1. Trang chủ
  2. » Kỹ Thuật - Công Nghệ

De thi Toan vao lop 10 NH 20122013 D32

5 9 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 5
Dung lượng 160,77 KB

Nội dung

c) Tính diện tích hình quạt tròn chắn cung nhỏ MN của đường tròn tâm O theo bán kính R.. d) Đường thẳng d đi qua A, không đi qua điểm O và cắt đường tròn tâm O tại hai điểm B, C[r]

(1)

SỞ GIÁO DỤC VÀ ĐÀO TẠO

ĐỀ THI TUYỂN SINH LỚP 10 TRUNG HỌC PHỔ THÔNG NĂM HỌC 2012 – 2013

Mơn : TỐN

Thời gian : 120 phút (không kể phát đề) Câu (4,0 điểm) Khơng sử dụng máy tính cầm tay:

a) Tính: P =

1 12

3

 

b) Giải phương trình: x2 – 6x + = 0.

c) Giải hệ phương trình:

2

2

x y x y

  

 

 .

Câu (4,0 điểm)

Cho phương trình x2 – 3x + m – = (m tham số) (1). a) Giải phương trính (1) m =

b) Tìm giá trị tham số m để phương trình (1) có nghiệm kép

c) Tìm giá trị tham số mđể phương trình (1) có hai nghiệm x1; x2 độ dài cạnh hình chữ nhật có diện tích (đơn vị diện tích)

Câu (6,0 điểm)

Cho hàm số y = x2 có đồ thị (P) y = x + có đồ thị (d).

a) Vẽ (P) (d) hệ trục tọa độ vuông (đơn vị trục nhau) b) Xác định tọa độ giao điểm (P) (d) phép tính

c) Tìm điểm thuộc (P) cách hai điểm A

( ; 0)  B

3 (0; 1)

2  . Câu (6,0 điểm)

Cho đường trịn tâm O bán kính R Từ điểm A nằm ngồi đường trịn kẻ tiếp tuyến AM AN với đường tròn (M, N tiếp điểm)

a) Chứng minh tứ giác AMON nội tiếp b) Biết AM = R Tính OA theo R

c) Tính diện tích hình quạt trịn chắn cung nhỏ MN đường trịn tâm O theo bán kính R

d) Đường thẳng d qua A, không qua điểm O cắt đường tròn tâm O hai điểm B, C Gọi I trung điểm BC Chứng tỏ năm điểm A, M, N, O I nằm đường tròn

… Hết …

(2)

GỢI Ý GIẢI Câu 1.(4,0 điểm)

a) P =

1 12

3  

=

1

2 3

3  

=

1 20

(2 ) 3

3

  

b) Phương trình x2 –6x + = 0, có: '= b’2 – ac = (-3)2 – = > 0 '= 1 Suy ra: phương trình cho có hai nghiệm phân biệt: x1 = 4; x2 =

c) x y x y        

2 1

2 3

x x x x

x y y y y

                        

Vậy hệ phương trình cho có nghiệm:

1 x y      Câu (4,0 điểm)

a) Khi m = 1, pt(1) trở thành: x2 – 3x = 0

x(x – 3) =

0 x x      

Vậy m = 1, phương trình (1) có hai nghiệm x1 = 0; x2 = 3. b) Phương trình (1) có nghiệm kép có = 0

(-3)2 – 1.(m – 1) = 13 – 4m = 0 m =

13 Vậy m =

13

4 phương trình (1) có nghiệm kép. c)

ĐK để pt(1) có hai nghiệm x1, x2   13 – 4m m  13

4 .

Khi pt(1) có: x1x2 = c

a = m –

Theo đề bài, ta có: x1x2 = m – = m = 3( thỏa ĐK)

Vậy m = phương trình (1) có hai nghiệm x1; x2 độ dài cạnh hình chữ nhật có diện tích (đơn vị diện tích).

Câu (6,0 điểm) a)

Bảng số giá trị tương ứng (P):

(3)

y 4 2 0 2 4Vẽ (d): y = x + 2

Cho x = y = (0; 2) (d) Cho x = y = (1; 3) (d)

Đồ thị:

b) Phương trình hoành độ giao điểm (P) (d): x2 = x + x2 – x – = 0

2 x x

   

 

4 (2;4) ( 1;1) y

y

  

    

Vậy:(d) cắt (P) hai điểm (2; 4) (-1; 1). c) Gọi M(xM; yM) (P) cách hai điểm A, B Ta có:

yM = M

x MA = MB.

Đặt xM = x, a =

1 

MA2 = (xA – xM )2 + (yA – yM )2 = (a – x)2 + (0 – x2)2 = a2 – 2ax + x2 + x4.

(4)

MA = MB MA2 = MB2

a2 – 2ax + x2 + x4 = x2 + a2 – 2ax2 + x4.

2ax2 – 2ax = x2 – x =

0 x x

    

 

0 (0;0) (1; 1) y

y

  

   

Vậy có hai điểm thỏa đề bài: O(0; 0) M(1; 1) Câu (6,0 điểm)

a) Chứng minh tứ giác AMON nội tiếp: + (O) có:

AM tiếp tuyến M AM OM OMA 900 (1).

AN tiếp tuyến N AN ON ONA 900 (2).

Từ (1 , (2)  

0

180

OMA ONA   Tứ giác AMON nội tiếp đường trịn đường kính OA.

b) Biết AM = R Tính OA theo R: OAM

vng M OA = OM2  AM2  OA = R2  R2 R

c)Tính diện tích hình quạt trịn chắn cung nhỏ MN đường trịn tâm O theo bán kính R. + (O) có:

Hai tiếp tuyến AM, AN cắt A AM = AN =R = OM = ON

AMON hình thoi (1)Mà: OMA 900(cmt) (2)Từ (1) (2) AMON hình vng

 MOM 900  n0 = 900

Squạt (MON) =

360 R n

=

 

R 2 90 R2

360 (đvdt)

d) Chứng tỏ năm điểm A, M, N, O I nằm đường tròn + (O) có:

I trung điểm dây BC OI BC 

OIA900nhìn đoạn OA

(5)

Ngày đăng: 29/05/2021, 00:31

TÀI LIỆU CÙNG NGƯỜI DÙNG

  • Đang cập nhật ...

TÀI LIỆU LIÊN QUAN

w