tia OZ vng góc với AB (các tia Ax, By, OZ phía với nửa đờng trịn AB) Gọi E điểm nửa đờng tròn Qua E vẽ tiếp tuyến với nửa đờng tròn cắt Ax, By, OZ theo thứ tự C, D, M Chứng minh điểm E thay đổi vị trí nửa đờng trịn thì:
a Tích AC BD khơng đổi b Điểm M chạy tia
c Tứ giác ACDB có diện tích nhỏ hình chữ nhật Tính diện tích nhỏ
Câu 6 (2 điểm): Tính diện tích tồn phần hình chóp SABC biết tất cạnh hình chóp a
Đề 27 Câu I ( đ ) :
Giải phơng trình a) x
x −1 - 2007
1+x =
2
x2−1
b) √x −2√x −1 + √x+2√x −1 = Câu II ( đ ) :
(24)(a12+1)(
1
b2+2)(
1
c2+8) =
32 abc
b) T×m a , b , c biÕt : a = 2b
2
1+b2 ; b =
2c2
1+c2 ; c =
2a2
1+a2
C©u III ( ® ) :
b) Cho a3 + b3 + c3 = 3abc với a,b,c khác a + b+ c 0
TÝnh P = (2006+ a
b )(2006 + b
c ) ( 2006 + c a )
a) T×m GTNN cđa A = x
2
2x+2006 x2
Câu IV (3đ )
Cho hỡnh bình hành ABCD cho AC đờng chéo lớn Từ C vẽ đờng CE CF lần lợt vng góc cới đờng thẳng AB AD
Chøng minh r»ng AB AE + AD AF = AC2
CâuV. (4 đ)Cho hình chóp SABC có SA AB ; SA AC ; AB BC ; AB = BC AC = a √2 ; SA = 2a
Chøng minh : a) BC mp(SAB)
b) Tính diện tích toàn phần hình chóp SABC c) Thể tích hình chóp
Đề 28 *
Bài 1 (2,0 ®iĨm) Rót gän biĨu thøc :
A = 1
1 : 1 ) ( ) ( 2 2 2 x x x x x x x x x x x x x x
Bài2 (2,0 điểm) TÝnh tæng :
S= (1 )( 2)
1 ) ( ) ( 2 2 2 2 n n n
Bài 3 (2,0 điểm) Cho phơng trình :
mx2(m2 m1)xm10 (1) Tìm điều kiện m để phơng trình (1) có hai nghiệm phân biệt khác –1
(25)3y + yz +2z = z +zx +3x =
TÝnh gÝa trÞ cđa biĨu thøc : M = x3y2 z2006
Bài 5(2,0điểm) Giải phơng trình :
(3x-1) x2 8 =
23
x
x
Bài6(2,0điểm)
Cho parabol (P) : y = x2 đờng thẳng (d) qua hai điểm A B thuộc (P) có hoành độ lần lợt -1 M thuộc cung AB (P) có hồnh độ a.Kẻ MH vng góc với AB, H thuộc AB
1) Lập phơng trình đờng thẳng AB, MH
2)Xác định vị trí M để diện tích tam giỏc AMB ln nht
Bài7(2,0điểm)
Cho dÃy sè :1,2,3,4, ,2005,2006
Hãy điền vào trớc số dấu + - có đợc dãy tính có kết số tự nhiên nhỏ
Bài8(2,0điểm)
Cho tam giác ABC có ba góc nhọn, H trực tâm tam giác Chứng minh r»ng : 2(AB + BC +CA) > (AH + BH + CH)
Bài 9(2,0điểm)
Cho tam giác ABC, AD đờng cao ,D thuộc BC Dựng DE vng góc với AB , E thuộc AB ,DF vng góc với AC, F thuộc AC
1)Chøng minh r»ng tø gi¸c BEFC néi tiÕp
2)Dựng bốn đờng tròn qua trung điểm hai cạnh kề tứ giác BEFC
và qua đỉnh tứ giác Chứng minh bốn đờng trịn đồng quy
