1. Trang chủ
  2. » Trung học cơ sở - phổ thông

Dạy thêm toán 11 D2 4 BIẾN cố, xác SUẤT của BIẾN cố

62 31 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 62
Dung lượng 4,08 MB

Nội dung

TOÁN 11 BIẾN CỐ, XÁC SUẤT CỦA BIẾN CỐ 1D2-4 Mục lục Phần A Câu hỏi Dạng Mô tả không gian mẫu mối liên hệ biến cố Dạng Các dạng toán xác suất Dạng 2.1 SỬ DỤNG ĐỊNH NGHĨA CỔ ĐIỂN VỀ XÁC XUẤT - QUY VỀ BÀI TOÁN ĐẾM .3 Dạng 2.1.1 Bài tốn tính xác suất sử dụng định nghĩa cổ điển cách tính trực tiếp số phần tử thuận lợi cho biến cố A Một số toán chọn vật, chọn người B Một số toán liên quan đến chữ số C Một số toán liên quan đến yếu tố xếp .11 D Một số toán liên quan đến xúc sắc 12 E Một số toán liên quan đến hình học 13 F Một số toán đề thi .15 Dạng 2.1.2 Tính xác suất sử dụng định nghĩa cổ điển phương pháp gián tiếp 15 DẠNG 2.2 SỬ DỤNG QUY TẮC TÍNH XÁC SUẤT 18 Dạng 2.2.1 Sử dụng quy tắc cộng 18 Dạng 2.2.2 Sử dụng quy tắc nhân 19 Dạng 2.2.3 Sử dụng quy tắc cộng quy tắc nhân 20 Phần B Lời giải tham khảo 23 Dạng Mô tả không gian mẫu mối liên hệ biến cố 23 Dạng Các dạng toán xác suất 23 Dạng 2.1 SỬ DỤNG ĐỊNH NGHĨA CỔ ĐIỂN VỀ XÁC XUẤT - QUY VỀ BÀI TOÁN ĐẾM 23 Dạng 2.1.1 Bài tốn tính xác suất sử dụng định nghĩa cổ điển cách tính trực tiếp số phần tử thuận lợi cho biến cố 23 A Một số toán chọn vật, chọn người 23 B Một số toán liên quan đến chữ số 30 C Một số toán liên quan đến yếu tố xếp .36 D Một số toán liên quan đến xúc sắc 38 E Một số toán liên quan đến hình học 40 F Một số toán đề thi .43 Dạng 2.1.2 Tính xác suất sử dụng định nghĩa cổ điển phương pháp gián tiếp 44 DẠNG 2.2 SỬ DỤNG QUY TẮC TÍNH XÁC SUẤT 49 Dạng 2.2.1 Sử dụng quy tắc cộng 49 Dạng 2.2.2 Sử dụng quy tắc nhân 51 Dạng 2.2.3 Sử dụng quy tắc cộng quy tắc nhân 53 Phần A Câu hỏi Dạng Mô tả không gian mẫu mối liên hệ biến cố Câu (HKI-Nguyễn Gia Thiều 2018-2019) Xét phép thử gieo súc sắc cân đối đồng chất mặt hai lần Xét biến cố A: “Số chấm xuất hai lần gieo giống nhau” Khẳng định sau đúng? n  A  n  A   12 n  A   16 n  A   36 A B C D Câu (HKI – TRIỆU QUANG PHỤC 2018-2019) Gieo đồng xu cân đối đồng chất liên tiếp ba lần Gọi A biến cố “Có hai mặt sấp xuất liên tiếp” B biến cố “Kết ba lần gieo nhau” Xác định biến cố A �B A �B   SSS , SSN , NSS , SNS , NNN  A �B   SSS , NNN  A B A �B   SSS , SSN , NSS , NNN  C D A �B   Câu (Chuyên Nguyễn Huệ - Hà Nội -HK1 2018 - 2019) Gieo ngẫu nhiên đồng tiền cân đối đồng chất lần Tính số phần tử không gian mẫu A 64 B 10 C 32 D 16 Câu (HKI-Chu Văn An-2017) Xét phép thử gieo súc sắc cân đối đồng chất hai lần liên tiếp Gọi A biến cố “Lần đầu xuất mặt chấm” B biến cố “Lần thứ hai xuất mặt chấm” Khẳng định sai khẳng định sau? A A B hai biến cố xung khắc B A U B biến cố “Ít lần xuất mặt chấm” C A I B biến cố “Tổng số chấm mặt xuất hai lần gieo 12 D A B hai biến cố độc lập Câu P  A   0, (CHUYÊN KHTN - LẦN - 2018) Cho A B hai biến cố độc lập với , P  B   0,3 P  AB  Khi 0,58 0, A B C 0,1 D 0,12 Câu (TRẦN PHÚ - HÀ TĨNH - LẦN - 2018) Rút ngẫu nhiên lúc ba từ cỗ tú lơ n   khơ 52 bao nhiêu? A 140608 B 156 C 132600 D 22100 Câu (CHUYÊN HÀ TĨNH - LẦN - 2018) Cho A , B hai biến cố xung khắc Đẳng thức sau đúng? P  A �B   P  A   P  B  P  A �B   P  A  P  B  A B P  A �B   P  A   P  B  P  A �B   P  A   P  B  C D Câu (QUẢNG XƯƠNG - THANH HÓA - LẦN - 2018) Cho A , B hai biến cố xung khắc Biết 1 P  A  P B  3, Tính P  A �B  1 A 12 B 12 C D Câu (THPT HÀ HUY TẬP - LẦN - 2018) Xét phép thử có khơng gian mẫu  A biến cố phép thử Phát biểu sai? P  A   P A P  A  A A chắn B n  A P  A  �P  A �1 n   A C Xác suất biến cố D   Câu 10 (THPT CHU VĂN AN - HKI - 2018) Xét phép thử gieo súc sắc cân đối đồng chất hai lần liên tiếp Gọi A biến cố “Lần đầu xuất mặt chấm” B biến cố “Lần hai xuất mặt chấm” Chọn khẳng định sai khẳng định sau? A A B hai biến cố độc lập B A �B biến cố: Tổng số chấm mặt xuất hai lần gieo 12 C A �B biến cố: Ít lần xuất mặt chấm D A B hai biến cố xung khắc Câu 11 (SGD THANH HÓA - LẦN - 2018) Cho A B hai biến cố xung khắc Mệnh đề đúng? P  A  P  B   A A B Hai biến cố B không đồng thời xảy C Hai biến cố A B đồng thời xảy P  A  P  B   D Câu 12 P  A �B  Nếu hai biến cố A B xung khắc xác suất biến cố  P  A  P  B  P  A  P  B  A B P  A  P  B   P  A   P  B  P  A  P  B  C D Dạng Các dạng toán xác suất Dạng 2.1 SỬ DỤNG ĐỊNH NGHĨA CỔ ĐIỂN VỀ XÁC XUẤT - QUY VỀ BÀI TOÁN ĐẾM Dạng 2.1.1 Bài tốn tính xác suất sử dụng định nghĩa cổ điển cách tính trực tiếp số phần tử thuận lợi cho biến cố A Một số toán chọn vật, chọn người Câu 13 (ĐỀ THAM KHẢO BGD & ĐT 2018) Một hộp chứa 11 cầu gồm màu xanh cầu màu đỏ Chọn ngẫu nhiên đồng thời cầu từ hộp Xác suất để cầu chọn màu A 22 B 11 C 11 D 11 Câu 14 (Mã đề 101 BGD&ĐT NĂM 2018) Từ hộp chứa 11 cầu màu đỏ cầu màu xanh, lấy ngẫu nhiên đồng thời cầu Xác suất để lấy cầu màu xanh 