1. Trang chủ
  2. » Luận Văn - Báo Cáo

cac van de lien quan den ham so bac ba

3 2 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 3
Dung lượng 158,5 KB

Nội dung

Viết phương trình đường thẳng qua 2 điểm cực trị.. 4) Định p để trên (C) có 2 tiếp tuyến có hệ số góc bằng p, trong trường hợp này chứng tỏ.. trung điểm của hai tiếp điểm là điểm cố định[r]

(1)

Các vấn đề liên quan đến hàm số bậc y = ax3 + bx2 + cx + d với a  có đồ thị (C).

I/ Các kiến thức liên quan đến Đơn điệu - Cực trị

1) a > y’ = vô nghiệm  hàm số tăng R (luôn tăng)

2) a < y’ = vô nghiệm  hàm số giảm (nghịch biến) R (luôn

giảm)

3) Hàm số khơng có cực trị  y' 0 vô nghiệm

4) a > y’ = có nghiệm phân biệt x1, x2 với x1 < x2

 hàm số đạt cực đại x1 đạt cực tiểu x2 Ngoài ta cịn có:

+ x1 + x2 = 2x0 với x0 hoành độ điểm uốn + hàm số tăng (, x1) (x2, +) + hàm số giảm (x1, x2)

5) a < y’ = có nghiệm phân biệt x1, x2 với x1 < x2

 hàm đạt cực tiểu x1 đạt cực đại x2 thỏa điều kiện x1 + x2 = 2x0 (x0 hồnh độ điểm uốn) Ta có:

+ hàm số giảm (, x1) (x2, +) + hàm số tăng (x1, x2)

II/ Cách viết phương trình đường thẳng qua điểm cực trị

-Tính y’.Tìm điều kiện để hàm số có cực trị Thực phép tính y y: ' -Viết y = k(Ax + B)y’ + r x + q

-Gọi ( ; )x y0 0 tọa độ điểm cực trị  y x'( ) 00  từ suy

0

yrxq

-Kết luận y rx q  đường thẳng qua cực trị (nhớ kết hợp với đk để hàm số có cực trị)

III/ Giao điểm đồ thị với trục hoành : 1) C) cắt Ox điểm phân biệt

   

 

0 ) 2 x( y ). 1 x( y

2 x, 1 x biệt ân nghiệm ph 2

có 0 'y

2) Giả sử a > ta có: a) (C) cắt Ox điểm phân biệt > 

     

 

   

0 ) 2 x ( y ). 1 x ( y

0 ) ( y

2 x 1 x thỏa biệt ân nghiệm ph 2

coù 0 'y

b) (C) cắt Ox điểm phân biệt < 

     

 

   

0 ) 2 x ( y ). 1 x ( y

0 ) ( y

2 x 1 x thỏa biệt ân nghiệm ph 2

coù 0 'y

Tương tự a <

3) (C) cắt Ox điểm phân biệt cách  y’ = có nghiệm phân

biệt y (x0) = Với x0 hoành độ điểm uốn

IV/ Biện luận số nghiệm phương trình : ax3 + bx2 + cx + d = (1) (a 0) x

= nghiệm (1).

Nếu x =  nghiệm (1), ta có

ax3 + bx2 + cx + d = (x - )(ax2 + b 1x + c1)

nghiệm (1) x =  với nghiệm phương trình ax2 + b1x + c1 = (2) Ta có trường hợp sau:

1) (2) vơ nghiệm (1) có nghiệm x = 

2) (2) có nghiệm kép x =  (1) có nghiệm x = 

3) (2) có nghiệm phân biệt  (1) có nghiệm phân biệt

4) (2) có nghiệm x =  nghiệm khác  (1) có nghiệm

5) (2) có nghiệm kép  (1) có nghiệm

V/ Tiếp tuyến đồ thị : Gọi I điểm uốn Cho M  (C)