B 10 Một hình chóp cụt có đáy hình vng, cạnh đáy a b Tính chiều cao hình chóp cụt đều, biết diện tích xung quanh tổng diện tích hai đáy
§Õ 29
Câu 1 ( điểm ) Khoanh tròn chữ đứng trớc kết câu sau:
1) Cho đờng thẳng (D): y = 3x + Các điểm sau có điểm thuộc (D) A ( 2; ); B ( -2; -5 ); C ( -1; -4 ) D ( -1; )
2) Cho đờng tròn tâm O bán kính R độ dài cung 600 đờng tròn
b»ng: A πR
6 ; B
ΠR
4 ; C
ΠR
3 ; D
ΠR
12
3) KÕt qu¶ rót gän biĨu thøc: √2+√3 + √14−5√3 b»ng:
A - √2 ; B √3 ; C √2 ; D √3 + 4) Nghiệm hệ phơng trình: x + y = 23
x2 + y2 = 377 lµ
A ( x = 4; y = 19 ); B ( x = 3; y = 20 )
C ( x = 5; y = 18 ); D ( x = 19; y = ) vµ ( x = 4; y = 19 )
C©u 2 ( điểm ): Giải phơng trình: 2x
3x25x+2 +
13x
3x2+x+2 =
Câu 3 ( điểm ): Tìm m cho Parabol (P) y = 2x2 cắt đờng thẳng (d)
y = ( 3m + )x – 3m + điểm phân biệt nằm bên phải trục tung
(26)P = 4x −3x
2 x2
+1 Câu 5: ( điểm )
Cho nửa đờng trịn tâm 0, đờng kính AB Lấy điểm M nửa đờng trịn ( M khác A B ) Vẽ đờng tròn tâm M tiếp xúc với đờng kính AB H Từ A B kẻ hai tiếp tuyến (d1; d2) tiếp xúc với đờng tròn tâm M C D
a) CM: điểm: C, M, D nằm tiếp tuyến với đờng tròn tâm M b) AC + BD khơng đổi Khi tính tích AC.BD theo CD
c) Gi¶ sư: CD AB = { K } CM: OA2 = OB2 = OH.OK.
Câu 6: ( điểm )
Tính diện tích toàn phần hình chóp SABC Biết:
ASB = 600; BSC = 900; ASC = 1200 và: SA = AB = SC = a.
Đề 30
Câu 1 ( điểm )
P(x)=2x −1−√x
3x2−4x+1 Cho biÓu thøc:
a) Rót gän P
b) Chøng minh: Víi x > th× P (x) P (- x) <
ax+12x+x+44x=1 Câu 2 ( điểm ) Giải phơng trình:
b) / x2 - x + / + / x2 - x - / = 3
Câu 3 ( điểm ).Hãy biện luận vị trí đờng thẳng d1 : m2 x + ( m - ) y - =
d2 : m x + ( m - ) y - =
Câu 4 ( điểm ) Giải hệ phơng trình: ( x + y ) - ( x + y ) = 45
( x - y ) - ( x - y ) = 3
C©u 5 ( điểm ) Tìm nghiệm nguyên phơng trình x6 + x3 + = y
A=√x −1 x +
√y −2
y C©u 6 ( điểm) Tìm gí trị lớn biểu thức
Câu 7 ( điểm)
Cho tam giác ABC đều, nội tiếp đờng tròn ( o ), M điểm cung nhỏ BC; AM ct BC ti E
a) Nếu M điểm chÝnh gi÷a cđa cung nhá BC, chøng minh : BC2 = AE
AM
b) Trªn AM lÊy D cho MD = BM Chøng minh: DBM = ACB vµ MA= MB + MC
Câu 8 ( điểm) Cho nửa đờng trịn đờng kính AB tia tiếp tuyến Ax phía với nửa đờng tròn AB Từ điểm M tia Ax kẻ tiếp tuyến thứ hai MC với nửa đờng trịn, kẻ CH vng góc với AB
(27)Đề 31
I.