33 24 4 A 91 B 455 C 165 D 455 Câu 15 (Mã đề 102 BGD&ĐT NĂM 2018) Từ hộp chứa cầu màu đỏ cầu màu xanh, lấy ngẫu nhiên đồng thời cầu Xác suất để lấy cầu màu xanh A 22 B C 12 D 44 Câu 16 (MĐ 103 BGD&ĐT NĂM 2017-2018) Từ hộp chứa cầu đỏ cầu xanh, lấy ngẫu nhiên đồng thời cầu Xác suất để lấy cầu màu xanh bằng? 24 12 A 91 B 91 C 65 D 21 Câu 17 (Mã đề 104 BGD&ĐT NĂM 2018) Từ hộp chứa 10 cầu màu đỏ cầu màu xanh, lấy ngẫu nhiên đồng thời cầu Xác suất để lấy cầu màu xanh 12 24 A 91 B 91 C 12 D 91 Câu 18 (SGD&ĐT HÀ NỘI - 2018) Một lớp có 40 học sinh, có học sinh tên Anh Trong lần kiểm tra cũ, thầy giáo gọi ngẫu nhiên hai học sinh lớp lên bảng Xác suất để hai học sinh tên Anh lên bảng 1 1 A 10 B 20 C 130 D 75 Câu 19 (Bạch Đằng-Quảng Ninh- Lần 1-2018) Hộp A có viên bi trắng, viên bi đỏ viên bi xanh Hộp B có viên bi trắng, viên bi đỏ viên bi xanh Lấy ngẫu nhiên hộp viên bi, tính xác suất để hai viên bi lấy có màu 91 44 88 45 A 135 B 135 C 135 D 88 Câu 20 (Bình Minh - Ninh Bình - Lần - 2018) Một tổ có học sinh nam học sinh nữ Chọn ngẫu nhiên học sinh Xác suất để học sinh chọn có học sinh nữ 13 209 A 14 B 210 C 14 D 210 Câu 21 (HỌC KỲ I ĐAN PHƯỢNG HÀ NỘI 2017 - 2018) Một hộp đèn có 12 bóng, có bóng hỏng Lấy ngẫu nhiên bóng Tính xác suất để bóng có bóng hỏng 11 13 28 A 50 B 112 C 55 D Câu 22 (DHSP HÀ NỘI HKI 2017-2018) Trong tổ có học sinh nam học sinh nữ Chọn ngẫu nhiên bạn tổ tham gia đội tình nguyện trường Tính xác suất để bạn chọn tồn nam A B C D Câu 23 (HKI-Chu Văn An-2017) Trong đợt kiểm tra định kỳ, giáo viên chuẩn bị hộp đựng 15 câu hỏi gồm câu hỏi Hình học 10 câu hỏi Đại số khác Mỗi học sinh bốc ngẫu nhiên từ hộp câu hỏi để làm đề thi cho Tính xác suất để học sinh bốc câu hình học 45 200 A 91 B C 273 D Câu 24 (HKI-Nguyễn Gia Thiều 2018-2019) Một người chọn ngẫu nhiên giày từ đôi giày cỡ khác Tính xác suất để giày chọn tạo thành đôi 1 A B 10 C D Câu 25 (HKI-Nguyễn Gia Thiều 2018-2019) Giải bóng chuyền VTV Cúp có 16 đội tham gia có 12 đội nước ngồi đội Việt Nam Ban tổ chức cho bốc thăm ngẫu nhiên để chia thành bảng đấu A, B, C , D bảng đội Tính xác suất để đội Việt Nam nằm bảng đấu khác 391 A 455 B 1365 32 C 1365 64 D 455 Câu 26 (Chuyên Nguyễn Huệ - Hà Nội -HK1 2018 - 2019) Trong hộp có 12 bóng đèn, có bóng đèn hỏng Lấy ngẫu nhiên lúc bóng đèn Tính xác suất để lấy bóng tốt 28 14 28 A 55 B 55 C 55 D 55 Câu 27 (Yên Định - Thanh Hóa - 2018-2019) Có hành khách bước lên đoàn tàu gồm toa Mỗi hành khách độc lập với chọn ngẫu nhiên toa Tính xác suất để toa có người, toa có người, toa còn lại khơng có A 16 B 16 C D 16 Câu 28 (HKI-Chu Văn An-2017) Một hộp chứa 35 cầu gồm 20 cầu đỏ đánh số từ đến 20 15 cầu xanh đánh số từ đến 15 Lấy ngẫu nhiên từ hộp cầu Tính xác suất để lấy màu đỏ ghi số lẻ 27 28 A B 35 C D 35 Câu 29 (HKI-Chu Văn An-2017) Có hai hộp, hộp chứa thẻ đánh số từ đến Rút ngẫu nhiên từ hộp thẻ Tính xác suất để thẻ rút ghi số chẵn 21 4 A B 25 C D 25 Câu 30 (THPT CHUYÊN LƯƠNG VĂN CHÁNH - PHÚ YÊN - 2018) Bình có bốn đơi giầy khác gồm bốn màu: đen, trắng, xanh đỏ Một buổi sáng học, vội vàng, Bình lấy ngẫu nhiên hai giầy từ bốn đơi giầy Tính xác suất để Bình lấy hai giầy màu? 1 A B C 14 D Câu 31 (HKI – TRIỆU QUANG PHỤC 2018-2019) Có học sinh khơng quen biết đến cửa hàng kem có quầy phục vụ Xác suất để có học sinh vào quầy học sinh còn lại vào quầy khác C53 C61 5! 65 A Câu 32 C53 C61.C51 65 B C53 C61 5! 56 C C53 C61 C51 56 D (Chuyên Nguyễn Huệ - Hà Nội -HK1 2018 - 2019) Một hộp có cầu xanh, cầu đỏ cầu vàng Chọn ngẫu nhiên cầu Tính xác suất để chọn cầu khác màu 17 13 A 18 B 18 C 18 D 18 Câu 33 (THPT CHU VĂN AN - HKI - 2018) Trong đợt kiểm tra định kì, giáo viên chuẩn bị hộp đựng 15 câu hỏi gồm câu hỏi Hình học 10 câu hỏi Đại số khác Mỗi học sinh bốc ngẫu nhiên từ hộp câu hỏi để làm đề thi cho Tính xác suất để học sinh bốc câu hỏi Hình học 45 200 A B 91 C D 273 Câu 34 (CHUYÊN ĐHSPHN - 2018) Một người làm vườn có 12 giống gồm xồi, mít ổi Người muốn chọn giống để trồng Tính xác suất để chọn, loại có 1 15 25 A B 10 C 154 D 154 Câu 35 (CHUYÊN ĐHSPHN - 2018) Một hộp đựng cầu màu trắng cầu màu đỏ Lấy ngẫu nhiên từ hộp cầu Tính xác suất để cầu lấy có cầu đỏ 21 20 62 21 A 71 B 71 C 211 D 70 Câu 36 (THPT CHUYÊN LAM SƠN - THANH HÓA - 2018) Một hộp đựng viên bi có viên bi đỏ viên bi xanh Lấy ngẫu nhiên từ hộp viên bi Tìm xác suất để viên bi lấy có viên bi màu xanh 10 25 A 21 B 14 C 42 D 42 Câu 37 (HỒNG QUANG - HẢI DƯƠNG - LẦN - 2018) Trong hộp đựng bi màu đỏ, bi màu xanh bi vàng, lấy ngẫu nhiên viên bi Tính xác suất để viên bi lấy có màu đỏ A 13 B C D 15 Câu 38 (KIM LIÊN - HÀ NỘI - LẦN - 2018) Một lớp có 35 đồn viên có 15 nam 20 nữ Chọn ngẫu nhiên đoàn viên lớp để tham dự hội trại 26 tháng Tính xác suất để đồn viên ó nam nữ 90 30 125 A 119 B 119 C 7854 D 119 Câu 39 (CHUYÊN