1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Đề thi học sinh giỏi môn Toán lớp 12 cấp trường năm 2019-2020 có đáp án - Trường THPT Chuyên Nguyễn Trãi, Hải Dương

8 17 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 8
Dung lượng 316,41 KB

Nội dung

Sau đây là Đề thi học sinh giỏi môn Toán lớp 12 cấp trường năm 2019-2020 có đáp án - Trường THPT Chuyên Nguyễn Trãi, Hải Dương giúp các bạn học sinh tự đối chiếu, đánh giá sau khi thử sức mình với đề thi. Cùng tham khảo nhé.

SỞ GD & ĐT HẢI DƯƠNG ĐỀ THI CHỌN ĐỘI TUYỂN CẤP TRƯỜNG TRƯỜNG THPT NGUYỄN TRÃI NĂM HỌC 2019 - 2020 MƠN TỐN – 12 Ngày tháng năm 2019 Thời gian làm : 180 Phút  Câu (1,5 điểm) Giải hệ phương trình   x  y  y  3x  x   x  y  y  2 Câu (2,0 điểm) Cho dãy số (an ) thỏa mãn đồng thời hai điều kiện 3an1  an 6an1  an1  5an  n  2, n  Chứng minh dãy (an ) có giới hạn hữu hạn tìm giới hạn Câu (2,0 điểm ) Cho số thực dương x, y, z thỏa mãn xy  yz  zx  xyz  Chứng minh x2  y  z  10 xyz  Câu (1,5 điểm) Cho dãy số nguyên (an ) thỏa mãn: với p nguyên tố k nguyên dương a pk 1  pak  3a p  13 Tính a2019 Câu (2,0 điểm) Cho tam giác ABC nội tiếp đường tròn (O) Một đường tròn (K) qua B C cắt đoạn thẳng CA AB E F Gọi BE cắt CF H M trung điểm BC tiếp tuyến B C đường tròn ngoại tiếp tam giác BHC cắt I Gọi S hình chiếu A IH D giao IH với BC Chứng minh đường tròn ngoại tiếp tam giác SMD tiếp xúc với đường tròn (O) Câu (1,0 điểm) Điền vào ô bảng vuông  số tự nhiên từ đến 49 hình vẽ Mỗi lần, phép chọn ô bảng đồng thời tăng số thêm giảm số hai kề với 1, giảm số tăng số hai kề với thêm (hai ô kề hai ô chung cạnh) Hỏi đưa tất số bảng sau số hữu hạn bước hay không? 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 48 49 47 ĐÁP ÁN ĐỀ THI CHỌN HỌC SINH GIỎI CẤP TRƯỜNG NĂM HỌC 2019-2020  Câu (1,5 điểm) Giải hệ phương trình   x  y  y  3x  x   x  y  y  2 Lời giải: Điều kiện x2  1,2 y  y   ( y  1)2   ( y  1)2  Ta có (1)  x3  3x  y3  y   x3  3x  ( y  1)3  3( y  1) Xét f ( x)  x3  3x f '( x)  3x2   0x [1,1] f '( x)   x  1 Suy f ( x) đồng biến [1,1] Mà x, y 1[1,1] nên f ( x)  f ( y 1)  x  y  Thay vào phương trình (2) ta x2    x2   x2   x2    x2 Bình phương hai vế x4  x2   4(1  x2 )  x4  8x2   x  Đối chiếu điều kiện thấy thỏa mãn Vậy ( x, y)  (0,1) nghiệm phương trình Câu (2,0 điểm) Cho dãy số (an ) thỏa mãn đồng thời hai điều kiện 3an1  an 6an1  an1  5an  n  2, n  Chứng minh dãy (an ) có giới hạn hữu hạn tìm giới hạn Lời giải:  Nếu N  cho aN  , ta có 3k aN k  aN  với k nguyên dương hay an  0n  N n Lại có: 6an1  6an1  an1  5an   an    a0 6 Ta lim an  theo nguyên lý kẹp (1,0 điểm)  n Nếu an  n  , 3an1  an   an    a0 nên theo nguyên lý kẹp 3 lim an  Vậy lim an  (1,0 điểm) Câu (2,0 điểm ) Cho số thực dương x, y, z thỏa mãn xy  yz  zx  xyz  Chứng minh x2  y  z  10 xyz  Lời giải: Theo bất đẳng thức Schur, ta có x( x  y)( x  z)  y( y  x)( y  z)  z( z  x)( z  y)   x3  y3  z  3xyz  x2 ( y  z )  y ( z  x)  z ( x  y)  x3  y3  z  3xyz  xyz  ( x  y  z )( xy  yz  zx)  x  y  z   x  y  z  2( xy  yz  zx)  xyz xyz  x  y  z  2(1  xyz )  x yz x yz Vậy cần chứng minh 10 xyz   xyz  Lại có xy  yz  zx  xyz  2( xy  yz  zx) x yz xyz xyz   xyz  0  x y z  x yz x yz ( x  y  z )2 xyz  ( x  y  z )3 27 Đặt t  x  y  z , t  Từ giả thiết có t2 t    (2t  3)(t  3)2   t  27 Ta có điều phải chứng minh Dấu chẳng hạn x  y  z  Câu (1,5 điểm) Cho dãy số nguyên (an ) thỏa mãn: với p nguyên tố k nguyên