Nếu M  I ta có tiếp tuyến qua M Nếu M khác I ta có tiếp tuyến qua M

Biện luận số tiếp tuyến qua điểm N khơng nằm (C) ta có nhiều trường hợp

Ghi : Đối với hàm bậc : y = ax3 + bx2 + cx + d, ta có: i) Nếu a > tiếp tuyến điểm uốn có hệ số góc nhỏ ii) Nếu a < tiếp tuyến điểm uốn có hệ số góc lớn

BÀI TẬP ÁP DỤNG

Bài : Cho họ đường cong bậc ba (Cm) họ đường thẳng (Dk) có phương trình

y = x3 + mx2 m y = kx + k +

PHầN I Trong phần cho m = Khảo sát vẽ đồ thị (C) hàm số

1) Gọi A B điểm cực đại cực tiểu (C) M điểm cung AB với M khác A, B Chứng minh (C) ta tìm hai điểm có tiếp tuyến vng góc với tiếp tuyến M với (C)

2) Gọi  đường thẳng có phương trình y = Biện luận số tiếp tuyến với (C) vẽ từ E 

với (C)

3) Tìm E  để qua E có ba tiếp tuyến với (C) có hai tiếp tuyến vng góc với

4) Định p để (C) có tiếp tuyến có hệ số góc p, trường hợp chứng tỏ trung điểm hai tiếp điểm điểm cố định

5) Tìm M  (C) để qua M có tiếp tuyến với (C)

PHầN I I.Trong phần cho tham số m thay đổi.

6) Tìm điểm cố định (Cm) Định m để hai tiếp tuyến hai điểm cố định vng góc

7) Định m để (Cm) có điểm cực trị Viết phương trình đường thẳng qua điểm cực trị 8) Định m để (Cm) cắt Ox điểm phân biệt

9) Định m để : a) hàm số đồng biến (1, 2) b) hàm số nghịch biến (0, +) 10) Tìm m để (Cm) cắt Ox điểm có hồnh độ tạo thành cấp số cộng

11) Tìm điều kiện k m để (Dk) cắt (Cm) điểm phân biệt Tìm k để (Dk) cắt (Cm) thành hai đoạn

12)Viết phương trình tiếp tuyến với (Cm) qua điểm (-1, 1)

13)Chứng minh tiếp tuyến với (Cm) tiếp tuyến điểm uốn có hệ số góc lớn

Bài 2: Cho hàm số yx33mx23(1 m x m2)  3 m2 Viết phương trình đường thẳng qua cực trị hàm số

Bài 3: Tìm m để f x x3 mx2 7x3 có đường thẳng qua CĐ,

Bài 4: Tìm m cho đồ thị hàm số cắt trục hoành điểm phân biệt :

3 )

1 ( 3 ) 1 4

(

3

     

x m x m x m

y

Bài 5: Định m để (Cm) cắt trục Ox điểm

( )

3

y=2x - 3 m x+ +6mx 2

-Bài 6: Chứng minh đường thẳng qua điểm I(1;2) với hệ số góc k (k 3) cắt đồ thị hàm số

3 3 4

y x  x  ba điểm phân biệt I, A, B đồng thời I trung điểm đoạn thẳng AB

Bài 7:Tìm m để (Cm) y x 3 3mx29x 7cắt trục Ox điểm phân biệt có hồnh độ lập thành CSC

Bài 8:Tìm m để tiếp tuyến đồ thị hàm số

1 ) ( 3

   

x mx m x

y điểm có hồnh độ x=-1 qua điểm

A(1; 2)

Bài 9: Viết phương trình tiếp tuyến điểm uốn đồ thị hàm số

3

1

2 3

2

yxxxvà cm tiếp tuyến điểm uốn có hệ số góc nhỏ Bài 10: Viết pt tt đồ thị (C) 1 2 3

3

yxxx , biết tt qua gốc tọa độ O

Bài 11: Cho hs y = x - 3x + 23 Tìm M y = -2 cho từ kẻ đến (C) hai TT vng góc nhau