BẮC NINH - LẦN - 2018) Lớp 11 B có 25 đồn viên, có 10 nam 15 nữ Chọn ngẫu nhiên đoàn viên lớp để tham dự hội trại ngày 26 tháng Tính xác suất để đồn viên chọn có nam nữ 27 A 920 B 92 C 115 D 92 Câu 40 (THPT CHUYÊN THÁI BÌNH - LẦN - 2018) Một tổ học sinh có nam nữ Chọn ngẫu nhiên người Tính xác suất cho hai người chọn nữ A 15 B 15 C 15 D Câu 41 (LÊ QUÝ ĐÔN - QUẢNG TRỊ - LẦN - 2018) Một lơ hàng có 20 sản phẩm, phế phẩm Lấy tùy ý sản phẩm từ lơ hàng Hãy tính xác suất để sản phẩm lấy có khơng phế phẩm 91 637 91 A 323 B 969 C D 285 Câu 42 (LÊ QUÝ ĐÔN - QUẢNG TRỊ - LẦN - 2018) Trên giá sách có sách tốn, sách lý, sách hóa Lấy ngẫu nhiên sách Tính xác suất để sách đươc lấy có sách toán 24 58 24 33 A 91 B 91 C 455 D 91 Câu 43 (THPT PHAN ĐÌNH PHÙNG - HÀ TĨNH - LẦN - 2018) Có bút khác khác gói 17 hộp Một học sinh chọ hai hộp Xác suất để học sinh chọn cặp bút 9 A 17 B 17 C D 34 Câu 44 (THPT LỤC NGẠN - LẦN - 2018) Lớp 12 A2 có 10 học sinh giỏi, có nam nữ Cần chọn học sinh dự hội nghị “Đổi phương pháp dạy học” nhà trường Tính xác suất để có hai học sinh nam học sinh nữ chọn Giả sử tất học sinh xứng đáng dự đại hội 2 A B C D Câu 45 (THPT LƯƠNG VĂN TỤY - NINH BÌNH - LẦN - 2018) Một đội gồm nam nữ Lập nhóm gồm người hát tốp ca Tính xác suất để bốn người chọn có ba nữ 70 73 56 87 A 143 B 143 C 143 D 143 Câu 46 (THPT TRIỆU THỊ TRINH - LẦN - 2018) Một bình đựng viên bi xanh viên bi đỏ Lấy ngẫu nhiên viên bi Xác suất để có hai viên bi xanh bao nhiêu? 41 14 28 42 A 55 B 55 C 55 D 55 Câu 47 (THPT LÊ HOÀN - THANH HÓA - LẦN - 2018) Một túi đựng bi xanh bi đỏ Lấy ngẫu nhiên bi Xác suất để hai bi đỏ 7 A 15 B 45 C 15 D 15 Câu 48 (HKI – TRIỆU QUANG PHỤC 2018-2019) Một đồn tình nguyện, đến trường tiểu học miền núi để trao tặng 20 suất quà cho 10 em học sinh nghèo học giỏi Trong 20 suất quà gồm áo mùa đông, thùng sữa tươi cặp sách Tất suất quà có giá trị tương đương Biết em nhận suất quà khác loại (ví dụ: áo thùng sữa tươi) Trong số em nhận q có hai em Việt Nam Tính xác suất để hai em Việt Nam nhận suất quà giống nhau? A B C 15 D Câu 49 (TH&TT LẦN – THÁNG 12) Một tổ chuyên môn tiếng Anh trường đại học X gồm thầy giáo giáo, thầy Xuân cô Hạ vợ chồng Tổ chọn ngẫu nhiên người để lập hội đồng chấm thi vấn đáp tiếng Anh B1 khung châu Âu Xác suất cho hội đồng có thầy, thiết phải có thầy Xn Hạ khơng có hai 5 85 85 A 44 B 88 C 792 D 396 Câu 50 (THPT Yên Dũng - Bắc Giang lần 1- 18-19) Đội tuyển học sinh giỏi Toán 12 trường THPT Yên Dũng số gồm học sinh, có học sinh nam Chọn ngẫu nhiên học sinh thi học sinh giỏi cấp Huyện Tính xác suất để học sinh chọn thi có nam nữ học sinh nam nhiều học sinh nữ 11 45 46 55 p p p p 56 56 56 56 A B C D Câu 51 (TRIỆU QUANG PHỤC HƯNG N-2018-2019) Một đồn tình nguyện đến trường tiểu học miền núi để trao tặng 20 suất quà cho 10 em học sinh nghèo học giỏi Trong 20 suất quà gồm áo mùa đơng, thùng sữa tươi cặp sách Tất suất quà có giá trị tương đương Biết em nhận hai suất quà khác loại (ví dụ áo thùng sữa tươi) Trong số em nhận quà có hai em Việt Nam Tính xác suất để hai em Việt Nam nhận suất quà giống nhau? A B C 15 D Câu 52 (THPT CHUYÊN BẮC NINH - LẦN - 2018) Một hộp chứa viên bi đỏ viên bi xanh Lấy viên bi từ hộp Tính xác suất để viên bi lấy lần thứ bi xanh 11 A B 24 C 12 D Câu 53 (CHUYÊN BẮC NINH - LẦN - 2018) Một hộp chứa viên bi đỏ viên bi xanh Lấy viên bi từ hộp Tính xác suất để viên bi lấy lần thứ bi xanh 11 A B 24 C 12 D Câu 54 (SỞ GD&ĐT QUẢNG NAM - 2018) Một tổ gồm học sinh gồm học sinh nữ học sinh nam Chọn ngẫu nhiên từ tổ học sinh Xác suất để học sinh chọn có số học sinh nam nhiều số học sinh nữ bằng: 17 25 10 A 42 B 42 C 42 D 21 Câu 55 (THPT CHUYÊN BIÊN HÒA - HÀ NAM - 2018) Đội niên xung kích trường THPT Chuyên Biên Hòa có 12 học sinh gồm học sinh khối 12 , học sinh khối 11 học sinh khối 10 Chọn ngẫu nhiên học sinh để làm nhiệm vụ buổi sáng Tính xác suất cho học sinh chọn thuộc không hai khối A B C D B Một số toán liên quan đến chữ số Câu 56 (HKI_L11-NGUYỄN GIA THIỀU - HÀ NỘI 1718) Chọn ngẫu nhiên số có chữ số từ số 00 đến 99 Xác suất để có số tận là A 0, B 0,1 C 0,3 D 0, Câu 57 (LƯƠNG TÀI BẮC NINH LẦN 1-2018-2019) Gọi S tập số tự nhiên có chữ số khác E   1; 2;3; 4;5 tạo từ tập Chọn ngẫu nhiên số từ tập S Tính xác suất để số chọn số chẵn 3 A B C BD D Câu 58 Câu 59 A   1; 2;3; 4;5;6 (Chuyên Lam Sơn-KSCL-lần 2-2018-2019) Cho tập hợp Gọi B tập hợp số tự nhiên gồm chữ số khác lập từ A Chọn thứ tự số thuộc tập B Tính xác suất để số chọn có số có mặt chữ số 156 160 80 161 A 360 B 359 C 359 D 360 (HỌC KÌ 1- LỚP 11- KIM LIÊN HÀ NỘI 18-19) Một hộp đựng tám thẻ ghi số từ đến Lấy ngẫu nhiên từ hộp ba thẻ, tính xác suất để tổng số ghi ba thẻ 11 A 56 B 56 C 56 D 28 Câu 60 (THPT CHUYÊN LÊ QUÝ ĐÔN - ĐÀ NẴNG - LẦN - 2018) Thầy Bình đặt lên bàn 30 thẻ đánh số từ đến 30 Bạn An chọn ngẫu nhiên 10 thẻ Tính xác suất để 10 thẻ lấy có thẻ mang số lẻ, mang số chẵn có thẻ mang số chia hết cho 10 99 99 A 667 B 11 C 11 D 167 Câu 61 (THPT CHUYÊN HÙNG VƯƠNG - PHÚ THỌ - LẦN - 2018) Chọn ngẫu nhiên số tự N nhiên A có bốn chữ số Gọi N số thỏa mãn  A Xác suất để N số tự nhiên bằng: 1 A 4500 B C 2500 D 3000 Câu 62 (THPT CHU VĂN AN - HKI - 2018) Có hai hộp, hộp chứa thẻ đánh số từ đến Rút ngẫu nhiên từ hộp thẻ Tính xác suất để thẻ rút ghi số chẵn 21 4 A B 25 C 25 D Câu 63 (THPT CHUYÊN AN GIANG - 2018) Một người gọi điện thoại, quên hai chữ số cuối nhớ hai chữ số phân biệt Tính xác suất để người gọi lần số cần gọi 83 13 89 A 90 B 90 C 90 D 90 Câu 64 (LÊ QUÝ ĐÔN - HẢI PHÒNG - LẦN - 2018) Trong hòm phiếu có phiếu ghi số tự nhiên từ đến (mỗi ghi số, khơng có hai phiếu ghi số) Rút ngẫu nhiên lúc hai phiếu Tính xác suất để tổng hai số ghi hai phiếu rút số lẻ lớn 15 1 A 18 B C 12 D Câu 65 (CHUYÊN HÀ TĨNH - LẦN - 2018) Một hộp đựng thẻ đánh số 1, 2,3, ,9 Rút ngẫu nhiên đồng thời thẻ nhân hai số ghi hai thẻ lại với Tính xác suất để tích nhận số chẵn 13 A B 18 C D 18 Câu 66 (Chuyên Nguyễn Huệ - Hà Nội -HK1 2018 - 2019) Gọi S tập hợp tất số tự nhiên gồm A   1; 2;3; 4;5;6 chữ số phân biệt chọn từ chữ số tập hợp Chọn ngẫu nhiên số từ tập hợp S Tính xác suất để số chọn có chữ số chẵn chữ số lẻ 1 A B C 40 D 10 Câu 67 (Mã 103 - BGD - 2019) Chọn ngẫu nhiên hai số khác từ 21 số nguyên dương Xác suất để chọn hai số có tổng số chẵn 11 221 10 A 21 B 441 C 21 D Câu 68 (Mã 102 - BGD - 2019) Chọn ngẫu nhiên hai số khác từ 27 số nguyên dương Xác suất để chọn hai số có tổng số chẵn 365 14 13 A 729 B 27 C D 27 Câu 69 (Mã đề 104 - BGD - 2019) Chọn ngẫu nhiên hai số khác từ 23 số nguyên dương Xác suất để chọn hai số có tổng số chẵn 265 12 11 A 529 B 23 C 23 D Câu 70 (Mã đề 101 - BGD - 2019) Chọn ngẫu nhiên hai số khác từ 25 số nguyên dương Xác suất để chọn hai số có tổng số chẵn 13 12 313 A B 25 C 25 D 625 Câu 71 (Mã đề 104 BGD&ĐT NĂM 2018) Ba bạn A, B, C bạn viết ngẫu nhiên lên bảng số tự  1;16 Xác suất để ba số viết có tổng chia hết cho nhiên thuộc đoạn 683 1457 19 77 A 2048 B 4096 C 56 D 512 Câu 72 (Mã đề 101 BGD&ĐT NĂM 2018) Ba bạn A , B , C bạn viết ngẫu nhiên lên bảng số  1;17 Xác suất để ba số viết có tổng chia hết cho tự nhiên thuộc đoạn 1637 1079 23 1728 A 4913 B 4913 C 68 D 4913 10   C73  35 � n A  35 Số cách chọn viên bi mà viên bi màu xanh � Số cách chọn viên bi mà có viên bi màu đỏ 455  35  420 cách � n  A   420 � P  A  n  A  420 12   n    455 13 Câu 114 Chọn D n     C92  36 Số phần tử không gian mẫu Gọi A biến cố “tích hai số ghi thẻ số chẵn”, suy A biến cố “tích hai số ghi thẻ � n A  C52  10 số lẻ” n A 13 P  A   P A    n    18 Vậy xác suất cần tìm Câu 115 Chọn C       Gọi A biến cố: “Trong đồng xu có đồng xu lật sấp” Khi A biến cố: “ đồng xu lật ngữa” �1 � 31   � � P  A   P A �2 � 32 Vậy Câu 116 Chọn A   n     C13 Chọn kẹo 13 kẹo nên A Đặt biến cố “chọn kẹo có đủ hai vị”   5 � n A  C7  C6 Suy A biến cố “chọn kẹo có vị” 5 C C 140 P  A    143 C13 Vậy Câu 117 Chọn C Gọi B biến cố “Trong bóng lấy bóng tốt” 8! n  B   C83   56 3!.5! Ta có: Gọi C biến cố “Trong bóng lấy có bóng hỏng” C  B 56 41 P  C   P B  1 P  B   1  220 55 Câu 118 Chọn B Trên giá có tất cả:    (quyển sách) bao gồm mơn: tốn, lý hóa   C  84 � n     84 Lấy sách từ sách, số cách lấy Gọi A biến cố: “3 lấy có tốn” � n A  C53  10 A Suy : “3 lấy khơng có tốn nào” Vậy xác suất để lấy có sách toán là:   48   P  A   P A   10 37  84 42 Câu 119 Số phần tử không gian mẫu n     C93  84 Gọi A biến cố cho ba lấy có sách Toán � A biến cố cho ba lấy khơng có sách Tốn � n  A   C5  10 10 37 � P  A    P  A    84  42 Câu 120 Số kết chọn sách sách C9  84 Gọi A biến cố ‘ Lấy sách tốn sách.’ A biến cố ‘ Không lấy sách toán sách.’ C 37 P  A   P A    84 42 Ta có xác sút để xảy A   n     C354 Câu 121 Số cách chọn học sinh lên bảng: 4 Số cách chọn học sinh có nam có nữ: C20  C15 C  C 4615  20 15  C35 5236 Xác suất để học sinh gọi có nam nữ: n     35 Câu 122 Chọn ngẫu nhiên cầu có C35  35 cách Suy Gọi E biến cố “Chọn cầu đỏ ghi số lẻ” E biến cố “Chọn cầu xanh ghi số chẵn” n E 7 Do 28 p  E   1 p E  1  35 35 Suy Câu 123 Lần gieo thứ có kết quả, lần gieo thứ hai có kết     n     36 Do khơng gian mẫu Gọi A biến cố “tích hai số nhận sau hai lần gieo số chẵn” A biến cố “tích n A  3.3  hai số nhận sau hai lần gieo số lẻ” Ta có p  A   p A    36 Xác suất cần tìm     x  �x �9; x �� C x � n     C9x Câu 124 Giả sử rút thẻ, số cách chọn x thẻ từ thẻ hộp x A Gọi biến cố: “Trong số thẻ rút ra, có thẻ ghi số chia hết cho ” Cx Cx P A  7x � P  A    7x x � n  A   C7 C9 C9 Ta có   Cx 5 �  7x  � x  17 x  60  C9 � � x 12 Do Vậy số thẻ phải rút P  A  Câu 125 Số phần từ không gian mẫu n     C103  120 x 49 Gọi A biến cố cho