dương a pk 1  pak  3a p  13 Tính a2019 Lời giải: Xét hai số nguyên tố q p Theo giả thiết a pq1  paq  3a p  13 (1) a pq1  qa p  3aq  13 (2) Từ (1) (2) suy paq  3a p  qa p  3aq  ( p  3)aq  (q  3)a p (3) (0,5 điểm) Trong (3) Cho p  q  , ta 5a3  6a2  a3  a2 Cho p  2, q  ta 5a7  10a2  a7  2a2 Trong (1), cho p  2, q  a7  2a3  3a2  13  2a2  12 a2  3a2  13 suy a2  5 (0,5 điểm) Mà từ (3) với p nguyên tố a p  p3 a2 nên a p  p  Vậy a2019  a2.1009 1  1009.a2  3a1009 13 1009.5 3(1009 3) 13 Hay a2019  8094 Đáp số a2019  8094 (0,5 điểm) Câu (2,0 điểm) Cho tam giác ABC nội tiếp đường tròn (O) Một đường tròn (K) qua B C cắt đoạn thẳng CA AB E F Gọi BE cắt CF H M trung điểm BC tiếp tuyến B C đường tròn ngoại tiếp tam giác BHC cắt I Gọi S hình chiếu A IH D giao IH với BC Chứng minh đường tròn ngoại tiếp tam giác SMD tiếp xúc với đường tròn (O) Lời giải: A S E R F H D G T B O K M C Gọi EF cắt BC G Từ định lý Brocard H trực tâm tam giác KAG, giao điểm R AG AH điểm Miquel tam giác ABC với E,F,G thẳng hàng Vậy R S thuộc đường trịn đường kính AH Mà tứ giác RKMG nội tiếp đường trịn đường kính GK nên RMD  RKG  RAH  RSH  RSD Từ RSMD tứ giác nội tiếp, tức (O) đường trịn ngoại tiếp tam giác (SMD) có điểm chung R Ta chứng minh chúng tiếp xúc R (1,0 điểm) Thật vậy, kẻ tiếp tuyến R đường trịn (O) cắt BC T TB RB  TC RC Lại có KH KR  KB2  KC nên tam giác HBK đồng dạng tam giác BRK tam giác HCK đồng dạng tam giác CRK Ta HB HK HK HC    RB BK CK RC Suy TB HB hay TH tiếp xúc với đường tròn (HBC)  TC HC Lại có HD đường đối trung tam giác HBC ứng với điểm H nên ( B, C, D, T )  1, ta , tức TR tiếp xúc với đường tròn ngoại tiếp tam giác DMS TR2  TB.TC  TDTM Vậy đường tròn ngoại tiếp tam giác DMS tiếp xúc với đường tròn (O) Điều phải chứng minh (1,0 điểm) Câu Điền vào ô bảng vuông  số 10 11 12 13 14 15 16 17 18 19 20 21 tự nhiên từ đến 49 hình vẽ Mỗi lần, phép chọn ô bảng đồng thời tăng số ô thêm giảm số hai 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 48 49 x-2 a+1 b+2 c-1 kề với 1, giảm số tăng số hai kề với thêm (hai kề hai chung cạnh) Hỏi đưa tất số bảng sau 47 số hữu hạn bước hay không? Lời giải: Câu trả lời Xét quy trình sau: x a b c +1-1-1 -1+1+1 x-2 b+1 a c x-1 a+1 b+1 c +1-1-1 +1-1-1 x-3 a+1 b+1 c-1 +1-1-1 x-3 b a c Nhận thấy, sau quy trình vậy, ta giảm số ô đơn vị mà không làm ảnh hưởng đến ô khác Lưu ý vị trí x, a, b, c thay đổi cho để x góc góc hình vng  (0,5 điểm) Vậy sau số hữu hạn bước, ta chuyển bảng cịn số 0,1,2 hình vẽ sau 1 2 2 2 2 2 2 1 2 0 Xét bảng  phía bên trái, gồm hình vng  giống 2 1 2 2 2 1 2 2 Bằng thao thác với ô  bên trái bên phải  sau 0 1 -1+1+1 1 2 +1-1-1 1 1 1 Ta thu bảng hầu hết số 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Bây xử lý nốt hàng 2 1 1 1 1 1 1 Tương tự với cột Vậy, ta đưa tất thành số (0,5 điểm) ...ĐÁP ÁN ĐỀ THI CHỌN HỌC SINH GIỎI CẤP TRƯỜNG NĂM HỌC 201 9-2 020  Câu (1,5 điểm) Giải hệ phương trình   x  y  y  3x  x... khơng? Lời giải: Câu trả lời Xét quy trình sau: x a b c + 1-1 -1 -1 +1+1 x-2 b+1 a c x-1 a+1 b+1 c + 1-1 -1 + 1-1 -1 x-3 a+1 b+1 c-1 + 1-1 -1 x-3 b a c Nhận thấy, sau quy trình vậy, ta giảm số ô đơn vị...  2, n  Chứng minh dãy (an ) có giới hạn hữu hạn tìm giới hạn Lời giải:  Nếu N  cho aN  , ta có 3k aN k  aN  với k nguyên dương hay an  0n  N n Lại có: 6an1  6an1  an1  5an

Ngày đăng: 27/05/2021, 00:28

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w