Bài 12: Tìm m để đồ thị (Cm)yx3(2m1)x2 m1 tiếp xúc

với đường thẳng y2mx m  1

(2)

CT vng góc với y 3x biệt đối xứng với qua gốc toạ độ

BÀI TẬP ÁP DỤNG

Bài : Cho họ đường cong bậc ba (Cm) họ đường thẳng (Dk) có phương trình

y = x3 + mx2 m y = kx + k +

PHầN I Trong phần cho m = Khảo sát vẽ đồ thị (C) hàm số

1) Gọi A B điểm cực đại cực tiểu (C) M điểm cung AB với M khác A, B Chứng minh (C) ta tìm hai điểm có tiếp tuyến vng góc với tiếp tuyến M với (C)

2) Gọi  đường thẳng có phương trình y = Biện luận số tiếp tuyến với (C) vẽ từ E 

với (C)

3) Tìm E  để qua E có ba tiếp tuyến với (C) có hai tiếp tuyến vng góc với 4) Định p để (C) có tiếp tuyến có hệ số góc p, trường hợp chứng tỏ

trung điểm hai tiếp điểm điểm cố định 5) Tìm M  (C) để qua M có tiếp tuyến với (C)

PHầN I I.Trong phần cho tham số m thay đổi.

6) Tìm điểm cố định (Cm) Định m để hai tiếp tuyến hai điểm cố định vng góc

7) Định m để (Cm) có điểm cực trị Viết phương trình đường thẳng qua điểm cực trị 8) Định m để (Cm) cắt Ox điểm phân biệt

9) Định m để : a) hàm số đồng biến (1, 2) b) hàm số nghịch biến (0, +)

10) Tìm m để (Cm) cắt Ox điểm có hồnh độ tạo thành cấp số cộng 11) Tìm điều kiện k m để (Dk) cắt (Cm) điểm phân biệt Tìm k để (Dk) cắt (Cm) thành hai đoạn

12)Viết phương trình tiếp tuyến với (Cm) qua điểm (-1, 1)

13)Chứng minh tiếp tuyến với (Cm) tiếp tuyến điểm uốn có hệ số góc lớn

Bài 2: Cho hàm số yx33mx23(1 m x m2)  3 m2 Viết phương trình đường thẳng qua cực trị hàm số

Bài 3: Tìm m để f x x3 mx2 7x3 có đường thẳng qua CĐ, CT vng góc với y 3x

Bài 4: Tìm m cho đồ thị hàm số cắt trục hoành điểm phân biệt :

3 )

1 ( 3 ) 1 4

(

3

     

x m x m x m

y

Bài 5: Định m để (Cm) cắt trục Ox điểm

( )

3

y=2x - 3 m x+ +6mx 2

-Bài 6: Chứng minh đường thẳng qua điểm I(1;2) với hệ số góc k (k 3) cắt đồ thị hàm số

3

3 4

y x  x  ba điểm phân biệt I, A, B đồng thời I trung điểm đoạn thẳng AB

Bài 7:Tìm m để (Cm) y x 3 3mx29x 7cắt trục Ox điểm phân biệt có hồnh độ lập thành CSC

Bài 8:Tìm m để tiếp tuyến đồ thị hàm số

1 ) ( 3

   

x mx m x

y điểm có hoành độ x=-1 qua điểm

A(1; 2)

Bài 9: Viết phương trình tiếp tuyến điểm uốn đồ thị hàm số

3

1

2 3

2

yxxxvà cm tiếp tuyến điểm uốn có hệ số góc nhỏ Bài 10: Viết pt tt đồ thị (C) 1 2 3

3

yxxx , biết tt qua gốc tọa độ O

Bài 11: Cho hs y = x - 3x + 23 Tìm M y = -2 cho từ kẻ đến (C) hai TT vng góc nhau

Bài 12: Tìm m để đồ thị (Cm)yx3(2m1)x2 m1 tiếp xúc

với đường thẳng y2mx m  1

Bài 13: Tìm m để đồ thị hàm số y x 3 3x2mcó hai điểm phân biệt đối xứng với qua gốc toạ độ

Các vấn đề liên quan đến hàm số bậc 3

y = ax3 + bx2 + cx + d với a  có đồ thị (C).