học sinh chọn có học sinh nữ,   � A biến cố cho học sinh chọn khơng có học sinh nữ � n A  C6  20   P  A   P A  1   n A n    Vậy xác suất cần tìm n     C303  4060 Câu 126 Ta có Gọi A biến cố sản phẩm lấy có sản phẩm tốt Ta có A biến cố sản phẩm lấy khơng có sản phẩm tốt, hay sản phẩm lấy sản phẩm xấu n A  C103  120 n A 120 P A    n    4060 203 Suy 197 P  A   P A    203 203 Vậy         n     C103 Câu 127 Số phần tử không gian mẫu: Gọi A biến cố: “ học sinh ó học sinh nữ” Suy ra: A biến cố: “ học sinh chọn khơng có học sinh nữ” C73 17 � P A   P  A   P A  n A C C 24 24 10 Khi Vậy n     C10 Câu 128 Số phần tử không gian mẫu là: Gọi biến cố A : “Hai người ó người nữ” � A : “Hai người chọn khơng có nữ” � n A  C7 n   C2 P  A   P A     72  C10 15 n A Vậy xác suất cần tìm là:             n     C103  120 Câu 129 Số phần tử không gian mẫu Gọi B biến cố “Ba số chọn khơng có hai số hai số nguyên liên tiếp” � B biến cố “Ba số chọn có hai số số tự nhiên liên tiếp”  1, 2, a1  , với a1 �A \  1, 2 : có ba số + Bộ ba số dạng  2,3, a2  , với a2 �A \  1, ,3 : có ba số + Bộ ba số có dạng  3, 4, a3  ,  4,5, a4  ,  5,6, a5  ,  6, , a6  ,  ,8, a7  ,  8, 9, a8  , + Tương tự ba số dạng  9,10, a9  có � n B   8.7  64 64  � P  B  1 P B  1 120 15     Câu 130 Số phần tử không gian mẫu   C354  5236 50 Số phần phần tử biến cố lấy bi màu xanh C20 Số phần phần tử biến cố lấy bi màu đỏ C15 C204  C154 4615 p  1  5236 5236 Suy xác suất biến cố bi lấy có đủ hai màu Câu 131 Gọi A biến cố: ‘‘ có xạ thủ không bắn trúng bia ’’ Khi A biến cố: ‘‘ hai xạ thủ bắn trúng bia ’’   1 1 P A   � P  A    6 n     3!  Câu 132 Số phần tử không gian mẫu là: Gọi A biến cố “Có thư bỏ phong bì” Ta xét trường hợp sau: Nếu thứ bỏ phong bì, hai còn lại để sai có cách Nếu thứ hai bỏ phong bì, hai còn lại để sai có cách Nếu thứ ba bỏ phong bì, hai còn lại để sai có cách Khơng thể có trường hợp hai thư bỏ thư bỏ sai Cả ba thư bỏ có cách � n  A  n  A P  A  n     Vậy xác suất để có thư bỏ phong bì là: Cách 2: Gọi B biến cố “Khơng có thư bỏ phong bì” n  B 2  1 � n  B   � P  A   P  B  n    1  Câu 133 Chọn ngẫu nhiên hai thẻ từ thẻ nên số phần tử không gian mẫu là: n     C9  36 Gọi A biến cố: “Tích hai số hai thẻ số chẵn”, ta có: n  A  10 n  A   C52  10 � P  A     n  36 18   A : “Tích hai số hai thẻ số lẻ”, 13 P  A   P  A     18 18 Xác suất cần tìm là: Câu 134 Số phần tử không gian mẫu: C20  1140 Gọi A biến cố chọn đoàn viên nam: C12  220 220 11 P  A   1140 57 Xác suất biến cố A là: 11 46 1  57 57 Vậy xác suất cần tìm là: n     C45 Câu 135 Số phần tử không gian mẫu A biến cố “Trong học sinh ó học sinh nữ” 51 � A biến cố “Trong học sinh chọn không học sinh nữ” n A C25  1   5 � n A  C25 � P  A    P A n   C45       n     C102  45 Câu 136 Số phần tử không gian mẫu A : " Gọi viên bi ó viên bi màu xanh " � A :" viên bi ó màu đỏ " 21  n A  C72  21 � P A  45 15 Ta có       P  A   P A   Vậy xác suất để viên bi ó viên bi màu xanh n     C143 Câu 137 Số phần tử không gian mẫu A Gọi biến cố lấy cầu có đủ hai loại cầu xanh cầu trắng C53  C93 Xác suất lấy cầu có màu xanh màu trắng C14  15 15 C53  C93 135 P  A    C143 182 Do xác suất cần tìm Câu 138 Gọi biến cố A : Lấy k thẻ có thẻ chia hết cho Với �k �10 Suy A : Lấy k thẻ khơng có thẻ chia hết cho C8k C8k  10  k    k  P A  k � P  A   k   C10 C10 90 Ta có:   1  10  k    k  90 Theo đề: Vậy k  giá trị cần tìm Câu 139 Chọn A Có tất Suy C2019  13 15 � k  19k  78  �  k  13 cách chọn số tự nhiên từ tập hợp n     C2019 M   1; 2;3; ;2019 Xét biến cố A : “Chọn số tự nhiên cho số tự nhiên liên tiếp” Ta có A : “Chọn số tự nhiên ln có số tự nhiên liên tiếp” Xét trường hợp sau: + Trường hợp 1: Trong ba số chọn có số liên tiếp:  1; 2  2018; 2019 số thứ ba có 2019   2016 cách chọn (do - Nếu số liên tiếp khơng tính số liên tiếp sau trước cặp số đó)  2;3 ,  3; 4 ,.,  2017; 2018 số thứ ba có 2019   2015 cách chọn (do - Nếu số liên tiếp khơng tính số liền trước sau cặp số đó) Trường hợp có 2.2016  2016.2015  4066272 cách chọn + Trường hợp 2: Chọn số liên tiếp 52 Tức chọn Suy    1; 2;3 ,  2;3;4 ,.,  2017, 2018, 2019 : có tất 2017 cách n A  4066272  2017  4068289   P  P  A   P A   Vậy Câu 140 Chọn C 4068289 1365589680 677040   C2019 1369657969 679057 n     9!  362880 Ta có số phần tử khơng gian mẫu Xét biến cố đối A “tồn hàng cột chứa toàn số chẵn” Để biến cố A xảy ta thực bước sau Bước 1: chọn hàng cột chứa tồn số chẵn Bước có cách Bước 2: chọn ba số chẵn số 2, 4, 6, xếp vào hàng cột Bước có A4 cách Bước 3: xếp số còn lại vào còn lại Bước có 6! cách n A  A43 6!  