Đề bài : Câu I (4điểm)
Tính giá trị c¸c biĨu thøc : A =
2√1+1√2 +
1
3√2+2√3 +
1
4√3+3√4+ +
1 25√24+24√25
B =
25(69+45+32+5)
CâuII: (4điểm)
Giải phơng trình sau a; x3 + 2x2 x -2 = 0
b; √x+2+4√x −2+√x+7+6√x 2=6
CâuIII: ( 6điểm)
1; Cho s x, y thoả mãn đẳng thức : 8x2 + y2 +
4x2 =
Xác định x, y để tích xy đạt giá trị nhỏ 2; Tìm số nguyên dơng x,y,z,t thoả mãn
x2+
1
y2+
1
z2+
1
t2=1
3; Chứng minh bất đẳng thức :
a −b¿2 ¿ ¿
a+b
2 −√ab<¿
víi a > b >
Câu IV: ( 5đ)
Cho tam giỏc ABC cõn A nội tiếp đờng trịn tâm O bán kính R Trên cung nhỏ BC lấy điểm K AK cắt BC D
a , Chøng minh AO tia phân giác góc BAC b , Chøng minh AB2 = AD.AK
c , Tìm vị trí điểm K cung nhỏ BC cho độ dài AK lớn d, Cho góc BAC = 300 Tính độ dài AB theo R.
Câu V: (1đ)
Cho tam giác ABC , tìm điểm M bên tam giác cho diƯn tÝch c¸c tam gi¸c BAM , ACM, BCM b»ng
(28)Đè 32
Câu1: (4 điểm)
1 Tính giá trị biểu thức P = √|40√2−57| - √|40√2+57|
2 Chøng minh r»ng √3√32−1 = √3
9 -
3
√2 +
3
√4
3 Cho ba số dơng a,b,c thoả mÃn a + b + c = Chøng minh: 1+ab2+
b
1+c2+ c
1+a2≥
3
C©u2: (4 ®iĨm)
1 Cho A= √22−+1√1 + √33−+2√2 + ….+ 25√25+24−√24 Chøng minh r»ng A < 0,4
2 Cho x, y , z số dơng tho¶ m·n xyz x + y + z + tìm giá trị lớn x + y + z
Câu3: ( điểm) Giải phơng tr×nh:
a √3x2−7x+3 - √x2−2 = √3x2−5x −1 - √x2−3x+4
b 2( x - 1x ) + ( x2 +
x2 ) =
c
3
¿
x+y−
1
x − y=❑❑
{| x+y−
3
x − y=2
d √x −2√x −1 + √x+2√x −1 =
C©u4: (2 điểm)
Cho hàm số y = ( 2m – 1) x + n –2
a Xác định m, n để đờng thẳng (1) qua gốc toạ độ vng góc với đờng thẳng có phơng trình 2x – 5y =
b.Giả sử m, n thay đổi cho m+n =
Chứng tỏ đờng thẳng (1) qua điểm c nh
Câu : (4 điểm)
Cho tam gi¸c ABC ( AB = AC , gãc A < 600) Trên mặt phẳng bờ Ac chứa B
ngời ta vẽ tia A x cho Góc xAC = góc ACB Gọi c, điểm đối xứng với C qua
Ax
Nơí BC’ cắt Ax D Các đờng thẳng CD, CC’ cắt AB lần lợt I K a Chứng minh AC phân giác đỉnh A tam giác ABC,
b Chøng minh ACDC’ Lµ H×nh thoi c Chøng minh AK AB = BK AI
d Xét đờng thẳng qua A khơng cắt BC Hãy tìm d điểm M cho chu vi tam giác MBC đạt giá trị nhỏ
Chứng minh độ lớn góc BMC khơng phụ thuộc vào vị trí ca ng thng d
Câu6: (2 điểm)
Cho hình tứ giác SABCD có cạnh đáy √3 cm chiều cao cm
a TÝnh diÖn tÝch xung quanh cđa h×nh chãp b TÝnh thĨ tÝch hình chóp
Đề 33
Câu I: (3đ)
1, Phân tích đa thức sau thành nhân tử:
x3 + 6x2 - 13x - 42
2, Xác định số hữu tỉ k để đa thức.
