1. Trang chủ
  2. » Công Nghệ Thông Tin

Bài giảng đồ họa máy tính biến đổi 3d

49 2,7K 11
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 49
Dung lượng 640,5 KB

Nội dung

Bài giảng đồ họa máy tính biến đổi 3d

BÀI GIẢNG ĐỒ HỌA MÁY TÍNH GV: Vũ Đức Huy SĐT: 0912316373 Bộ môn: HTTT-ĐHCNHN EMail: huyhaui@gmail.com Thời lượng:     Số tín chỉ: 03 Lên lớp: 20 TH: 25 Bài tập lớn + Bảo vệ: 15 BÀI GIẢNG ĐỒ HỌA MÁY TÍNH Các điểm: Kiểm tra định kỳ: 02  Kiểm tra thường xuyên: Không định trước  Thi: Kết BTL  Chuyên cần:01  Tài liệu tham khảo        [1] James D.Foley, Andrie van Dam, Steven K.Feiner, Jonhn F Hughes, Computer Graphics Principles and Practice, Addison Wesley, 1994 [2] Hồng Kiếm, Dương Anh Đức, Lê Đình Duy, Vũ Hải Quân Giáo trình sở Đồ hoạ Máy tính, NXB Giáo dục, 2000 [3] Lê Tấn Hùng, Huỳnh Quyết Thắng Kỹ thuật đồ hoạ máy tính, NXB khoa học kỹ thuật, 2002 [4] Học viện công nghệ bưu viễn thơng Kỹ thuật đồ họa (lưu hành nội bộ) [5] Lương Chi Mai Nhập môn Đồ họa máy tính, NXB Khoa học kỹ thuật [6] Steven Harrington, Computer Graphics A Programming Approach, McGraw Hill International Edition, 1987 [7] Gerald Farin, Curves and Surfaces for Computer Aided Geometric Design A Practical Guide, Academic Press Inc, 1990 CHƯƠNG BIẾN ĐỔI 3D 4.1 ĐẠI SỐ VÉCTƠ 4.1 Đại số véctơ  Biểu diễn véctơ   Đoạn thẳng có hướng hai điểm xác định Cộng hai véctơ V1+V2= (x1+x2, y1+y2, z1+z2) 4.1 Đại số véctơ  Nhân hai véctơ  Tích vơ hướng hay tích điểm V1V2 = x1x2 + y1y2 + z1z2  Độ dài véctơ 4.1 Đại số véctơ  Tích có hướng hai véctơ  Kết véctơ vng góc với mặt phẳng tạo hai véctơ  Véctơ đơn vị u    Có độ dài Xác định hướng véctơ kết Quy tắc bàn tay phải  Nắm tay phải, để cong ngón tay từ V1 đến V2 (nếu V1xV2), lịng bàn tay hướng gốc, ngón trỏ theo hướng u  Véctơ kết V1xV2=u|V1||V2|sinθ 4.1 Đại số véctơ  Véctơ đơn vị theo trục tọa độ:ux, uy, uz  Tích có hướng hai véctơ biểu diễn sau: 4.1 Đại số véctơ  Cosine hướng  Cho trước véctơ p Cosine hướng cosine góc α, β, γ 10 4.2.3 Quay quanh trục  Bước 3: Tìm ma trận xoay véctơ đơn vị u’’ mặt xz quanh trục y vào trục dương z  Trục xoay trục z dương, góc xoay θ 35 4.2.3 Quay quanh trục   Bước 4: Biến đổi trục xoay vị trí ban đầu Ma trận biến đổi xoay cuối R(θ)=T.Rx(α).Ry(β).Rz(θ).Ry-1 (β).Rx-1 (α).T-1 36 4.2.3 Quay quanh trục  Tìm ma trận chuyển đổi hình học  Bước 1: Tịnh tiến cho đầu cuối trùng với gốc tọa độ      Tọa độ hai đầu đoạn thẳng (0, 0, 0) (x0, y0, z0) Bước 2: Thực xoay quanh trục x y để trục trùng với trục z Bước 3: Xoay quanh trục z góc θ Bước 4: Xoay ngược lại quanh trục y x Bước 5: Tịnh tiến ngược để đưa trục vị trí ban đầu 37 4.2.3 Quay quanh trục  Tìm ma trận chuyển đổi hình học  Ma trận biến đổi cuối 38 4.2.3 Quay quanh trục  Bước 1: Ma trận tịnh tiến 39 4.2.3 Quay quanh trục  Bước 2:  Tính góc α cho ma trận xoay Chiếu trục xoay lên mặt phẳng yz  Ma trận xoay quanh x góc α 40 4.2.3 Quay quanh trục  Bước 3:  Tìm góc quay β xung quanh trục y  Ma trận xoay quanh γ góc β 41 4.2.3 Quay quanh trục  Bước 4:  Xoay xung quanh trục trùng với trục z  Tìm ma trận biến đổi ngược trước tính tốn ma trận cuối 42 4.2.4 Phép lấy đối xứng  Giải pháp   Lấy đối xứng trục tọa độ qua mặt phẳng phản chiếu Đối xứng qua mặt phẳng xy   Biến đổi làm thay đổi trục z giữ nguyên trục x, y Ma trận: 43 4.2.4 Phép lấy đối xứng  Giải pháp   Lấy đối xứng trục tọa độ qua mặt phẳng phản chiếu Đối xứng qua mặt phẳng xy   Biến đổi làm thay đổi trục z giữ nguyên trục x, y Ma trận: 44 4.2.4 Phép lấy đối xứng  Đối xứng qua mặt phẳng yz   Biến đổi làm thay đổi trục x giữ nguyên trục y, z Ma trận: 45 4.2.4 Phép lấy đối xứng  Đối xứng qua mặt phẳng xz   Biến đổi làm thay đổi trục y giữ nguyên trục x, z Ma trận: 46 4.2.4 Phép lấy đối xứng  Đối xứng qua gốc tọa độ (0,0,0)   Biến đổi làm thay đổi trục x, y, z Ma trận: 47 4.2.5 Phép biến dạng   Tất phần tử nằm đường chéo =1 Ma trận: 48 Xin chân thành cảm ơn! 49 ... trình sở Đồ hoạ Máy tính, NXB Giáo dục, 2000 [3] Lê Tấn Hùng, Huỳnh Quyết Thắng Kỹ thuật đồ hoạ máy tính, NXB khoa học kỹ thuật, 2002 [4] Học viện công nghệ bưu viễn thơng Kỹ thuật đồ họa (lưu...   Biến đổi làm thay đổi trục y giữ nguyên trục x, z Ma trận: 46 4.2.4 Phép lấy đối xứng  Đối xứng qua gốc tọa độ (0,0,0)   Biến đổi làm thay đổi trục x, y, z Ma trận: 47 4.2.5 Phép biến. .. 4.2 CÁC PHÉP BiẾN ĐỔI CƠ SỞ 11 4.2.1 Các phép biến đổi sở  Phép tịnh tiến  Cho P1(x,y,z) Oxyz Tịnh tiến P1 theo véc tơ [Tx,Ty,Tz]  P2(x’,y’,z’)  Ta có: 12 4.2.1 Các phép biến đổi sở  Phép

Ngày đăng: 28/08/2012, 11:00

HÌNH ẢNH LIÊN QUAN

hình học - Bài giảng đồ họa máy tính biến đổi 3d
hình h ọc (Trang 38)

TỪ KHÓA LIÊN QUAN

w