103680 Suy số kết thuận lợi cho biến cố A n A P  A   P A    n   Vậy xác suất biến cố A Câu 141 Chọn C 99996  10000   22500 X  9.10  90000 Ta có số phần tử tập X , có số chia hết cho 90000  22500  67500 số không chia hết cho Gọi A biến cố nhận số chia hết cho   C90000 Số phần tử không gian mẫu Số phần tử không gian thuận lợi cho biến cố A (cả hai không chia hết cho 4)  A  C67500 C67500 P  A    P  A    �0, 44 C90000 Vậy xác suất biến cố A       DẠNG 2.2 SỬ DỤNG QUY TẮC TÍNH XÁC SUẤT Dạng 2.2.1 Sử dụng quy tắc cộng Câu 142 Gọi A biến cố “động bị hỏng”, gọi B biến cố “động bị hỏng” Suy AB biến cố “cả hai động bị hỏng” � “ xe không chạy nữa” Lại thấy hai động hoạt động độc lập nên A B hai biến cố độc lập � Áp dụng quy tắc nhân xác suất ta xác suất để xe phải dừng lại đường P  AB   0,5.0,  0, Vậy xác suất để xe  0,  0,8 Câu 143 Đáp án A Gọi A biến cố : “Chọn hai viên bi xanh” B biến cố : “Chọn hai viên bi đỏ” 53 C biến cố : “Chọn hai viên bi vàng” Khi biến cố: “Chọn hai viên bi màu” biến cố A �B �C Do A, B, C đôi xung khắc với nên theo quy tắc cộng ta có P  A �B �C   P  A   P  B   P  C  C42 C32 C22  ; P B   ; P C       2 C9 36 C9 36 C9 36 Ta có P  A �B �C      36 36 36 18 Vậy P  A  Câu 144 Chọn B 1 Cách 1: Hai người ngang sức nên xác suất người thứ thắng trận ; thua trận A biến cố: “Người thứ giành chiến thắng chung cuộc” Vậy A = “Người thứ thắng trận đầu” “người thứ thắng sau trận” “người thứ thắng sau trận” 1 1 1 � P  A     2 2 2 1 Cách 2: Hai người ngang sức nên xác suất người thứ hai thắng trận ; thua trận A biến cố: “Người thứ giành chiến thắng chung cuộc” A = “người thứ hai thắng chung cuộc” 1 1 P  A    � P  A   P  A   2 8 Câu 145 Trường hợp An thuộc bài, Bình khơng thuộc bài, Cường thuộc ta có xác suất: 0,9 �  0,  �0,8  0, 216 Trường hợp An khơng thuộc bài, Bình thuộc bài, Cường thuộc ta có xác suất:   0,9  �0,7 �0,8  0, 056 Vậy xác suất cần tìm 0, 216  0, 056  0, 272 Câu 146 Trường hợp 1: hai số rút số chẵn: p1  C42  C92 Trường hợp 2: hai số rút có số lẻ, số chẵn: p2  C41.C51  C92 13   18 Vậy xác suất để kết nhân số chẵn 1 Câu 147 Cách Hai người ngang sức nên xác suất người thứ thắng trận ; thua trận A biến cố: “Người thứ giành chiến thắng chung cuộc” Vậy A = “Người thứ thắng trận đầu” �“Người thứ thắng sau trận” �“Người thứ thắng sau trận” 1 1 1 � P  A     2 2 2 p  p1  p2  54 1 Cách Hai người ngang sức nên xác suất người thứ hai thắng trận ; thua trận A biến cố: “Người thứ giành chiến thắng chung cuộc” A = “người thứ hai thắng chung cuộc” (tức người thứ hai thắng liên tiếp ván) 1 1 P  A    � P  A   P  A   2 8 Câu 148 Bài thi có 50 câu nên câu điểm Như vây để điểm, thí sinh phải trả lời thêm câu Trong 10 câu còn lại chia làm nhóm: + Nhóm A câu loại trừ đáp án chắn sai Nên xác suất chọn phương án trả lời , xác suất chọn phương án trả lời sai + Nhóm B câu còn lại, xác suất chọn phương án trả lời , xác suất chọn phương án trả lời sai Ta có trường hợp sau: - TH1 : có câu trả lời thuộc nhóm A câu trả lời thuộc nhóm B �1 � �1 � �3 � 189 P1  � �.C72 � � � � �3 � �4 � �4 � 16384 - Xác suất - TH2 : có câu trả lời thuộc nhóm A câu trả lời thuộc nhóm B 4 �1 � �1 � �3 � 315 P2  C � � .C73 � � � � �3 � �4 � �4 � 8192 - Xác suất - TH3 : có câu trả lời thuộc nhóm A câu trả lời thuộc nhóm B �2 � �1 � �3 � 105 P3  C � �.C74 � � � � �3 � �4 � �4 � 4096 - Xác suất - TH4 : khơng có câu trả lời thuộc nhóm A câu trả lời thuộc nhóm B 3 �2 � �1 � �3 � P4  � �.C75 � � � � �3 � �4 � �4 � 2048 - Xác suất P  P1  P2  P3  P4  1295  0.079 16384 Vậy xác suất cần tìm : Câu 149 Chọn D + Gọi S tập hợp số tự nhiên gồm chữ số phân biệt lập từ tập E số phần tử S A53  60 + Gọi F tập hợp số tự nhiên gồm chữ số phân biệt lập từ tập E cho số có chữ số F *) Tìm : Mỗi cách lập số abc gồm chữ số phân biệt từ tập E cho có chữ số thực qua công đoạn - Công đoạn 1: Chọn hàng từ ba hàng cho chữ số Có cách - Cơng đoạn 2: Chọn số từ tập E \{5} cho hai hàng còn lại, có phân biệt thứ tự Có A4 cách 55 Theo quy tắc nhân ta có F  A42  36   60.60  3600 + Không gian mẫu  phép thử có số phần tử Gọi A biến cố: " Số viết trước có chữ số số viết sau khơng có chữ số " còn B biến cố: " Số viết trước khơng có chữ số số viết sau có chữ số " A �B biến cố: " Trong hai số có số có chữ số " Vì A B hai biến cố xung khắc nên P( A �B)  P( A)  P(B)  , P(A): *) Tìm A : - Cơng đoạn 1: Chọn số từ tập F Có 36 cách - Cơng đoạn 2: Chọn số từ tập S \ F Có 24 cách   24.36  864 Theo quy tắc nhân suy A  864 P (A)  A   3600 Do  864 P ( B)  B    36.24  864 �  3600 *) Tương tự, ta B 864 864 12 P ( A �B)    3600 3600 25 Vậy Dạng 2.2.2 Sử dụng quy tắc nhân Câu 150 Đáp án B Ai  i  1;2  biến cố : “Con súc sắc thứ i mặt chấm” � P  A1   � � � �P  A2   � A1 A2 hai biến cố độc lập ta có � Gọi Thay tính P  A ta tính     Ta có A  A A P A     5 25 P A  P A1 P A2    P  A1     P  A2     6 36 25 11 P  A   P A    36 36 Vậy Câu 151 Gọi A, B, C tương ứng biến cố “ A bắn trúng”; “ B bắn trúng”; “ B bắn trúng” A, B, C ba biến cố độc lập Do A, B, C biến cố đôi nên:   Xác suấy để ba người