A= x3 + y3 + z3 + kxyz chia hÕt cho ®a thøc.
x + y + z
(29)Giải phơng trình
1, 2x 4x1 - 2x 4x 1 = 2, x4 - 3x3 - 6x2 + 3x + = 0
Câu III: (2đ)
1, Cho hàm số y = √x2 +
√x2−4x +4
a, Vẽ đồ thị hàm số b, Tìm giá trị nhỏ y
2, Chứng minh phơng trình sau nghiệm nguyên 3x2 - 4y2 = 3 Câu IV: (4đ)
1, (2đ)
Cho số không âm x,y,z thoả mãn đẳng thức. x + y + z =
Chøng minh r»ng: x + 2y + z 4(1- x) (1- y) (1- z)
2,(2®)
Cho biÓu thøc
Q= 2
11 2 x x x x
a, Tìm giá trị nguyên x để Q nhận giá trị nguyên. b, Tìm giá trị lớn nht ca biu thc Q.
Câu V: (6đ)
Cho tam giác ABC vuông góc A, lấy cạnh AC điểm D Dựng CE vuông góc vơi BD
1, Chứng tỏ tam giác ABD BCD đồng dạng 2, Chứng tỏ tứ giác ABCE tứ giác nội tiếp
3, Chøng minh FD BC (F giao điểm BA CE)
4, Cho ABC = 600; BC = 2a; AD = a
Tính AC, đờng cao AH ABC bán kính đờng trịn ngoại tiếp tứ giác ADEF
đề 34 *
Bµi 1: XÐt biĨu thøc:
P = √2−√3−
1
√3−√4+
√4−√5− .+
1
√1992−√1993
a) Rút gọn P
b) Giá trị P số hữu tỷ hay số vô tỷ ? Tại sao?
Bµi 2: Rót gän:
[ y2−yz+z2
x +
x2 y+z−
3 y+ z ] y+ z yz+ xy+ xz
+(x+y+z)2
Bài 3: Giải phơng tr×nh
1 3x +1 6x +1 x −1
2x=
(30)¿
|x+2|+|y −3|=8 |x+2|−5y=1
¿{ ¿ Bµi 5: Giải phơng trình
44+x=x
Bài 6: Cho y=−1
2x
2
(p) a) Khảo sát vẽ đồ thị hàm số
b) Lập phơng trình đờng thẳng (D) qua (-2;2) tiếp xúc với (p) Bài 7: Câu 1: Tìm tất số tự nhiên n cho n⋮9 n+125
Câu 2: Tìm nghiệm nguyên phơng trình 3x2+5y2=12 Bài 8: (Bài toán cổ Việt Nam)
Hai tre bị gãy cách gốc theo thứ tự thớc thớc Ngọn chạm gốc Tính từ chỗ thân chạm n mt t
Bài 9: Tam giác ABC có góc nhọn, trực tâm H Vẽ hình bình hành ABCD Chứng minh rằng: ABH=ADH
Bài 10: Cho hình chữ nhật ABCD điểm E thuộc cạnh DC Dựng hình chữ nhật có cạnh DE có diện tích diện tích hình chữ nhật ABCD
35
Câu 1: (1.5đ)
Chọn câu trả lời câu sau:
a Phơng trình: x+2x 1 + x+2x 1 =2
Cã nghiƯm lµ: A.1; B.2; C
2 ; D 1≤ x ≤2
b Cho tam giác nhọn ABC nội tiếp đờng tròn tâm (O) , caca cung nhỏ AB, BC, CA có số đo lần lợt : x+75o ; 2x+25o ; 3x-22o.Một gúc ca tam giỏc cú s
đo : A.57o5, B.59o, C 61o, D 60o Câu 2:(0.5đ)
Hai phơng trình :x2+ax+1 =0và x2-x-a =0 có nghiệm chung a b»ng:
A 0, B 1, C 2, D
Câu 3: (1đ)
Điền vào chỗ ( ) Trong hai c©u sau:
a.Nếu bán kính đờng trịn tăng klên lần chu vi đờng tròn lần diện tích đờng trịn lần
a B.Trong mặt phẳng toạ độ õy Cho A(-1;1);B(-1;2); C( √2;√2 ) đờng tròn tâm O bán kính Vị trí điểm đờng trịn
§iĨm
(31)§iĨm
B Điểm
C
Phần tự luận:
Câu 1:(4đ) Giải phơng trình:
a. (3x+4)(x+1)(6x+7)2=6; b 3x 5
+73x=5x220x+22 Câu 2:(3.5đ) Ba số x;y;z tho¶ m¶n hƯ thøc :
x+
2
y+
3
z=6
XÐt biÓu thøc :P= x+y2+z3.
