Tài liệu tham khảo |
Loại |
Chi tiết |
[1] B. Baeumer, M. Geissert, M. Kovács, Existence, uniqueness and regularity for a class of semilinear stochastic Volterra equations with multiplicative noise J. Differen- tial Equations, 258 (2015), no. 2, 535–554 |
Sách, tạp chí |
Tiêu đề: |
Existence, uniqueness and regularity for aclass of semilinear stochastic Volterra equations with multiplicative noise |
Tác giả: |
B. Baeumer, M. Geissert, M. Kovács, Existence, uniqueness and regularity for a class of semilinear stochastic Volterra equations with multiplicative noise J. Differen- tial Equations, 258 |
Năm: |
2015 |
|
[2] J. V. Beck, B. F. Blackwell and C. R. St. Clair, Inverse Heat Conduction–Ill Posed Problems, Wiley, New York (1985) |
Sách, tạp chí |
Tiêu đề: |
Inverse Heat Conduction–Ill PosedProblems |
|
[3] D.E.Beskos, Boundary element method in dynamic analysis: part II, ASME Appl |
Sách, tạp chí |
Tiêu đề: |
Boundary element method in dynamic analysis: part II |
|
[4] N. Bissantz, H. Holzmann, Asymptotics for spectral regularization estimators in statistical inverse problems Comput. Statist. 28 (2013), no. 2, 435–453 |
Sách, tạp chí |
Tiêu đề: |
Asymptotics for spectral regularization estimators instatistical inverse problems |
Tác giả: |
N. Bissantz, H. Holzmann, Asymptotics for spectral regularization estimators in statistical inverse problems Comput. Statist. 28 |
Năm: |
2013 |
|
[5] N. Bissantz and H. Holzmann, Statistical inference for inverse problems, Inverse Problems 24 (2008), Article ID 034009 |
Sách, tạp chí |
Tiêu đề: |
Statistical inference for inverse problems |
Tác giả: |
N. Bissantz and H. Holzmann, Statistical inference for inverse problems, Inverse Problems 24 |
Năm: |
2008 |
|
[6] L. Cavalier, Nonparametric statistical inverse problems, Inverse Problems, No. 24 (2008), 034004, 19 |
Sách, tạp chí |
Tiêu đề: |
Nonparametric statistical inverse problems |
Tác giả: |
L. Cavalier, Nonparametric statistical inverse problems, Inverse Problems, No. 24 |
Năm: |
2008 |
|
[7] H. W. Engl, M. Hanke, and A. Neubauer, Regularization of Inverse Problems, Kluwer Academic, Dordrecht, Boston, London, 1996 |
Sách, tạp chí |
Tiêu đề: |
Regularization of Inverse Problems |
|
[8] A.S. Fokas, B. Pelloni, The Dirichlet-to-Neumann map for the elliptic sine-Gordon equation, Nonlinearity 25 (2012) 1011–1031 |
Sách, tạp chí |
Tiêu đề: |
The Dirichlet-to-Neumann map for the elliptic sine-Gordonequation |
|
[9] A. Kirsch, An Introduction to the Mathematical Theory of Inverse Problems, Second edition, Springer, 1996 |
Sách, tạp chí |
Tiêu đề: |
An Introduction to the Mathematical Theory of Inverse Problems |
|
[10] C. K ¨onig, F. Werner, T. Hohage, Convergence rates for exponentially ill-posed in- verse problems with impulsive noise. SIAM J. Numer. Anal. 54 (2016), no. 1, 341–360 |
Sách, tạp chí |
Tiêu đề: |
Convergence rates for exponentially ill-posed in-verse problems with impulsive noise |
Tác giả: |
C. K ¨onig, F. Werner, T. Hohage, Convergence rates for exponentially ill-posed in- verse problems with impulsive noise. SIAM J. Numer. Anal. 54 |
Năm: |
2016 |
|
[11] A.B. Mair, F.H. Ruymgaart, Statistical inverse estimation in Hilbert scales. SIAM J |
Sách, tạp chí |
Tiêu đề: |
Statistical inverse estimation in Hilbert scales |
|
[12] N.D. Minh, T.D. Khanh, N.H. Tuan, D.D. Trong, A two-dimensional backward heat problem with statistical discrete data, J. Inverse Ill-Posed Probl. 26 (2018), no. 1, 13–31 |
Sách, tạp chí |
Tiêu đề: |
A two-dimensional backward heatproblem with statistical discrete data |
Tác giả: |
N.D. Minh, T.D. Khanh, N.H. Tuan, D.D. Trong, A two-dimensional backward heat problem with statistical discrete data, J. Inverse Ill-Posed Probl. 26 |
Năm: |
2018 |
|
