✣❸■ ❍➴❈ ✣⑨ ◆➂◆● ❚❘×❮◆● ✣❸■ ❍➴❈ ❙× P❍❸▼ ✲✲✲✲✲✯✲✲✲✲✲ ✣■◆❍ ❚❍❆◆❍ ❍➬◆● ❱➋ ▼❐❚ ❙➮ P❍×❒◆● P❍⑩P ❈❍Ù◆● ▼■◆❍ ❇❻❚ ✣➃◆● ❚❍Ù❈ ❱⑨ Ù◆● ❉Ö◆● ▲❯❾◆ ❱❿◆ ❚❍❸❈ ❙➒ ❚❖⑩◆ ❍➴❈ ✣➔ ♥➤♥❣ ✲ ✷✵✷✵ ✣❸■ ❍➴❈ ✣⑨ ◆➂◆● ❚❘×❮◆● ✣❸■ ❍➴❈ ❙× P❍❸▼ ✲✲✲✲✲✯✲✲✲✲✲ ✣■◆❍ ❚❍❆◆❍ ❍➬◆● ❱➋ ▼❐❚ ❙➮ P❍×❒◆● P❍⑩P ❈❍Ù◆● ▼■◆❍ ❇❻❚ ✣➃◆● ❚❍Ù❈ ❱⑨ Ù◆● ❉Ö◆● ▲❯❾◆ ❱❿◆ ❚❍❸❈ ❙➒ ❚❖⑩◆ ❍➴❈ ❈❍❯❨➊◆ ◆●⑨◆❍✿ Pì PP P ữớ ữợ ❞➝♥ ❦❤♦❛ ❤å❝✿ ❚❙✳ ❚❘❺◆ ✣Ù❈ ❚❍⑨◆❍ ✣➔ ♥➤♥❣ ✲ ✷✵✷✵ ✶ ▲❮■ ❈❆▼ ✣❖❆◆ ❚æ✐ ①✐♥ ❝❛♠ ✤♦❛♥ ✤➙② ❧➔ ❝æ♥❣ tr➻♥❤ ♥❣❤✐➯♥ ❝ù✉ ❝õ❛ r✐➯♥❣ tæ✐✳ ❈→❝ sè ❧✐➺✉✱ ❦➳t q✉↔ ♥➯✉ tr♦♥❣ ❧✉➟♥ ✈➠♥ ❧➔ tr✉♥❣ t❤ü❝ ✈➔ ❝❤÷❛ tø♥❣ ✤÷đ❝ ❛✐ ❝ỉ♥❣ ❜è tr♦♥❣ ❜➜t ❦➻ ❝æ♥❣ tr➻♥❤ ♥➔♦ ❦❤→❝✳ ✣➔ ♥➤♥❣✱ t❤→♥❣ ✵✺ ♥➠♠ ✷✵✷✵ ỗ r q✉→ tr➻♥❤ ❤å❝ t➟♣ ✈➔ ♥❣❤✐➯♥ ❝ù✉ ✤➲ t➔✐ ❦❤♦❛ ❤å❝ ♥➔② t→❝ ❣✐↔ ❜➔② tä ❧á♥❣ ❝↔♠ ì♥ s➙✉ s➢❝ ✤➳♥ ❚❤➛② ❣✐→♦ ❚❙✳ ❚r➛♥ ✣ù❝ ❚❤➔♥❤✱ ♥❣÷í✐ ✤➣ ữợ t t tr q tr t➟♣ ✈➔ ♥❣❤✐➯♥ ❝ù✉ ❦❤♦❛ ❤å❝✳ ❇➯♥ ❝↕♥❤ ✤â✱ t→❝ ❣✐↔ ①✐♥ ❝↔♠ ì♥ ❝❤➙♥ t❤➔♥❤ ✤➳♥ ❚r÷í♥❣ ✣↕✐ ❤å❝ s÷ ♣❤↕♠✲✣↕✐ ❤å❝ ✣➔ ◆➤♥❣✱ ✣↕✐ ❤å❝ ◗✉↔♥❣ ❇➻♥❤ ✤➣ t ợ s ữỡ t ❝➜♣ t↕✐ ◗✉↔♥❣ ❇➻♥❤✱ ①✐♥ ❝↔♠ ì♥ ❣✐❛ ✤➻♥❤✱ ỗ tổ ❣✐ó♣ ✤ï tr♦♥❣ s✉èt t❤í✐ ❣✐❛♥ tỉ✐ t❤❛♠ ❣✐❛ ❤å❝ ❈❛♦ ❤å❝ ✈➔ ✈✐➳t ❧✉➟♥ ✈➠♥✳ ❚✉② ♥❤✐➯♥ ✤✐➲✉ ❦✐➺♥ ♥➠♥❣ ❧ü❝ ❜↔♥ t❤➙♥ ❝á♥ ❤↕♥ ❝❤➳ ♥➯♥ tr♦♥❣ ✤➲ t➔✐ ♥❣❤✐➯♥ ❝ù✉ ❦❤♦❛ ❤å❝ ♥➔② ❝❤➢❝ ❝❤➢♥ ❦❤æ♥❣ t❤➸ tr→♥❤ ❦❤ä✐ ♥❤ú♥❣ t❤✐➳✉ sât✳ ❚→❝ ❣✐↔ ❦➼♥❤ ♠♦♥❣ ❝→❝ ổ õ ỳ ỵ õ ỵ t ỡ t ỗ ✸ ▼ư❝ ❧ư❝ ▲í✐ ❝❛♠ ✤♦❛♥ ✶ ▲í✐ ❝↔♠ ì♥ ✶ ▼ð ✤➛✉ ✸ ✶ ▼ët sè ♣❤÷ì♥❣ ♣❤→♣ ❝❤ù♥❣ ♠✐♥❤ ❜➜t ✤➥♥❣ t❤ù❝ ✼ ✶✳✶ ✶✳✷ ✼ ✾ ✷ ▼ët sè ❦❤→✐ ♥✐➺♠ ✈➔ t➼♥❤ ❝❤➜t ❝ì ❜↔♥ ❝õ❛ ❜➜t ✤➥♥❣ t❤ù❝ ✭ ❬✼❪✮ ✳ ▼ët sè ♣❤÷ì♥❣ ♣❤→♣ ❝❤ù♥❣ ♠✐♥❤ ❜➜t ✤➥♥❣ t❤ù❝ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ Ù♥❣ ❞ö♥❣ ❝õ❛ ❜➜t ✤➥♥❣ t❤ù❝ ✷✳✶ ✷✳✷ ✷✳✸ ✹✻ ❙û ❞ö♥❣ ❜➜t ✤➥♥❣ t❤ù❝ ✤➸ t➻♠ ❣✐→ trà ❧ỵ♥ ♥❤➜t✱ ♥❤ä ♥❤➜t ✭ ❬✼❪✮✳ ✹✻ ❙û ❞ư♥❣ ❜➜t ✤➥♥❣ t❤ù❝ ✤➸ ❣✐↔✐ ♣❤÷ì♥❣ tr➻♥❤ ✈➔ ❤➺ ♣❤÷ì♥❣ tr➻♥❤ ✭ ❬✺❪✱ ❬✽❪✮✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✺✷ ❙û ❞ö♥❣ ❜➜t ✤➥♥❣ t❤ù❝ ✤➸ ❣✐↔✐ ♣❤÷ì♥❣ tr➻♥❤ ♥❣❤✐➺♠ ♥❣✉②➯♥ ✭ ❬✺❪✱ ❬✽❪✮ ✺✽ ❑➳t ❧✉➟♥ ✻✹ ❚➔✐ ❧✐➺✉ t❤❛♠ ❦❤↔♦ ✻✺ ✹ ▼Ð ✣❺❯ ✶✳ ▲Þ ❉❖ ❈❍➴◆ ✣➋ ❚⑨■ ❚♦→♥ ❤å❝ ❧➔ ♠ët ♠æ♥ ❦❤♦❛ ❤å❝ tü ♥❤✐➯♥✱ ✤â♥❣ ✈❛✐ trá r➜t q✉❛♥ trå♥❣ tr♦♥❣ ❝→❝ ❧➽♥❤ ✈ü❝ ♥❣❤✐➯♥ ❝ù✉ ❦❤♦❛ ❤å❝ ✈➔ tr♦♥❣ ❝✉ë❝ sè♥❣ ❤➔♥❣ ♥❣➔②✳ Ð ❜➟❝ ❤å❝ ♣❤ê t❤ỉ♥❣✱ t♦→♥ ❤å❝ ✤÷đ❝ ❝♦✐ ❧➔ ♠ët ♠ỉ♥ ❤å❝ ❝ì ❜↔♥✱ ❧➔ ♥➲♥ t↔♥❣ ✤➸ ❝→❝ ❡♠ ❤å❝ s✐♥❤ ♣❤→t ❤✉② ♥➠♥❣ ❧ü❝ ❜↔♥ t❤➙♥✱ ❧➔ t✐➲♥ ✤➲ ✤➸ ❝→❝ ❡♠ ❤å❝ tèt ❝→❝ ❜ë ♠æ♥ ❦❤♦❛ ❤å❝ ❦❤→❝✳ ❇➜t ✤➥♥❣ t❤ù❝ ❧➔ ♠ët ❝❤õ ✤➲ ❦❤â ✈➔ ❝ơ♥❣ ❧➔ ❞↕♥❣ t♦→♥ r➜t q✉❛♥ trå♥❣ tr♦♥❣ ❝❤÷ì♥❣ tr➻♥❤ ♣❤ê t❤æ♥❣✳ ❈→❝ ❦➳t q✉↔ ✈➲ ♥ë✐ ❞✉♥❣ ♥➔② ✤➣ ✤÷đ❝ tr➻♥❤ ❜➔② r➜t ❤♦➔♥ ❝❤➾♥❤✱ ✤➛② ✤õ ð ♥❤ú♥❣ t tr ữợ ố t t tr ❝→❝ ❦➻ t❤✐ t✉②➸♥ s✐♥❤ ✣↕✐ ❤å❝✲❈❛♦ ✤➥♥❣✱ ✤➦❝ ❜✐➺t ❧➔ ❝→❝ ❦➻ t❤✐ ❍å❝ s✐♥❤ ❣✐ä✐✱ t❛ ✈➝♥ ❤❛② ❣➦♣ ❝→❝ ❞↕♥❣ ❜➔✐ t♦→♥ ✈➲ ❜➜t ✤➥♥❣ t❤ù❝✳ ✣➸ ❣✐ó♣ ❤å❝ s✐♥❤ ♣❤ê t❤ỉ♥❣ t➻♠ ❤✐➸✉ ❝→❝ ♣❤÷ì♥❣ ♣❤→♣ ❝❤ù♥❣ ♠✐♥❤ ❜➜t ✤➥♥❣ t❤ù❝ ✈➔ ❝→❝ ù♥❣ ❞ö♥❣ ❝õ❛ ❜➜t ✤➥♥❣ t❤ù❝ tr♦♥❣ ♠ët sè ❜➔✐ t♦→♥ ❦❤→❝ ♥❤❛✉✱ ỗ tớ ữủ tt ự ❞↕♥❣ ❜➜t ✤➥♥❣ t❤ù❝ ❝ư t❤➸ ✈➔ ❤➺ t❤è♥❣ ❝❤ó♥❣ t❤❡♦ ♠ët ❧♦❣✐❝ ♥❤➜t ✤à♥❤ ❧➔ ♥❤✐➺♠ ✈ö ♠➔ ✤➲ t➔✐ ❧✉➟♥ ✈➠♥ ♥➔② ✤➲ ❝➟♣ ✤➳♥✳ ❱ỵ✐ ♠ư❝ ✤➼❝❤ ♥❣❤✐➯♥ ❝ù✉ ❝→❝ ♣❤÷ì♥❣ ♣❤→♣ ❝❤ù♥❣ ♠✐♥❤ ❜➜t ✤➥♥❣ t❤ù❝ ự ụ ữ ữợ sỹ ữợ t❤➛② ❣✐→♦ ❚r➛♥ ✣ù❝ ❚❤➔♥❤✱ ❝❤ó♥❣ tỉ✐ ✤➣ q✉②➳t ✤à♥❤ ❝❤å♥ ♥❣❤✐➯♥ ❝ù✉ ✤➲ t➔✐✿ ✏ ❱➲ ♠ët sè ♣❤÷ì♥❣ ♣❤→♣ ❝❤ù♥❣ ♠✐♥❤ ❜➜t ✤➥♥❣ t❤ù❝ ✈➔ ù♥❣ ❞ö♥❣✑ ✳ ❈❤ó♥❣ tỉ✐ ❤② ✈å♥❣ t↕♦ ✤÷đ❝ ♠ët t➔✐ ❧✐➺✉ t❤❛♠ ❦❤↔♦ tèt ❝❤♦ ♥❤ú♥❣ ♥❣÷í✐ q✉❛♥ t➙♠ ✤➳♥ ♠ët sè ♣❤÷ì♥❣ ♣❤→♣ ❝❤ù♥❣ ♠✐♥❤ ❜➜t ✤➥♥❣ t❤ù❝ ✈➔ ù♥❣ ❞ư♥❣ ❝õ❛ ♥â tr♦♥❣ ♠ët sè ❜➔✐ t♦→♥ ♣❤ê t❤æ♥❣✳ ✷✳ ▼Ö❈ ✣➑❈❍ ◆●❍■➊◆ ❈Ù❯ ◆❣❤✐➯♥ ❝ù✉ ♥❤➡♠ t➻♠ ❤✐➸✉ ✈➔ ❧➔♠ rã ❝→❝ ✈➜♥ ✤➲ s❛✉✿ ✭✶✮ ❑❤→✐ ♥✐➺♠✱ t➼♥❤ ❝❤➜t ❝õ❛ ❜➜t ✤➥♥❣ t❤ù❝✳ ✺ ✭✷✮ ▼ët sè ♣❤÷ì♥❣ ♣❤→♣ ❝❤ù♥❣ ♠✐♥❤ ❜➜t ✤➥♥❣ t❤ù❝✳ ✭✸✮ Ù♥❣ ❞ö♥❣ ❝õ❛ ❜➜t ✤➥♥❣ t❤ù❝ tr♦♥❣ ♠ët sè ❜➔✐ t♦→♥ ♣❤ê t❤æ♥❣ ♥❤÷ ❣✐↔✐ ♣❤÷ì♥❣ tr➻♥❤✱ ❤➺ ♣❤÷ì♥❣ tr➻♥❤✱ ♣❤÷ì♥❣ tr➻♥❤ ♥❣❤✐➺♠ ♥❣✉②➯♥ ❤❛② ❜➔✐ t♦→♥ ❝ü❝ trà✳ ✸✳ ✣➮■ ❚×Đ◆● ❱⑨ P❍❸▼ ❱■ ◆●❍■➊◆ ❈Ù❯ ✣è✐ t÷đ♥❣ ♥❣❤✐➯♥ ❝ù✉ ❧➔ ❝→❝ ❝❤✉②➯♥ ✤➲ ✈➲ ❜➜t ✤➥♥❣ t❤ù❝ ✈➔ ❝→❝ ù♥❣ ❞ö♥❣ ❝õ❛ ❝❤ó♥❣✳ P❤↕♠ ✈✐ ♥❣❤✐➯♥ ❝ù✉ ❧➔ ♠è✐ ❧✐➯♥ q✉❛♥ ❣✐ú❛ ❝→❝ ✤è✐ t÷đ♥❣ tr➯♥❀ ❝→❝ ù♥❣ ❞ư♥❣ ✤➸ ❣✐↔✐ ♠ët sè ❜➔✐ t♦→♥✳ ✹✳ ◆❍■➏▼ ❱Ö ◆●❍■➊◆ ❈Ù❯ ◆❤✐➺♠ ✈ö ♥❣❤✐➯♥ ❝ù✉ ❧➔ t➻♠ ❤✐➸✉ ✈➲ ❜➜t ✤➥♥❣ t❤ù❝❀ ❝→❝ ❞↕♥❣ ❜➔✐ t➟♣ ù♥❣ ❞ư♥❣✳ ✺✳ P❍×❒◆● P❍⑩P ◆●❍■➊◆ Pữỡ ự ỵ tt t ♣❤➙♥ t➼❝❤✱ s♦ s→♥❤✱ tê♥❣ ❤đ♣ ✈➔ sû ❞ư♥❣ ❝→❝ ♣❤÷ì♥❣ ♣❤→♣ s✉② ❧✉➟♥ ❝õ❛ t♦→♥ ❤å❝✳ ✻✳ ❈❻❯ ❚❘Ĩ❈ ế ố ỗ ữỡ ❈❤÷ì♥❣ ✶✿ ▼ët sè ♣❤÷ì♥❣ ♣❤→♣ ❝❤ù♥❣ ♠✐♥❤ ❜➜t ✤➥♥❣ t❤ù❝ ❈❤÷ì♥❣ ♥➔② tr➻♥❤ ❜➔② ♠ët sè ❦❤→✐ ♥✐➺♠✱ t➼♥❤ ❝❤➜t ❝ì ❜↔♥ ❝õ❛ ❜➜t ✤➥♥❣ t❤ù❝✱ s❛✉ ✤â ❧➔ ♠ët sè ♣❤÷ì♥❣ ♣❤→♣ ❝❤ù♥❣ ♠✐♥❤ ❜➜t ✤➥♥❣ t❤ù❝✳ ✶✳✶✳ ▼ët sè ❦❤→✐ ♥✐➺♠ ✈➔ t➼♥❤ ❝❤➜t ❝ì ❜↔♥ ❝õ❛ ❜➜t ✤➥♥❣ t❤ù❝✳ ▼ö❝ ♥➔② tr➻♥❤ ❜➔② ♠ët sè ❦❤→✐ ♥✐➺♠✱ t➼♥❤ ❝❤➜t ❝ì ❜↔♥ ❝õ❛ ❜➜t ✤➥♥❣ t❤ù❝✳ ✶✳✷✳ ▼ët sè ♣❤÷ì♥❣ ♣❤→♣ ❝❤ù♥❣ ♠✐♥❤ ❜➜t ✤➥♥❣ t❤ù❝ ▼ư❝ ♥➔② ❞➔♥❤ ✤➸ tr➻♥❤ ❜➔② ♠ët sè ♣❤÷ì♥❣ ♣❤→♣ ❝❤ù♥❣ ♠✐♥❤ ❜➜t ✤➥♥❣ t❤ù❝ ♥❤÷✿ ♣❤÷ì♥❣ ♣❤→♣ sû ❞ư♥❣ ✤à♥❤ ♥❣❤➽❛✱ ♣❤÷ì♥❣ ♣❤→♣ ❜✐➳♥ ✤ê✐ t÷ì♥❣ ✤÷ì♥❣✱ ♣❤÷ì♥❣ ♣❤→♣ ♣❤↔♥ ❝❤ù♥❣✱ ♣❤÷ì♥❣ ♣❤→♣ q✉② ♥↕♣ t♦→♥ ❤å❝✱ ♣❤÷ì♥❣ ♣❤→♣ t❛♠ t❤ù❝ ❜➟❝ ❤❛✐✱ ♣❤÷ì♥❣ ♣❤→♣ sû ❞ư♥❣ ❝→❝ ❜➜t ✤➥♥❣ t❤ù❝ q✉❡♥ t❤✉ë❝ ♥❤÷ ❆▼✲●▼✱ ❈❛✉❝❤②✲❙❝❤✇❛r③✱ ❇❡r♥♦✉❧✐✱ ♣❤÷ì♥❣ ♣❤→♣ ❧÷đ♥❣ ữỡ ỗ ũ ❞ư ❦❤→ ✤❛ ❞↕♥❣ ✤➸ ♠✐♥❤ ❤å❛ ❝❤♦ ❝→❝ ♣❤÷ì♥❣ ♣❤→♣ ✤â✳ ❈❤÷ì♥❣ ✷✿ Ù♥❣ ❞ư♥❣ ❝õ❛ ❜➜t ✤➥♥❣ t❤ù❝ ❈❤÷ì♥❣ ♥➔② tr➻♥❤ ❜➔② ♠ët sè ù♥❣ ❞ư♥❣ ❝õ❛ ❜➜t ✤➥♥❣ t❤ù❝ ✤➸ ❣✐↔✐ ♠ët sè ❜➔✐ t♦→♥ ✈➲ ❣✐↔✐ ♣❤÷ì♥❣ tr➻♥❤❀ ❤➺ ♣❤÷ì♥❣ tr➻♥❤❀ ♣❤÷ì♥❣ tr➻♥❤ ♥❣❤✐➺♠ ♥❣✉②➯♥ ❤❛② ❜➔✐ t♦→♥ ❝ü❝ trà✳ ✷✳✶✳ ❉ò♥❣ ❜➜t ✤➥♥❣ t❤ù❝ ✤➸ t➻♠ ❝ü❝ trà ▼ö❝ ♥➔② tr➻♥❤ ❜➔② ♠ët sè ✈➼ ❞ö ✈➲ ✈✐➺❝ sû ❞ö♥❣ ❜➜t ✤➥♥❣ t❤ù❝ ✤➸ ❣✐↔✐ ❜➔✐ t♦→♥ ❝ü❝ trà✳ ✷✳✷✳ ❉ò♥❣ ❜➜t ✤➥♥❣ t❤ù❝ ✤➸ ❣✐↔✐ ♣❤÷ì♥❣ tr➻♥❤✱ ❤➺ ♣❤÷ì♥❣ tr➻♥❤ ▼ư❝ ♥➔② tr➻♥❤ ❜➔② ♠ët sè ✈➼ ❞ö ✈➲ ✈✐➺❝ sû ❞ö♥❣ ❜➜t ✤➥♥❣ t❤ù❝ ✤➸ ❣✐↔✐ ♣❤÷ì♥❣ tr➻♥❤✱ ❤➺ ♣❤÷ì♥❣ tr➻♥❤✳ ✳ ✷✳✸✳ ❉ị♥❣ ❜➜t ✤➥♥❣ t❤ù❝ ✤➸ ❣✐↔✐ ♣❤÷ì♥❣ tr➻♥❤ ♥❣❤✐➺♠ ♥❣✉②➯♥ ▼ö❝ ♥➔② tr➻♥❤ ❜➔② ♠ët sè ✈➼ ❞ö ✈➲ ✈✐➺❝ sû ❞ư♥❣ ❜➜t ✤➥♥❣ t❤ù❝ ✤➸ ❣✐↔✐ ♣❤÷ì♥❣ tr➻♥❤ ♥❣❤✐➺♠ ♥❣✉②➯♥✳ ✺✾ ❚r÷í♥❣ ❤đ♣ ✷✿ xy = ⇒ x = 1, y = ✈➔ ⇒ + z = 2z ✳ ❙✉② r❛ z = ❚r÷í♥❣ ❤đ♣ ✸✿ xy = ⇒ x = 1, y = ✈➔ ⇒ + z = 3z ✳ ❙✉② r❛ z = ✭❧♦↕✐ ✈➻ ③❁②✮✳ ❱➟② ♥❣❤✐➺♠ ❝õ❛ ♣❤÷ì♥❣ tr➻♥❤ ❧➔ (x; y; z) = (1; 2; 3), (1; 3; 2), (2; 1; 3), (2; 3; 1), (3; 1; 2), (3; 2; 1) √ √ x + y = ✷✳✸✳✷ ❱➼ ❞ư✳ ❚➻♠ ♥❣❤✐➺♠ ♥❣✉②➯♥ ❝õ❛ ♣❤÷ì♥❣ tr➻♥❤ √ √ ❱➻ ①✱ ② ❝â ✈❛✐ trá ♥❤÷ ♥❤❛✉ ♥➯♥ t❛ ❝â t❤➸ ❣✐↔ sû x ≤ y ❙✉② r❛ x ≤ y √ √ √ √ ⇔ x ≤ x + y = ⇔ x ≤ 4, ⇔ x ≤ 20, 25 ❉➵ t❤➜② ① ❧➔ sè ❝❤➼♥❤ ♣❤÷ì♥❣ ♥➯♥ x = 1, 4, 9, 16 √ ❚r÷í♥❣ ❤đ♣ ✶✿ x = ⇒ y = ⇒ y = 64 √ ❚r÷í♥❣ ❤đ♣ ✷✿ x = ⇒ y = ⇒ y = 49 √ ❚r÷í♥❣ ❤đ♣ ✸✿ x = ⇒ y = ⇒ y = 36 √ ❚r÷í♥❣ ❤đ♣ ✹✿ x = 16 ⇒ y = ⇒ y = 25 ❱➟② ♥❣❤✐➺♠ ❝õ❛ ♣❤÷ì♥❣ tr➻♥❤ ❧➔✿ (x; y) = (1; 64), (4; 49), (9; 36), (16; 25), (25; 16), (36; 9), (49; 4), (64; 1) ✷✳✸✳✸ ❱➼ ❞ö✳ ❚➻♠ ♥❣❤✐➺♠ ♥❣✉②➯♥ ❝õ❛ ♣❤÷ì♥❣ tr➻♥❤ 1 + = z x y ✭✷✳✶✹✮ ❚❛ ❝â ♣❤÷ì♥❣ tr➻♥❤ ✭✷✳✶✹✮ t÷ì♥❣ ữỡ ợ x+y = z x + y = xyz xy ●✐↔ sû x ≤ y ✳ ❑❤✐ ✤â xyz = x + y ≤ 2y ⇔ xz ≤ ❱➻ x, z ∈ Z+ ♥➯♥ xz = ❤♦➦❝ xz = ❚r÷í♥❣ ❤đ♣ ✶✿ xz = ⇒ x = 1, z = ❚❤❛② ✈➔♦ ✭✷✳✶✺✮ t❛ ❝â✿ + y = y ⇔ y = ✭❧♦↕✐✮ ❚r÷í♥❣ ❤đ♣ ✷✿ xz = ⇒ x = 1, z = ❤♦➦❝ x = 2, z = ❱ỵ✐ x = 1, z = t❛ ❝â ✭✷✳✶✺✮ ⇔ + y = 2y ⇔ y = ❱ỵ✐ x = 2, z = t❛ ❝â ✭✷✳✶✺✮ ⇔ + y = 2y ⇔ y = ❱➟② ♥❣❤✐➺♠ ❝õ❛ ♣❤÷ì♥❣ tr➻♥❤ ❧➔ (x; y; z) = (1; 1; 2), (2; 2; 1)✳ ✷✳✸✳✹ ❱➼ ❞ư✳ ❚➻♠ ❝→❝ ♥❣❤✐➺♠ ♥❣✉②➯♥ ❞÷ì♥❣ ❝õ❛ ♣❤÷ì♥❣ tr➻♥❤ 5(x + y + z + t) + 10 = 2xyzt ✭✷✳✶✺✮ ✻✵ ❱➻ ✈❛✐ trá ❝õ❛ x, y, z, t ♥❤÷ ♥❤❛✉ ♥➯♥ t❛ ❝â t❤➳ ❣✐↔ sû x ≥ y ≥ z ≥ t ❑❤✐ ✤â 2xyzt = 5(x + y + z + t) + 10 ≤ 20x + 10 ✣✐➲✉ ♥➔② ❦➨♦ t❤❡♦ yzt ≤ 15 s✉② r❛ t3 ≤ 15✱ tù❝ ❧➔✿ t ≤ ❚r÷í♥❣ ❤đ♣ ✶✿ ❱ỵ✐ t ❂ ✶✱t❛ ❝â 2xyz = 5(x + y + z) + 15 ≤ 15x + 15 ❙✉② r❛ 2yz ≤ 30 ❤❛② 2z ≤ 30✱ tù❝ ❧➔ z ≤ ◆➳✉ z = t❤➻ 2xy = 5(x + y) + 20 ⇔ 4xy = 10(x + y) + 40 ⇔ (2x − 5)(2y − 5) = 65 65 ⇔ 2x − = 2y − ⇔ x = 9, y = ❤♦➦❝ x = 35, y = ◆➳✉ z = t❤➻ 4xy = 5(x + y) + 25 ⇔ 16xy = 20(x + y) + 100 ⇔ (4x − 5)(4y − 5) = 125 125 ⇔ 4x − = 4y ổ tỗ t x, y ∈ Z+ t❤ä❛ ♠➣♥ ♣❤÷ì♥❣ tr➻♥❤✳ ◆➳✉ z = t❤➻ 6xy = 5(x + y) + 30 ⇔ 36xy = 30(x + y) + 180 ⇔ (6x − 5)(6y − 5) = 205 205 ⇔ 6x − = 6y ổ tỗ t x, y Z+ tọ ữỡ tr rữớ ủ ợ t ❂ ✷ t❛ ❝â 4xyz = 5(x + y + z) + 20 ≤ 15x + 20 ❙✉② r❛ 4yz ≤ 35 ❤❛② 4z ≤ 35✱ tù❝ ❧➔ z ≤ 2✳ ❱➟② z = ✭✈➻ z ≥ t) ◆➳✉ z = t❤➻ 8xy = 5(x + y) + 30 ⇔ 64xy = 40(x + y) + 240 ⇔ (8x − 5)(8y − 5) = 265 205 ⇔ 8x − = 8y − ✻✶ ổ tỗ t x, y Z+ tọ ♣❤÷ì♥❣ tr➻♥❤✳ ❱➟② ♥❣❤✐➺♠ ❝õ❛ ♣❤÷ì♥❣ tr➻♥❤ ❧➔ (x; y; z; t) = (9; 5; 1; 1), (35; 3; 1; 1) ✈➔ ❝→❝ ❤♦→♥ ✈à ❝õ❛ ❝→❝ ❜ë sè ♥➔②✳ ✷✳✸✳✺ ❱➼ ❞ư✳ ❚➻♠ ❝→❝ ♥❣❤✐➺♠ ♥❣✉②➯♥ ❝õ❛ ♣❤÷ì♥❣ tr➻♥❤ 1 + = x y ❉♦ ✈❛✐ trá ❜➻♥❤ ✤➥♥❣ ❝õ❛ ① ✈➔ ② ♥➯♥ t❛ ❝â t❤➸ ❣✐↔ sû x ≥ y ❉ò♥❣ ❜➜t ✤➥♥❣ t❤ù❝ ✤➸ ❣✐ỵ✐ ❤↕♥ ❦❤♦↔♥❣ ❣✐→ trà ❝õ❛ sè ♥❤ä ❤ì♥ ✭❧➔ ②✮✳ ❍✐➸♥ ♥❤✐➯♥ t❛ ❝â 1 < ⇒ y > y 1 ▼➦t ❦❤→❝ ❞♦ x ≥ y ≥ ♥➯♥ ≤ ❉♦ ✤â x y 1 1 = + ≤ + ≤ x y y y y ❱➟② y ≤ 6✳ ❚ø ✤â s✉② r❛ ≤ y ≤ 6✳ ❱ỵ✐ ② ❂ ✹ t❛ ❝â 1 1 = − = ⇒ x = 12 x 12 ❱ỵ✐ ② ❂ ✺ t❛ ❝â 1 = − = x 15 ❚r÷í♥❣ ❤đ♣ ♥➔② ❧♦↕✐ ✈➻ ❦❤ỉ♥❣ ❝â sè ♥❣✉②➯♥ x ♥➔♦ t❤ä❛ ♠➣♥✳ ❱ỵ✐ ② ❂ ✻ t❛ ❝â 1 1 = − = ⇒ x = x 6 ❱➟②✱ ♣❤÷ì♥❣ tr➻♥❤ ❝â ❝→❝ ♥❣❤✐➺♠ ❧➔ (4; 12), (12; 4), (6; 6)✳ ❚➻♠ ❝→❝ sè tü ♥❤✐➯♥ ① s❛♦ ❝❤♦ 2x + 3x = 5x P❤÷ì♥❣ tr➻♥❤ ✤➣ ❝❤♦ t÷ì♥❣ ✤÷ì♥❣ ✈ỵ✐ ✷✳✸✳✻ ❱➼ ❞ư✳ x + ◆➳✉ ① ❂ ✵ t❤➻ ❱❚✭✷✳✶✻✮ ❂ ✷ ✭❧♦↕✐✮✳ ◆➳✉ ① ❂ ✶ t❤➻ ❱❚✭✷✳✶✻✮ ❂ ✶ ✭✤ó♥❣✮✳ x = ✭✷✳✶✻✮ ✻✷ ◆➳✉ x ≥ t❤➻ x x < , 5 x + < ❉♦ ✤â 5 x < + = 5 ❱➟② ♣❤÷ì♥❣ tr➻♥❤ ❝â ♥❣❤✐➺♠ ❞✉② ♥❤➜t ❧➔ x = 1✳ ✷✳✸✳✼ ❱➼ ❞ö✳ ❚➻♠ ❝→❝ sè ♥❣✉②➯♥ x, y, z t❤ä❛ ♠➣♥ x2 + y + z ≤ xy + 3y + 2z − ❇➜t ♣❤÷ì♥❣ tr➻♥❤ ✤➣ ❝❤♦ ⇔ x2 + y + z − xy − 3y − 2z + ≤ y2 3y 2 ⇔ x − xy + + − 3y + + (z − 2z + 1) ≤ 4 2 y y + − + (z − 1)2 ≤ ⇔ x− 2 y y ▼➔ x − + − + (z − 1)2 ≥ 0, ∀x, y ∈ R 2 ❙✉② r❛ y y x− + − + (z − 1)2 = 2 y = x − x = y ⇔ −1=0 ⇔ y =2 z = z − = x = ❈→❝ sè ①✱②✱③ ♣❤↔✐ t➻♠ ❧➔ y = z = ✷✳✸✳✽ ❱➼ ❞ö✳ ❚➻♠ ❝→❝ ❝➦♣ sè ♥❣✉②➯♥ t❤ä❛ x+ x = y ợ t ữỡ tr➻♥❤ ❦❤ỉ♥❣ ❝â ♥❣❤➽❛✳ ❱ỵ✐ ①❂✵✱②❂✵ t❤➻ ❝➦♣ sè ①✱② t❤ä❛ ♠➣♥✳ ❱ỵ✐ ①❃✵✱②❃✵ t❛ ❝â x+ √ x=y ⇔x+ √ x = y2 ✻✸ ⇔ √ x = y − x > √ ✭✷✳✶✼✮ ✣➦t x = k ✭❦ ♥❣✉②➯♥ ❞÷ì♥❣ ✈➻ ① ♥❣✉②➯♥ ❞÷ì♥❣✮ ❚❛ ❝â ✭✷✳✶✼✮ ⇔ k = y − k ⇔ k(k + 1) = y ◆❤÷♥❣ k < k(k + 1) < (k + 1)2 ⇒ k < y < k + ▼➔ ❣✐ú❛ ❦ ✈➔ ❦✰✶ ✭✷ sè ♥❣✉②➯♥ ❞÷ì♥❣ ❧✐➯♥ t✐➳♣✮ ❦❤ỉ♥❣ tỗ t ởt số ữỡ ổ ❝â ❝➦♣ sè ♥❣✉②➯♥ ❞÷ì♥❣ ♥➔♦ t❤ä❛ ♠➣♥ ♣❤÷ì♥❣ tr➻♥❤✳ ❱➟② ♣❤÷ì♥❣ tr➻♥❤ ❝â ♥❣❤✐➺♠ ❞✉② ♥❤➜t ❧➔ ✷✳✸✳✾ ❱➼ ❞ư✳ x=0 y = ❚➻♠ ♥❣❤✐➺♠ ♥❣✉②➯♥ ❞÷ì♥❣ ❝õ❛ ♣❤÷ì♥❣ tr➻♥❤ 1 + + = x y z ❑❤æ♥❣ ♠➜t t➼♥❤ tê♥❣ q✉→t t❛ ❣✐↔ sû x ≥ y ≥ z ❚❛ ❝â 2= 1 + + ≤ x y z z ❉♦ ✤â 2z ≤ ▼➔ ③ ♥❣✉②➯♥ ❞÷ì♥❣ ✈➟② z = 1✳ ❚❤❛② z = ✈➔♦ ♣❤÷ì♥❣ tr➻♥❤ t❛ ✤÷đ❝ ❚❤❡♦ ❣✐↔ sû x ≥ y ♥➯♥ 1 + = x y 1 + ≥ x y y ⇒ y ≤ 1= ▼➔ ữỡ ợ t ①❂✵ ❦❤ỉ♥❣ t❤ä❛ ♠➣♥✳ ❱ỵ✐ ②❂✷ t❛ ❝â ①❂✷✳ ❱➟② ✭✷✱✷✱✶✮ ❧➔ ♠ët ♥❣❤✐➺♠ ❝õ❛ ♣❤÷ì♥❣ tr➻♥❤✳ ❍♦→♥ ✈à ❝→❝ sè tr➯♥ t❛ ✤÷đ❝ ❝→❝ ♥❣❤✐➺♠ ❝õ❛ ♣❤÷ì♥❣ tr➻♥❤ ❧➔ ✭✷✱✷✱✶✮❀✭✷✱✶✱✷✮❀✭✶✱✷✱✷✮✳ ✻✹ ❑➌❚ ▲❯❾◆ ▲✉➟♥ ✈➠♥ ✤➣ ✤↕t ✤÷đ❝ ❝→❝ ❦➳t q✉↔ s❛✉ ✤➙②✿ ✶✳ ❚r➻♥❤ ❜➔② ✤÷đ❝ ♠ët sè ❦❤→✐ ♥✐➺♠✱ t➼♥❤ ❝❤➜t ❝ì ❜↔♥✱ ♠ët sè ♣❤÷ì♥❣ ♣❤→♣ ❝❤ù♥❣ ♠✐♥❤ ❜➜t ✤➥♥❣ t❤ù❝✱ s❛✉ ✤â →♣ ❞ư♥❣ ❝❤ó♥❣ ✤➸ ❣✐↔✐ ♠ët sè ❜➔✐ t♦→♥ ✈➲ ❣✐↔✐ ♣❤÷ì♥❣ tr➻♥❤✱ ữỡ tr t tr ợ t tr ♥❤ä ♥❤➜t✳ ✷✳ ❚r➻♥❤ ❜➔② ✤÷đ❝ ❤➺ t❤è♥❣ ❝→❝ ✈➼ ❞ư ♠✐♥❤ ❤å❛ ❝❤♦ ❝→❝ ♣❤÷ì♥❣ ♣❤→♣ ✈➔ ù♥❣ ❞ư♥❣ ❝õ❛ ❜➜t ✤➥♥❣ t❤ù❝✳ ✸✳ ❚→❝ ❣✐↔ ❤② ✈å♥❣ s➩ t✐➳♣ tö❝ ♥❣❤✐➯♥ ❝ù✉ ✤➳♥ ❝→❝ ù♥❣ ❞ö♥❣ ❝õ❛ ❜➜t ✤➥♥❣ t❤ù❝ ❧✐➯♥ q✉❛♥ ✤➳♥ ❝→❝ ❜➔✐ t♦→♥ ❤➻♥❤ ❤å❝ ✈➔ ①→❝ s✉➜t tr♦♥❣ t♦→♥ ❤å❝ ♣❤ê t❤æ♥❣✳ ✻✺ ❚➔✐ ❧✐➺✉ t❤❛♠ ❦❤↔♦ ❬✶❪ ◆❣✉②➵♥ ❈❛♠ ✭✷✵✵✻✮✱ P❤÷ì♥❣ ♣❤→♣ ❣✐↔✐ t♦→♥ ❧÷đ♥❣ ❣✐→❝✱ ◆❳❇ ✣❍◗● ❍➔ ◆ë✐✳ ❬✷❪ P❤↕♠ ❑✐♠ ❍ò♥❣ ✭✷✵✵✻✮✱ ❙→♥❣ t↕♦ ❇➜t ✤➥♥❣ t❤ù❝✱ ◆❳❇ ❚r✐ t❤ù❝✳ ❬✸❪ P❤❛♥ ❍✉② ❑❤↔✐ ✭✶✾✾✻✮✱ ❚✉②➸♥ t➟♣ ❝→❝ ❜➔✐ t♦→♥ ❇➜t ✤➥♥❣ t❤ù❝ t➟♣ ✶✱ ◆❳❇ ●✐→♦ ❞ö❝✳ ❬✹❪ P❤❛♥ ❍✉② ❑❤↔✐ ✭✷✵✵✶✮✱ ✶✵✵✵✵ ❇➔✐ t♦→♥ ❝➜♣✲❇➜t ✤➥♥❣ t❤ù❝ ❦✐♥❤ ✤✐➸♥✱ ◆❳❇ ❍➔ ◆ë✐✳ ❬✺❪ ◆❣✉②➵♥ ❱➠♥ ▼➟✉ ✭✶✾✾✻✮✱ ▼ët sè ♣❤÷ì♥❣ ♣❤→♣ ❣✐↔✐ ♣❤÷ì♥❣ tr➻♥❤ ✈➔ ❜➜t ♣❤÷ì♥❣ tr➻♥❤✱ ◆❳❇ ●✐→♦ ❞ö❝✳ ❬✻❪ ◆❣✉②➵♥ ❱➠♥ ▼➟✉ ✭✷✵✵✺✮✱ ❇➜t tự ỵ ❬✼❪ ✣➦♥❣ ❚❤➔♥❤ ◆❛♠ ✭✷✵✶✺✮✱ ❑❤→♠ ♣❤→ t÷ ❞✉② ❑✛ t❤✉➟t ❣✐↔✐ ❜➜t ✤➥♥❣ t❤ù❝ ❜➔✐ t♦→♥ ♠✐♥✲♠❛①✱ ◆❳❇ ✣↕✐ ố ỵ ❚✐➳♥ ❉ơ♥❣✱ ◆❣✉②➵♥ ❱✐➺t ❍➔ ✭✶✾✾✽✮✱ P❤÷ì♥❣ ♣❤→♣ ❣✐↔✐ ♣❤÷ì♥❣ tr➻♥❤✱ ❜➜t ♣❤÷ì♥❣ tr➻♥❤✱ ❤➺ ♣❤÷ì♥❣ tr➻♥❤✱ ◆❳❇ ✣➔ ◆➤♥❣✳ DAI HOC DA NANG TRlfONG DAI HOC str PRAM , pr;JJ)p So:wv IQD-DHSP CQNG BoA XA HOI CHU NGHiA VIET NAM DQcI,p - T., - Hanh phuc DO.Ndng, tft- (hang H nam JOL!J QUYETDJNH V~vi~c giao d~ tai va trach nhijm huong din lu,n van thac si HffiUTRlfONGTRlfONGDAIHOCslfpHAM Can cir Nghi dinh s6 32/CP 04/4/1994 cua Chinh phu v~ viec l~p D~i h9C Da N~ng; Can cir Thong nr s6 08/20 14/TT -BGDDT 20/3/2014 cua B