a.Chøng minh r»ng:P x+2y+3z-3? b.T×m giá trị nhỏ P? Câu 4:(4.5 đ)
Cho đờng trịn tâm O đờng kính AB=2R C điểm thuộc đờng tròn O (C A;C B).Trên nửa mặt phẳng bờ AB có chứa điểm C.Kẻ tia ax tiếp xúc với đờng tròn (O) Gọi M điểm cung nhỏ AC , tia BC cắt Ax Q , tia AM cắt BC N
a Chứng minh cac tam giác BAN MCN cân? b B.Khi MB=MQ tính BC theo R?
Câu 5:(2đ)
(32)Đề 36 *
Câu 1(2đ)
Cho x = √37+5√2−3
√7+5√2
TÝnh giá trị biểu thức : A = x3 + 3x 14 Câu 2(2đ) :
Cho phân thức : B = x
5
−2x4+2x3−4x2+3x+6 x4+2x −8
1 Tìm giá trị x để B = Rỳt gn B
Câu 3(2đ) : Cho phơng trình : x2 + px + = cã hai nghiƯm lµ a vµ b
phơng trình : x2 + qx + = cã hai nghiƯm lµ b vµ c
Chøng minh hÖ thøc : (b-a)(b-c) = pq –
Câu 4(2đ) : Cho hệ phơng trình : {mx+4 y=10m
x+my=4 (m tham số)
1 Giải biện luận hệ theo m
2 Với giá trị số nguyên m hệ có nghiệm (x,y) với x, y số nguyên dơng
Câu 5(2đ) : Giải phơng trình : x+54x+1+x+106x+1=1
Cõu 6(2) : Trong mặt phẳng toạ độ xOy cho tam giác ABC có đờng cao có phơng trình : y = -x + y = 3x + Đỉnh A có toạ độ (2;4) Hãy lập ph ơng trình cạnh tam giác ABC
Câu 7(2đ) : Với a>0 ; b>0 cho trớc x,y>0 thay đổi cho :
a x+
b
y=1 Tìm x,y để x + y đạt giá trị nhỏ
Câu 8(2đ) : Cho tam giác vng ABC (Â= 900) có đờng cao AH Gi trung im
của BH P Trung điểm cđa AH lµ Q Chøng minh : AP CQ
Câu 9(3đ) : Cho đờng trịn (O) đờng kính AB Một điểm M thay đổi đờng tròn ( M khác A, B) Dựng đờng tròn tâm M tiếp xúc với AB H Từ A B kẻ hai tiếp tuyến AC, BD đến đờng tròn tâm M
a) Chøng minh CD lµ tiÕp tun cđa (O)
b) Chứng minh tổng AC+BD khơng đổi Từ tính giá trị lớn AC.BD c) Lờy điểm N có định (O) Gọi I trung điểm cuả MN, P hình chiếu I MB Tính quỹ tích P
Câu 10(1đ) : Hình chóp tam giác S.ABC có mặt tam giác Gọi O trung điểm đờng cao SH hình chóp
Chøng minh r»ng : AOB = BOC = COA = 900.