bắn trượt   P ABC  P  A  P  B  P  C     0,    0,5    0,   0, 09 Vậy xác suất để có ba người bắn trùng  0, 09  0,91 Câu 152 Ta có chọn mơn chung mã đề có cách Vì mơn có mã đề khác nên xác suất chung mã đề môn khác mã đề môn còn lại 56 5 P   6 18 Vậy xác suất cần tìm là: Câu 153 Chọn B Gọi số thỏ chuồng 1, x, y (con), số thỏ đen chuồng 1, a, b (con) �* ; a x; b y   x, y, a, b Σ� x  y  35 a b 247 13.19 247   x y 300 300 300 Vì xác suất bắt hai thỏ lông màu đen nên ta có: �* ; a x; b y � a  13, b  19 (Vì 13 19 số nguyên tố) Từ điều kiện x, y, a, b Σ� Khi đó, x, y tương ứng 15 20 1  Vậy xác suất bắt hai thỏ lông màu trắng là: 15 20 150 Câu 154 Chọn D Gọi Ai động thứ i chạy tốt Gọi A biến cố “ có động chạy tốt” A biến cố “ không động chạy tốt”       A  A1 A2 � P A  P A1 P A2    0.8    0.7   0.06 Ta có: P  A    P A  0.94 Vậy   Câu 155 Lờigiải Chọn A Gọi A biến cố “bạn An làm trọn vẹn 50 câu” A1 biến cố “ bạn An làm hết 20 câu nhận biết” A2 biến cố “ bạn An làm hết 20 câu vận dụng” A3 biến cố “ bạn An làm hết 10 câu vận dụng cao” Khi đó: A  A1 A2 A3 Vì biến cố A1 ; A2 ; A3 độc lập nên theo quy tắc nhân xác suất ta có: P ( A)  P ( A1 ).P ( A2 ).P ( A3 )  0,9.0,8.0,  0, 432 Câu 156 Chọn B   450 Ta có 0, 2.x   50  x  0,1  � x  30 Gọi x số câu Hoa chọn Hoa điểm nên Vậy xác suất Hoa đạt điểm mơn Tiếng Anh kì thi 30 20 � �3 � 30 � p  C50 � � � �  1,3.10 7 �4 � �4 � Câu 157 Chọn C Gọi a số trứng lành, b số trứng hỏng giỏ A Gọi x số trứng lành, y số trứng hỏng giỏ B a x 55  Lấy ngẫu nhiên giỏ trứng, xác suất để lấy hai trứng lành: a  b x  y 84 57 �  a.x  M55 � � a  b  14  a  b   x  y  M84 � �a  11 � � � �x  y  � � a  b  x  y  20 � �x  � �a.x M55   a  b  x  y � � �a  b x  y ��    � � 100 � � � � Do đó: Suy ra: Giỏ A có 11 trứng lành Câu 158 Gọi Ai : “Xạ thủ thứ i bắn trúng mục tiêu” với i  1, Khi Ai : “Xạ thủ thứ i bắn khơng trúng mục tiêu”       P  A1   0, � P A1  0,3 P  A2   0, � P A2  0, P  A3   0,5 � P A3  0,5 Ta có ; ; B Gọi : “Cả ba xạ thủ bắn không trúng mục tiêu” Và B : “có xạ thủ bắn trúng mục tiêu” Ta có       P  B   P A1 P A2 P A3  0,3.0, 4.0,5  0, 06   P B   P  B    0, 06  0,94 Khi Dạng 2.2.3 Sử dụng quy tắc cộng quy tắc nhân Câu 159 Chọn D Xác suất để viên trúng viên trượt mục tiêu là: 0,3.0.7  0, 7.0,3  0, 42 Câu 160 Gọi At , Ad , Ax biến cố bi rút từ túi I trắng, đỏ, xanh Gọi Bt , Bd , Bx biến cố bi rút từ túi II trắng, đỏ, xanh Các biến cố At , Ad , A x độc lập với Bt , Bd , Bx Vậy xác suất để lấy hai bi màu P  At Bt �Ad Bd �Ax Bx   P  At Bt   P  Ad Bd   P  Ax Bx  10 15 207  P  At  P  Bt   P  Ad  P  Bd   P  Ax  P  Bx   25 25  25 25  25 25  625 Câu 161 Xác suất xuất mặt chấm , mặt còn lại Có khả năng: + Hai lần gieo mặt chấm + Lần thứ mặt chấm, lần thứ hai mặt chấm + Lần thứ mặt chấm, lần thứ hai mặt chấm 2 1    7 7 7 49 Xác suất cần tính Câu 162 Chọn B Xác suất sút không thành công chấm 11 cầu thủ Quang Hải  0,8  0, Xác suất sút không thành công chấm 11 cầu thủ Văn Đức  0,  0,3 Xác suất hai cầu thủ sút không thành công chấm 11 0, 2.0,3  0, 06 Suy ra: Xác suất để người sút bóng thành cơng là:  0, 06  0,94 Câu 163 Chọn C 58 Gọi A biến cố lần chơi, người thắng lần Khi đó: A biến cố lần chơi, người tồn thua Tính xác suất để lần chơi người thua: Để chơi thua, ba súc sắc người gieo xuất số chấm bé �4 � 4 20   � � Suy xác suất để người chơi thua lần là: �6 6 � 6 27   Câu 164 Câu 165 8000 11683 �20 � 8000 P A  � � � P  A    19683 19683 �27 � 19683 Chọn B Gọi A biến cố “đồng xu A xuất mặt sấp”, B biến cố “đồng xu B xuất mặt sấp”; C biến cố “có sấp ngửa gieo hai đồng xu lần” � C  AB �AB , mà AB , AB xung khắc A, B; A, B độc lập 1 � P  C   P  AB   P  AB   P  A  P  B   P  A  P  B      50% 4 Chọn A P  A  xác suất để gieo súc Ta có xác suất để gieo súc sắc xuất mặt chấm P A  sắc không xuất mặt chấm P  B1    10 Xác suất lấy từ hộp I gói quà màu đỏ P  B2    10 Xác suất lấy từ hộp II gói quà màu đỏ P  A  P  B1   P A P  B2     6 30 Vậy xác suất để lấy gói quà màu đỏ Chọn D P  A Gọi xác suất bạn An học thuộc P  B xác suất bạn Bình học thuộc P C xác suất bạn Cường học thuộc P xác suất cô kiểm tra bạn Do cô giáo kiểm tra bạn dừng lại có bạn thuộc nên có bạn An Bình khơng thuộc bạn còn lại thuộc P     P A P  B  P  C   P  A  P B P  C   0, 272 Vì vậy, ta có Gọi A biến cố “động bị hỏng”, gọi B biến cố “động bị hỏng” Suy AB biến cố “cả hai động bị hỏng” � “ xe không chạy nữa” Lại thấy hai động hoạt động độc lập nên A B hai biến cố độc lập � Áp dụng quy tắc nhân xác suất ta xác suất để xe phải dừng lại đường P  AB   0,5.0,  0, Vậy xác suất để xe  0,  0,8     Câu 166   Câu 167   59 Câu 168 Chọn A Gọi A1 , A2 biến cố vận động viên bắn trúng mục tiêu viên thứ thứ hai P  A1   P  A2   0,6 Ta có Gọi A biến cố vận động viên bắn viên trúng viên trượt mục tiêu Khi P  A   P  A1  P