I/ Các kiến thức liên quan đến Đơn điệu - Cực trị

1) a > y’ = vô nghiệm  hàm số tăng R (luôn tăng)

2) a < y’ = vô nghiệm  hàm số giảm (nghịch biến) R (ln ln giảm)

3) Hàm số khơng có cực trị  y' 0 vô nghiệm

4) a > y’ = có nghiệm phân biệt x1, x2 với x1 < x2

 hàm số đạt cực đại x1 đạt cực tiểu x2 Ngồi ta cịn có:

+ x1 + x2 = 2x0 với x0 hoành độ điểm uốn + hàm số tăng (, x1) (x2, +) + hàm số giảm (x1, x2)

5) a < y’ = có nghiệm phân biệt x1, x2 với x1 < x2

 hàm đạt cực tiểu x1 đạt cực đại x2 thỏa điều kiện x1 + x2 = 2x0 (x0 hoành độ điểm uốn) Ta có:

+ hàm số giảm (, x1) (x2, +) + hàm số tăng (x1, x2)

II/ Cách viết phương trình đường thẳng qua điểm cực trị

-Tính y’.Tìm điều kiện để hàm số có cực trị Thực phép tính y y: ' -Viết y = k(Ax + B)y’ + r x + q

-Gọi ( ; )x y0 0 tọa độ điểm cực trị  y x'( ) 00  từ suy

0

yrxq

-Kết luận y rx q  đường thẳng qua cực trị (nhớ kết hợp với đk để hàm số có cực trị)

III/ Giao điểm đồ thị với trục hoành : 1) C) cắt Ox điểm phân biệt

     

 

   

0 ) 2 x ( y ). 1 x ( y

0 ) ( y

2 x 1 x thỏa biệt ân nghiệm ph 2

coù 0 'y

b)(C) cắt Ox điểm phân biệt < 

     

 

   

0 ) 2 x ( y ). 1 x ( y

0 ) ( y

2 x 1 x thỏa biệt ân nghiệm ph 2

có 0 'y

Tương tự a <

3) (C) cắt Ox điểm phân biệt cách  y’ = có nghiệm phân

biệt y (x0) = Với x0 hoành độ điểm uốn

IV/ Biện luận số nghiệm phương trình : ax3 + bx2 + cx + d = (1) (a 0) x

= nghiệm (1).

Nếu x =  nghiệm (1), ta có

ax3 + bx2 + cx + d = (x - )(ax2 + b 1x + c1)

nghiệm (1) x =  với nghiệm phương trình ax2 + b1x + c1 = (2) Ta có trường hợp sau:

1) (2) vơ nghiệm (1) có nghiệm x = 

2) (2) có nghiệm kép x =  (1) có nghiệm x = 

3) (2) có nghiệm phân biệt  (1) có nghiệm phân biệt

4) (2) có nghiệm x =  nghiệm khác  (1) có nghiệm

5) (2) có nghiệm kép  (1) có nghiệm

V/ Tiếp tuyến đồ thị : Gọi I điểm uốn Cho M  (C)

Nếu M  I ta có tiếp tuyến qua M

Nếu M khác I ta có tiếp tuyến qua M

(3)

   

 

0 ) 2 x( y ). 1 x( y

2 x, 1 x biệt ân nghiệm ph 2

coù 0 'y

2) Giả sử a >

a) ta có (C) cắt Ox điểm phân biệt > 

Ngày đăng: 01/05/2021, 02:41

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w