Đề 37 Bài 1 (5đ)
Giải phơng trình sau: a, x2
−1− x2+1=0
b, √x+3−4√x −1+√x+8+6√x −1=4
Bµi 2 (5®) Cho biĨu rhøc P= (√x −2
x −1 −
√x+2 x+2√x+1)(
1− x
√2 )
2
(33)a, Rót gän P
b, Chøng minh r»ng nÕu 0< x<1 th× P > c , Tìm giá trị lớn P
Bài 3: (5đ ) Chứng minh bất đẳng thức sau a , Cho a > c , b >c , c >
Chøng minh : √c(a− c)+√c(b − c)≤√ab
b, Chøng minh
2005
√2006+ 2006
√2005 √2005+√2006
Bµi 4: (5®)
Cho Δ AHC có góc nhọn , đờng cao HE Trên đoạn HE lấy điểm B cho tia CB vng góc với AH , hai trung tuyến AM BK Δ ABC cắt I Hai trung trực đoạn thẳng AC BC cắt O
a, Chøng minh Δ ABH ~ Δ MKO b, Chøng minh √IO
3
+IK3+IM3
IA3+IH3+IB3 =
√2
Đề 38
Câu I: ( điểm ):
Câu 1( 2điểm ): Giải phơng trình
√x+15+8√x −1 + √x+15−8√x −1 = C©u 2 ( 2điểm ): Giải phơng trình
( x - 1) ( x - ) (x + ) (x + ) = 297 C©u 3 ( điểm ) : Giải phơng trình ax1
x 1 +
x+1 =
a(x2+1)
x2
+1
Câu II ( điểm )
Câu 1 ( 2điểm ): Cho x
a = y b =
z
c vµ abc
Rót gän biĨu thøc sau: X =
ax+by+cz¿2 ¿
(34)Câu (2điểm ) : Tính A =
√2+√3 +
√3+√4 + +
√2004+√2005
C©u III ( ®iĨm )
C©u 1 ( ®iĨm ) : Cho x > ; y > vµ x + y = Tìm giá trị nhỏ cña:
M = (x+1
y) + (y+
1
x)
C©u 2 ( ®iĨm ): Cho x , y, z CMR x
yz+1 + y
xz+1 + z
xy+1
Câu IV : Cho tứ giác ABCD có B = D = 900 Gọi M điểm đờng
chÐo AC cho ABM = DBC vµ I trung điểm AC Câu 1: CM : CIB = BDC
C©u 2 : ABM DBC
C©u 3: AC BD = AB DC + AD BC
Câu V : Cho hình chóp S.ABC có mặt bên mặt đáy tam giác cnh 8cm
a/ Tính diện tích toàn phần cđa h×nh chãp b/ TÝnh thĨ tÝch cđa h×nh chãp
Đề 39 *
Bài 1: - Cho M=(x+2
3x +
2
x+1−3):
2−4x x+1 −
3x − x2+1
3x
a Rót gän biĨu thøc M
b Tính giá trị biểu thức M x = 5977, x = √3+2√2
c Với giá trị x M có giá trị ngun Bài 2: Tìm giá trị M để:
a m2 2m + có giá trị nhá nhÊt
b 2m
2 +5
2m2+1 có giá trị lớn
Bài 3: Rót gän biĨu thøc
A=√5−√3−√29−12√5
Bµi 4: Cho B = √a+6 √a+1
a, Tìm số nguyên a để B số nguyyên b, Chứng minh với a =
9 th× B số nguyên
c, Tỡm cỏc s hu tỷ a để B só nguyên
Bài 5: Cho tam giác ABC từ điểm D cạnh BC ta dựng đờng thẳng d song song với trung tuyến AM Đờng thẳng d cắt AB E cắt AC F
a, Chøng minh AE
AF =
AB
(35)b, Chøng minh DE + DF =2AM
§Ị 40*
Câu1 (6 điểm):
a) Chứng minh biÓu thøc: A = ¿ - - 2x - 12 -
không phụ thuộc vào x
b) Chứng minh a, b, c a', b', c' độ dài cạnh hai tam giác đồng dạng thì:
+ + =
c) TÝnh: B = 17 + 428 16 Câu2 (4 điểm):
Giải phơng trình: a) 10 x3 - 17 x2 - x + = 0
b) + =
Câu3 (2 điểm):
Cho a, b, c độ dài ba cạnh tam giác có chu vi Chứng minh: (a + b + c)2 - (a2 + b2 + c2) - 2abc > 2
Câu (2 điểm):
(36)Cho điểm M nằm đờng tròn (O), đờng kính AB Dựng đờng trịn (M) tiếp xúc với AB Qua A B, kẻ tiếp tuyến AC; BD tới đờng tròn (M)
a) Chứng minh ba điểm C; M; D thẳng hàng b) Chứng minh AC + BD không đổi