A2  P A1 P  A2   0,6.0,  0, 4.0,6  0, 48 P  A1    10 Câu 169 Xác suất lấy gói quà màu đỏ hộp là: P  A2    10 Xác suất lấy gói quà màu đỏ hộp : P C  P C  , còn gieo mặt còn lại là: Xác suất gieo mặt sáu chấm là: 1 P  C  P  A1   P C P  A2     6 30 Vậy         Câu 170 Chọn A Gọi H biến cố: “Xạ thủ bắn đạt loại giỏi” A; B; C ; D biến cố sau: A : “Ba viên trúng vòng 10 ” B : “Hai viên trúng vòng 10 viên trúng vòng ” C : “Một viên trúng vòng 10 hai viên trúng vòng ” D : “Hai viên trúng vòng 10 viên trúng vòng ” Các biến cố A; B; C; D biến cố xung khắc đôi H  A �B �C �D P  H   P  A  P  B   P  C   P  D  Suy theo quy tắc cộng mở rộng ta có P  A    0,   0,   0,   0, 008 Mặt khác P  B    0,   0,   0, 25    0,   0, 25   0,    0, 25   0,   0,   0, 03 P  C    0,   0, 25   0, 25    0, 25   0,   0, 25    0, 25   0, 25   0,   0, 0375 P  D    0,   0,   0,15    0,   0,15   0,    0,15   0,   0,   0,018 Do P  H   0, 008  0, 03  0, 0375  0, 018  0, 0935 Câu 171 Số phần tử không gian mẫu: n     A103  720 Gọi A biến cố cần tính xác suất Khi đó: số có tổng 10 khác là:   0;1;9  ;  0; 2;8  ;  0;3;7  ;  0; 4;6  ;  1; 2;7  ;  1;3;  ;  1; 4; 5 ;  2;3;5  8  TH1: Bấm lần thứ ln xác suất C10 120 � �8 1 � � TH2: Bấm đến lần thứ hai xác suất là: � 120 �119 ( trừ lần đâu bị sai nên không gian mẫu còn 120   119 ) 60 � � � �8 1 1 � � � � 118 � 119 � TH3: Bấm đến lần thứ ba xác suất là: � 120 � � �8 � � 189 � �8 � 1 � 1 1 � � � �  118 1003 � 119 � Vậy xác suất cần tìm là: 120 � 120 �119 � 120 � Câu 172 Theo giả thiết hai người ngang tài ngang sức nên xác suất thắng thua ván đấu 0, 5; 0, Xét thời điểm người chơi thứ thắng ván người chơi thứ hai thắng ván Để người thứ chiến thắng người thứ cần thắng ván người thứ hai thắng không hai ván Có ba khả năng: TH1: Đánh ván Người thứ thắng xác suất 0,5  0,5 TH2: Đánh ván Người thứ thắng ván thứ hai xác suất TH3: Đánh ván Người thứ thắng ván thứ ba xác suất P  0,5   0,5    0,5   Vậy  0,5 n     10  10 Câu 173 Số phần tử không gian mẫu Để người gọi số điện thoại mà khơng phải thử q hai lần ta có trường hợp: TH1: Người gọi lần thứ TH2: Người gọi lần thứ hai Gọi A1 :" người gọi lần thứ " � xác suất người gọi P A1  10 suất người gọi không P  A1   10 xác   Gọi A2 :" người gọi lần thứ hai " � xác suất người gọi P  A2   A  A1 �A1 A2 Gọi A : " người gọi số điện thoại mà khơng phải thử hai lần " ta có 1 � P  A   P  A1   P A1 P  A2     10 10 k  1, 2, 3 Câu 174 Gọi Ak biến cố người thứ k bắn trúng bia với xác suất tương ứng Pk  A A A � A1 A2 A3 � A1 A2 A3 Biến cố có hai người bắn trúng bia là: Xác suất biến cố là:   P1  P2 P3  P1   P2  P3  P1.P2   P3             0,5 0, 6.0,  0,   0,  0,  0,5.0,   0,   0, 44 Vậy xác suất để có hai người bắn trúng bia 0, 44 Câu 175 Cách 1: n     4.4  16 Số phần tử không gian mẫu Gọi biến cố A  “Cú sút khơng vào lưới” Khi biến cố A  “Cú sút vào lưới” 61   n A Số phần tử Trường hợp 1: Cầu thủ sút vào vị trí thủ mơn bay vào vị trí còn lại Cầu thủ có cách sút Thủ mơn có cách bay Do đó, có khả xảy Trường hợp 2: Cầu thủ sút vào vị trí thủ mơn bay vào vị trí còn lại Cầu thủ có cách sút Thủ mơn có cách bay Do đó, có khả xảy Trường hợp 3: Cầu thủ sút vào vị trí thủ mơn bay vào vị trí còn lại Cầu thủ có cách sút Thủ mơn có cách bay Do đó, có khả xảy Trường hợp 4: Cầu thủ sút vào vị trí thủ mơn bay vào vị trí còn lại Cầu thủ có cách sút Thủ mơn có cách bay Do đó, có khả xảy Trường hợp 5: Cầu thủ sút vào vị trí thủ mơn bay vào vị trí Cầu thủ có cách sút Thủ mơn có cách bay Do đó, có khả xảy Trường hợp 6: Cầu thủ sút vào vị trí thủ mơn bay vào vị trí Cầu thủ có cách sút Thủ mơn có cách bay Do đó, có khả xảy n A  4.3  2.1  14 Khi 4.3 2.1 13 p A    16 16 16 (Do trường hợp 5, xác suất xảy Xác suất xảy biến cố A là 50%) 13 p  A   p A    16 16 Vậy Cách 2: Gọi Ai biến cố “cầu thủ sút phạt vào vị trí i ” Bi biến cố “thủ môn bay người cản phá vào vị trí thứ i ”       Và C biến cố “Cú sút phạt không vào lưới” P  Ai   P  Bi   Dễ thấy 1 P  C   P  A1  P  B1   P  A2  P  B2   P  A3  P  B3   P  A4  P  B4  2 Ta có 2 2 �1 � �1 � �1 � �1 �  � � � � � � � � �4 � �4 � �4 � �4 � 16 62 ... 1 34 Số phần tử không gian mẫu: C20  1 14 0 Gọi A biến cố chọn đoàn viên nam: C12  220 220 11 P  A   1 14 0 57 Xác suất biến cố A là: 11 46 1  57 57 Vậy xác suất cần tìm là: n     C45... cho biến cố A Một số toán chọn vật, chọn người Câu 13 Chọn C n     C112 Số cách lấy cầu 11 C11 , Suy Gọi A biến cố lấy màu Suy C2  C2 P  A   C11 11 Xác suất biến cố A Câu 14 Chọn D Số... nào” Vậy xác suất để lấy có sách toán là:   48   P  A   P A   10 37  84 42 Câu 119 Số phần tử không gian mẫu n     C93  84 Gọi A biến cố cho ba lấy có sách Toán � A biến cố cho

Ngày đăng: 28/05/2021, 21:39

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

  • Đang cập nhật ...

TÀI LIỆU LIÊN QUAN

w