1. Trang chủ
  2. » Cao đẳng - Đại học

Toan hinh hoc thi vao lop 10 Bai 56

2 1 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 2
Dung lượng 65,29 KB

Nội dung

Chøng minh tø gi¸c AMBO néi tiÕp.. Chøng minh OAHB lµ h×nh thoi2[r]

(1)

Bài Cho đờng tròn (O; R), từ điểm A (O) kẻ tiếp tuyến d với (O) Trên đờng thẳng d lấy điểm M ( M khác A) kẻ cát tuyến MNP gọi K trung điểm NP, kẻ tiếp tuyến MB (B tiếp điểm) Kẻ AC  MB, BD  MA, gọi H giao điểm AC BD, I giao điểm OM AB

1 Chøng minh tø gi¸c AMBO néi tiÕp

2 Chứng minh năm điểm O, K, A, M, B nằm đờng tròn

3 Chøng minh OI.OM = R2; OI IM = IA2.

4 Chứng minh OAHB hình thoi

5 Chứng minh ba điểm O, H, M thẳng hàng

6 Tỡm quỹ tích điểm H M di chuyển đờng thẳng d

Lêi gi¶i:

1. (HS tù lµm)

2. Vì K trung điểm NP nên OK  NP ( quan hệ đờng kính

Vµ d©y cung) => OKM = 900 Theo tÝnh chÊt tiÕp tuyÕn ta cã OAM = 900; OBM = 900 nh vËy K, A,

B nhìn OM dới góc 900 nên nằm đờng trịn đờng kính OM

Vậy năm điểm O, K, A, M, B nằm đờng tròn 3 Ta có MA = MB ( t/c hai tiếp tuyến cắt nhau); OA = OB = R => OM trung trực AB => OM  AB I

Theo tính chất tiếp tuyến ta có OAM = 900 nên tam giác OAM vuông A có AI đờng cao.

áp dụng hệ thức cạnh đờng cao => OI.OM = OA2 hay OI.OM = R2; OI IM = IA2.

4 Ta cã OB  MB (tÝnh chÊt tiÕp tuyÕn) ; AC  MB (gt) => OB // AC hay OB // AH. OA  MA (tÝnh chÊt tiÕp tuyÕn) ; BD  MA (gt) => OA // BD hay OA // BH

=> Tứ giác OAHB hình bình hành; lại có OA = OB (=R) => OAHB h×nh thoi

5 Theo OAHB hình thoi => OH  AB; theo OM  AB => O, H, M thẳng hàng( Vì qua O có đờng thẳng vng góc với AB)

6 (HD) Theo OAHB hình thoi => AH = AO = R Vậy M di động d H di động nh ng ln cách A cố định khoảng R Do quỹ tích điểm H M di chuyển đờng thẳng d nửa đờng trịn tâm A bán kính AH = R

Bài Cho tam giác ABC vuông A, đờng cao AH Vẽ đờng tròn tâm A bán kính AH Gọi HD đờng kính đờng tròn (A; AH) Tiếp tuyến đờng tròn D cắt CA E

1 Chøng minh tam gi¸c BEC c©n

2 Gọi I hình chiếu A BE, Chứng minh AI = AH Chứng minh BE tiếp tuyến đờng tròn (A; AH)

4 Chøng minh BE = BH + DE

Lêi gi¶i: (HD)

1.  AHC = ADE (g.c.g) => ED = HC (1) vµ AE = AC (2)

(2)

2 Hai tam gi¸c vuông ABI ABH có cạnh huyền AB chung, B1 = B2 =>  AHB =

AIB => AI = AH

Ngày đăng: 19/05/2021, 14:54

w