[14] E. Nane and N.H. Tuan, Approximate solutions of inverse problems for nonlinear space fractional diffusion equations with randomly perturbed data, SIAM/ASA Jour- nal on Uncertainty Quantification, 6(1), (2018) 302–338 |
Sách, tạp chí |
Tiêu đề: |
Approximate solutions of inverse problems for nonlinearspace fractional diffusion equations with randomly perturbed data |
|
[15] D.D. Trong, T.D. Khanh, N.H. Tuan, N.D. Minh, Nonparametric regression in a sta- tistical modified Helmholtz equation using the Fourier spectral regularization Statis- tics 49 (2015), no. 2, 267–290 |
Sách, tạp chí |
Tiêu đề: |
Nonparametric regression in a sta-tistical modified Helmholtz equation using the Fourier spectral regularization |
Tác giả: |
D.D. Trong, T.D. Khanh, N.H. Tuan, N.D. Minh, Nonparametric regression in a sta- tistical modified Helmholtz equation using the Fourier spectral regularization Statis- tics 49 |
Năm: |
2015 |
|
[16] N.H. Tuan, L.D. Thang, V.A. Khoa, A modified integral equation method of the non- linear elliptic equation with globally and locally Lipschitz source, Applied Mathemat- ics and Computation 256 (2015), 245–265 |
Sách, tạp chí |
Tiêu đề: |
A modified integral equation method of the non-linear elliptic equation with globally and locally Lipschitz source |
Tác giả: |
N.H. Tuan, L.D. Thang, V.A. Khoa, A modified integral equation method of the non- linear elliptic equation with globally and locally Lipschitz source, Applied Mathemat- ics and Computation 256 |
Năm: |
2015 |
|
[17] N.H. Tuan, T.T. Binh, T.Q. Viet, Lesnic, D. Lesnic, On the Cauchy problem for semi- linear elliptic equations J. Inverse Ill-Posed Probl. 24 (2016), no. 2, 123–138 |
Sách, tạp chí |
Tiêu đề: |
On the Cauchy problem for semi-linear elliptic equations |
Tác giả: |
N.H. Tuan, T.T. Binh, T.Q. Viet, Lesnic, D. Lesnic, On the Cauchy problem for semi- linear elliptic equations J. Inverse Ill-Posed Probl. 24 |
Năm: |
2016 |
|
[18] N.H. Tuan, T.T. Binh, T.Q. Viet, D. Lesnic, On the Cauchy problem for semilinear elliptic equations J. Inverse Ill-Posed Probl. 24 (2016), no. 2, 123—138 |
Sách, tạp chí |
Tiêu đề: |
On the Cauchy problem for semilinearelliptic equations |
Tác giả: |
N.H. Tuan, T.T. Binh, T.Q. Viet, D. Lesnic, On the Cauchy problem for semilinear elliptic equations J. Inverse Ill-Posed Probl. 24 |
Năm: |
2016 |
|
[19] N. H. Tuan and E. Nane, Inverse source problem for time fractional diffusion with discrete random noise, Statistics and Probability Letters, Volume 120 (2017), 126–134 |
Sách, tạp chí |
Tiêu đề: |
Inverse source problem for time fractional diffusion withdiscrete random noise |
Tác giả: |
N. H. Tuan and E. Nane, Inverse source problem for time fractional diffusion with discrete random noise, Statistics and Probability Letters, Volume 120 |
Năm: |
2017 |
|
[20] H. Zhang, R. Wang, Modified boundary Tikhonov-type regularization method for the Cauchy problem of a semi-linear elliptic equation Inverse Probl. Sci. Eng. 24 (2016), no. 7, 1249–1265 |
Sách, tạp chí |
Tiêu đề: |
Modified boundary Tikhonov-type regularization method for theCauchy problem of a semi-linear elliptic equation |
Tác giả: |
H. Zhang, R. Wang, Modified boundary Tikhonov-type regularization method for the Cauchy problem of a semi-linear elliptic equation Inverse Probl. Sci. Eng. 24 |
Năm: |
2016 |
|
[21] G. Zou, B. Wang, Stochastic Burger’s equation with fractional derivative driven by multiplicative noise Comput. Math. Appl. 74 (2017), no. 12, 3195–3208 |
Sách, tạp chí |
Tiêu đề: |
Stochastic Burger’s equation with fractional derivative driven bymultiplicative noise |
Tác giả: |
G. Zou, B. Wang, Stochastic Burger’s equation with fractional derivative driven by multiplicative noise Comput. Math. Appl. 74 |
Năm: |
2017 |
|